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基于强化学习的 A股市场交易研究 

 

摘要 

 

设计交易策略是投资研究的核心问题之一。在现代机器学习算法和日益增进的计算能力

的帮助下，基于机器学习的算法交易和投资组合管理逐渐获得了行业与学术界的关注与重

视。然而，仅仅凭借基于回归和聚类的传统静态机器学习算法，在复杂和动态的股票市场中

设计一种普遍盈利的策略仍然是极具挑战的。 

强化学习 (RL) 是一种旨在通过与提供奖励的环境交互进而找到最佳策略的算法。它

强调不断通过与未知环境的交互，习得在不同情境下的最优反应策略。这一过程与交易者在

股票市场中在不同的行情下通过做出多空决策以最优化收益的行为不谋而合。 

在本文中，我们将强化学习算法应用于A股市场的股票交易，通过不断与环境进行交互

从而学习交易策略，以实现收益最大化。我们首先将股票市场的交易过程建模为马尔可夫决

策过程 (MDP)，并使用六种成熟的强化学习算法分别训练：TD3, DDPG, PPO, DDQN, A2C与

SAC。此外，考虑到不同的算法分别具有乐观与悲观的特性，为了获得更稳健的交易算法，

我们探索了将上述算法进行基于最优策略集成和基于模型组合的集成（BMC）交易算法。 

我们分别通过在上证 50 (SEE.50)、沪深 300(CSI.300)和中证 500(CSI.500)成分股的

训练与回测交易中评估和比较我们的策略。通过与基准收益 ETF（SEE.50, CSI.300 与

CSI.500 指数）以及市场中的可交易指数型基金比较，我们发现大多数强化学习算法在收益

上都可以得到大幅度超过基准的回报与较高的夏普比率。此外，我们引入了加权集成的算法

以提升投资回报的稳健型。我们发现相比其他机器学习算法，集成算法可以得到更低的最大

回撤与波动率。这为 A 股市场量化交易与投资组合研究提供了额外思路与补充，并拓展了多

决策算法集成在中国市场中的应用。 

 

关键词：算法交易，强化学习，马尔可夫决策，集成学习，A 股市场  

 

  



 

     TRADING STRATEGIES BASED ON REINFORCEMENT 

LEARNING IN A-SHARE MARKET 

4 

 

 

TRADING STRATEGIES BASED ON REINFORCEMENT 

LEARNING IN A-SHARE MARKET 

 

ABSTRACT 

 

Designing trading strategies is one of the core issues in investment research. With 

the help of modern machine learning algorithms and exponentially growing computing 

capacity, algorithmic trading and portfolio management based on statistical learning are 

gradually gaining popularity and empirical success. However, it remains thought-

provoking to design a universally profitable strategy in complex and dynamic stock 

markets using traditional machine learning algorithms built primarily on regression and 

clustering. 

  Reinforcement Learning (RL) is a set of algorithms aiming to find the optimal 

strategies for providing rewards from interacting with the environment. It focuses on 

learning and exploring an unknown environment with feedback on agents' actions and 

exploiting the best strategy. This process is compatible with a trader making long-short 

decisions in the stock market and gaining profit from his/her actions.  

In this paper, we apply reinforcement learning algorithms to the A-share market 

and generate trading strategies to maximize total returns. We model the trading process 

in the stock market as a Markov Decision Process and train RL agents separately using 

six algorithms: Deep Deterministic Policy Gradient (DDPG), Proximal Policy 

Optimization (PPO), Dual Deep Q-Network (DDQN), Advantage Actor-Critic (A2C), 

Asynchronous Advantage Actor-Critic(A3C) and Soft Actor-Critic (SAC). Besides, in 

order to obtain more robust trading algorithms, we ensemble these algorithms based on 

Bayesian optimal strategy and Bayesian model combination (BMC).  
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We evaluate and compare the returns of our strategies with the baseline ETFs 

(SEE.50, CSI.300, and CSI.500) and index-based funds in the market. We find that most 

of our RL agents outperform the baselines in returns, and the ensembling methods are 

more robust in terms of Sharp Ratio and maximum drawdown. Our work may 

contribute to the field of algorithmic trading and ensembling-based portfolio 

management in the A-share market. 

 

Key words: Algorithmic Trading, Reinforcement Learning, Markov Decision Process, 

Model Ensembling, A-Share Market 

 

 

 

 

 

 

 



 

     TRADING STRATEGIES BASED ON REINFORCEMENT 

LEARNING IN A-SHARE MARKET 

6 

 

 

Content 

 

Chapter One Introduction .............................................................................................. 1 

Chapter Two Related Works .......................................................................................... 3 

2.1 Reinforcement Learning ................................................................................ 3 

2.2 Algorithmic Trading....................................................................................... 4 

2.3 Machine-Learning-Assisted Trading ............................................................. 4 

Chapter Three Modeling of Stock Trading in RL Frameworks ..................................... 6 

3.1 Basics of Reinforcement Learning................................................................. 6 

3.2 Formulation of Stock Trading ...................................................................... 10 

Chapter Four Deep Reinforcement Learning Algorithms in Trading .......................... 13 

4.1 General Description of Model-Free RL, Q-learning, and Policy Gradient.. 13 

4.2 Deep Q-Network (DQN).............................................................................. 15 

4.3 Double Deep Q-Network (DDQN) .............................................................. 16 

4.4 Advantage Actor-Critic (A2C) .................................................................... 16 

4.5 Soft Actor-Critic (SAC) ............................................................................... 17 

4.6 Deep Deterministic Policy Gradient (DDPG).............................................. 18 

4.8 Proximal Policy Optimization (PPO)........................................................... 19 

Chapter Five Empirical Estimation in the A-share Market .......................................... 20 

5.1 General Introduction of Trading SSE.50, CSI. 300 and CSI.500 ................ 20 

5.2 Basic MDP Settings for Trading .................................................................. 21 

5.2.1 Trading Environment ............................................................................... 21 

5.2.2 Training and Validation Approach ........................................................... 22 

5.2.3 Optimal Ensembling and Model Combination ........................................ 24 

5.3 Details of Backtesting .................................................................................. 24 

5.4 Performance Evaluation ............................................................................... 26 

5.4.1 Performance measurement ....................................................................... 26 

5.4.2 Backtesting Evaluation on SEE.50 components ...................................... 28 

5.4.3 Backtesting Evaluation on CSI.300 ......................................................... 32 

5.4.4 Backtesting Evaluation on CSI.500 ......................................................... 36 



 

     TRADING STRATEGIES BASED ON REINFORCEMENT 

LEARNING IN A-SHARE MARKET 

7 

 

5.4.5 Summary of RL agent's performance....................................................... 38 

Chapter Six Conclusions and Discussions ................................................................... 42 

6.1 Summaries and contributions ....................................................................... 42 

6.1.1 Feasibility of RL algorithms in A-share market algorithmic trading ...... 42 

6.1.2 Two ensembling schemes for RL algorithms in the A-share market....... 43 

6.2 Limitations ................................................................................................... 45 

6.2.1 Simplified trading environment ............................................................... 45 

6.2.2 Unsatisfying drawdowns .......................................................................... 46 

6.2.3 Long training time and lack of convergence............................................ 46 

6.3 Future works ................................................................................................ 47 

6.3.1 Embedding framework for dimensional reduction .................................. 47 

6.3.2 Multi-task agent for robust learning ........................................................ 48 

6.3.3 Limit Order Books Market Setting .......................................................... 48 

References .................................................................................................................... 50 

Acknowledgment ......................................................................................................... 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

     TRADING STRATEGIES BASED ON REINFORCEMENT 

LEARNING IN A-SHARE MARKET 

1 

 

 

Chapter One Introduction 

Stock trading can be simplified as longing and shorting companies' shares in the 

financial market to maximize the return on the investment. When deciding how many 

shares to buy or sell a piece of stock, one of the main challenges is to model and predict 

the complex and dynamic price series, in which stiff trading strategies from so-called 

experts always fail to make stable profits. From traditional financial modeling, 

designing and testing asset pricing models are the main focus for trading strategies. 

Some well-known ones include the capital asset pricing model (CAPM) [1] and Fama 

& French factor model [2]. On the other hand, in computer science and statistics, 

applying data-driven algorithms, especially machine learning techniques, to analyze 

financial data is the mainstream [3]. Moreover, deep learning methods that implement 

neural networks in finance have recently become appealing due to their attractive ability 

to dig out meaningful representations and accurate predictions [4]. 

Reinforcement learning (RL) is an emerging branch of statistical learning and 

machine learning algorithms. Unlike supervised and unsupervised learning, RL 

algorithms are designed to generate the optimal strategy that maximizes the expected 

reward in a dynamic and stochastic environment [5]. The last decade has witnessed 

many significantly successful RL approaches in various domains such as 

recommendation systems [6], games [7], and robotics [8]. One of the most famous 

milestones might be AlphaGo [9], who beats the most talented human players in the 

game of Go.  

Ensembling methods can apply multiple learning algorithms to obtain better and 

more robust performance than could be obtained from any of the constituents alone [10]. 

This methodology can derive from collective wisdom, which indicates that making a 
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decision based on different opinions can achieve a better result. Successful approaches  

like Bootstrap Aggregating (Boosting) [11], Adaptive Bootstrap (Adaboost) [12], and 

Random Forest [13] all outperform their component algorithms.    

There are mainly four reasons why RL can help for better trading. Firstly, the aim 

of designing optimal strategies under a non-deterministic situation resembles the go of 

making long-short decisions. Secondly, RL trains an end-to-end agent who utilizes 

available market information as input and trading actions as output. This feature can 

bypass the challenging task of predicting future prizes used in the traditional predicting-

then-executing modeling. Thirdly, RL-based methods optimize overall (discounted) 

profit directly. The discount factor in RL considers the cost of time, which aligns with 

the risk-free rate in financial modeling. Lastly, based on the function approximation 

method in RL, it is possible to generalize any market condition which requires extensive 

dimensional data [14]. 

This paper aims to design and compare the latest RL algorithms' performances in 

the A-share market, a market on which most past literature focuses little. Then we will 

combine the strategies of different algorithms based on optimal and weighted 

ensembling methods and search for any improvements in RL algorithms' collective 

wisdom. To the best of our knowledge, there are very few thorough tests of RL 

algorithm applications in the A-share market, especially considering ensembling 

methods.  

Our paper is organized according to the following structure. In Chapter Two, we 

review some important literature closely related to our topic; in Chapter Three, we 

describe our modeling of the trading process as an RL framework; in Chapter Four, we 

propose the main algorithms used and the approaches to combine them; and in Section 

Five, we apply the proposed algorithms to trading and backtesting in A-share market; 

in the last part, we summarize our results and discuss some potential improvements for 

future research. 
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Chapter Two Related Works 

Our works are generally related to three lines of literature: reinforcement learning, 

algorithmic trading, ensembling methods, and machine-learning-assisted trading. 

2.1  Reinforcement Learning 

Reinforcement learning is a popular subfield of statistical learning that studies 

complex control and decision-making problems. In Sutton and Barto's description [15], 

RL problems usually possess a closed-loop problem, an agent figuring out decisions by 

trial-and-error, and actions impacting short-term and long-term results. We typically 

call the decision-maker an agent and call everything except the agent the environment. 

The detailed formulations of RL will be discussed in Section Three.  

Many algorithms have been proposed to solve RL problems, and generally, we can 

divide them into tabular and approximation methods. The value function for every 

action-state pair is presented in a tabular for tabular algorithms, and the agent may act 

according to the optimal decisions by checking the table. 

Dynamic programming (DP) [16], Monto Carlo (MC)[17] and temporal difference 

(TD) [18] prove efficient in dealing with tabular settings. However, this tabular 

modeling suffers from the dimensional curse and can hardly work in a high-dimensional 

environment such as the financial market. Instead, function approximation methods aim 

to find a great approximate function of high-dimensional data. In approximation RL 

algorithms, we aim to generalize from previous experiences to unexplored states. Policy 

gradient methods such as Natural policy gradient [19], actor-critic [20], and two 

variants of actor-critic [21,22] gain great reputations for generalization ability. Further, 

with deep learning, RL with neural networks working as function approximators lead 

to great success in many domains like AlphaGo [9] in chess playing. Other famous 
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deep-learning-based RL algorithms include Q-network (DQN) [23], deep deterministic  

policy gradient (DDPG) [24], proximal policy optimization (PPO) [25]. Our paper 

mainly applies approximation-based RL algorithms in the finance field, famous for their 

high dimensionality. 

2.2 Algorithmic Trading 

Algorithmic trading is the process in which traders consistently make long-short 

decisions following a planned rule, given a set of financial assets aiming to maximize 

profits. Broadly speaking, any financial assets can be traded based on algorithmic. 

Based on trading frequency and style, algorithmic trading includes five categories [26]: 

position trading (long-time-holding), swing trading, day trading, scalp trading (short 

while every day), and high-frequency trading (tick level). According to the trading 

regulations, day trading is more realistic in the A-share market. 

Traditional algorithmic trading is generally based on time-series analysis. For 

example, momentum strategies like Times Series Momentum [27] and Cross-Sectional 

Momentum [28], and mean-reversion strategies such as Bollinger bands [29] are all 

based on historical price patterns. However, some problems lie in most conventional 

algorithmic trading strategies. Among them, the most significant is the lack of 

generalization ability among different markets, concerning only a small fraction of 

assets, and the inability to deal with long-term and periodic patterns. 

2.3 Machine-Learning-Assisted Trading 

Machine learning (ML) refers to a large family of computer algorithms that can 

improve automatically through training and data. Ideally, financial data suit ML for its 

abundancy and clearness, and there have already been quite a lot of works applying ML 

in finance for different purposes. For example, Principal Component Analysis (PCA) 

[30] and Deep Neural Networks [31] are applied to extract features and patterns of stock 

https://en.wikipedia.org/wiki/Algorithm
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markets. For price forecasting, researchers have implemented different methods in  

financial data, from naïve algorithms (SVM [32], Lasso [33], and random forest [34]) 

to intricate neural networks (MLP [35], RNN [36], CNN [37] and LSTM). What is 

noticeable is that Recurrent Neural Networks (RNN) and its extension Long-Short-

Term Memory (LSTM) neural networks are incredibly successful in time-series 

predicting. 

Specifically related to our works is RL-assisted reinforcement learning. Recurrent 

reinforcement learning (RRL) [38] proves to have stable performance when exposed to 

noisy data such as financial data, and its extension adaptive RNN [39] outperforms 

most baselines Eur-US dollar exchange market. Trust Region Volatility Optimization 

(TRVO) [40] proposed based on the risk-averse purpose for option hedging beats 

traditional Black-Scholes delta strategies on simulated option price trajectories.   
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Chapter Three Modeling of Stock Trading in RL Frameworks 

This section discusses how to present the trading process in the stock market as a 

Markov Decision Process (MDP), which is the basic framework for reinforcement 

learning. We first review some important concepts and conclusions for reinforcement 

learning; then, we present how to present the market information and long-short 

positions in an RL pattern. 

3.1 Basics of Reinforcement Learning 

We usually model the environment for RL as a Markov Decision Process with 

reward, 𝑀 = {𝑆, 𝐴, 𝑃, 𝑟, 𝛾}. 𝑆 is the set of possible states of the environment and in a 

financial setting. For a specific state 𝑠 ∈ 𝑆, we can understand this as the current prices 

of all stock shares in the market. 𝐴 is the feasible action set, and for an action 𝑎 ∈

𝐴, we can regard it as trading decisions like longing specific company's shares for a 

certain amount. 𝑃(𝑠, 𝑎)  is the transition probability matrix describing system 

dynamics. Specifically, in an MDP, the distribution of state in step 𝑡 + 1 only depends 

on (𝑠𝑡 , 𝑎𝑡), the state-action pair in step 𝑡. We formally present this Markovian property 

as: 

                     𝑃(st+1 |𝑠𝑡 , 𝑎𝑡 , st−1, at−1, … a1, s0) = 𝑃(st+1 |𝑠𝑡 , 𝑎𝑡).                       (3.1)               

After taking action 𝑎ℎ in the 𝑡𝑡ℎ step, the agent will receive a reward (maybe 

even a stochastic one) based on 𝑠𝑡 , 𝑠𝑡−1, 𝑎𝑡, 𝑟𝑡 = 𝑟( 𝑠𝑡 , 𝑠𝑡−1, 𝑎𝑡). The last component 

𝛾 is the discount factor. It is the same as the discounted factor in the calculation of net 

present value (NPV). In reinforcement learning, the cumulated reward in an epoch of 

game is discounted summation of reward in each step for a long time period with a 

length of 𝑇  : ∑  𝑇
𝑘=0  𝛾𝑘𝑟𝑡+𝑘+1.  The aim of MDP is to maximize the (discounted) 

cumulative reward. 
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Besides these environmental factors, we always use a probability vector 𝜋(𝑎|𝑠) 

to present the strategy, which means taking action 𝑎 (with probability) 𝜋(𝑎|𝑠) under 

state 𝑠. In market settings, we can illustrate policy (𝜋(𝑎𝑡|𝑠𝑡)) as: "when given all the 

stock prices at time 𝑡 (𝑠𝑡)" "a trader would long certain stocks and short others." (𝑎𝑡). 

Informally speaking, the main goal of RL is to find the policy 𝜋 (long-short strategies), 

which could optimize the long-term return  ∑  𝑇
𝑘=0   𝛾𝑘𝑟𝑡+𝑘+1  (discounted market 

returns). In Figure 1, we present a brief loop of RL in finance. 

For simplicity, in the following parts, we use 𝑃𝑠𝑠′
𝑎   to represent transition 

probability 𝑃(𝑠′|𝑠, 𝑎), 𝑟𝑠𝑠′
𝑎  for the reward 𝑟( 𝑠′, 𝑠, 𝑎). 

 

Figure 1.1: Structure of RL in Finance 

Moreover, in MDP analysis, we usually introduce two critical measures of a policy 𝜋: 

𝑄𝜋(𝑠, 𝑎) and 𝑉𝜋(𝑠) . 

Definition 1(State Value Function). Given a state 𝑠 and time 𝑡, the value of the state 

at 𝑡 under a fixed policy 𝜋 is the expected return of starting in the given state and 

then following the policy. 

                         𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡 ∣ 𝑠𝑡 = 𝑠] = 𝐸𝜋 [∑  

𝑇

𝑘=0

 𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠].              (3.2) 

Definition 2(Action Value Function). Given a state 𝑠 and action 𝑎 at time 𝑡, the 

value of a state-action pair at 𝑡 under a fixed policy 𝜋 is the expected return of  



 

     TRADING STRATEGIES BASED ON REINFORCEMENT 

LEARNING IN A-SHARE MARKET 

8 

 

starting in the given state, taking the given action, and then following the policy. 

   𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝐸𝜋 [∑  

𝑇

𝑘=0

  𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎].       (3.3) 

By simple mathematical tricks, we can calculate the value function 𝑉𝜋(⋅) 

recursively according to Bellman Equation listed in Lemma 1. 

Lemma 1 (Bellman Equation). For a fixed policy 𝜋, we have the following recursive 

relationship of the state value function 𝑉𝜋(𝑠)  and state-action value function 

𝑄𝜋(𝑠, 𝑎)  

           𝑉𝜋(𝑠) = ∑  

𝑎∈𝒜(𝑠)

𝜋(𝑠, 𝑎) ∑  

𝑠′∈𝒮

P𝑠𝑠′
𝑎 [r𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)] 

          = 𝐸𝜋[𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠 ].        

                                                   = ∑ 𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎),

𝑎∈𝐴

          ∀ 𝑡 ∈ 𝑍+.                       (3.4) 

Similarly, we can also break the 𝑄(𝑠, 𝑎) into: 

             𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑟𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]    

                                                     = 𝑟𝑡(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠𝑠′
𝑎 𝑉𝜋(𝑠′)

𝑠′∈𝑆

                                      (3.5) 

For small-scale problems like tabular MDP, if the model 𝑀 = {𝑆, 𝐴, 𝑃, 𝑟, 𝛾}  is 

provided, we can directly compute 𝑉𝜋 and 𝑄𝜋  based on the transition probabilities 

and expected reward dynamics. For larger problems, especially continuous state and 

action space problems like in the finance environment that we discussed in this paper, 

it is impossible to visit every state and calculate the value functions. Therefore, we rely 

on function approximations of the 𝑄 and 𝑉 functions through parameter updating. 

Moreover, in continuous settings, the Bellman Equation can still work: 
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Corollary 1 (Integrated Bellman Equation) For a fixed policy 𝜋 , we have the 

following recursive relationship of the value function: 

                  𝑉𝜋(𝑠) = ∫ 𝜋(𝑠, 𝑎)
𝑎∈𝐴(𝑠)

∫ P𝑠𝑠′
𝑎

𝑠′∈𝑆

[r𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑑𝑠′𝑑𝑎.                          (3.6) 

In the financial setting, states (such as the price of specific stocks) can be modeled 

as continuous. One of the main differences in the algorithms we apply lies in presenting 

and calculating the aforementioned Bellam Equation. The algorithms we may include 

in the paper like Asynchronous Advantage Actor-Critic (A3C), Deep Q-Networks 

(DQNs), Deep Deterministic Policy Gradient (DDPG), and Evolution Strategies (ES), 

all have their unique ways of searching for the representation of value function and 

derive the optimal policy 𝜋∗  to maximize 𝑉𝜋∗
(𝑠0) . Once given the numerical 

representation of financial markets, we can apply them directly to stock trading. 

Another important property for MDP and reinforcement learning is the Bellman 

Optimality Equation [15]. This theorem provably secures the existence of the optimal 

policy and value function. Formally, the Bellman Optimality Equation can be written 

as follows. 

Theorem 1 (Bellman Optimality Equation) There exists an optimal policy 𝜋⋆,  

allowing the maximization of 𝑉-type and 𝑄-type value functions at the same time. 

Formally written, we have that: 

                                            𝜋⋆ = arg max
π∈Π

𝑉𝜋(𝑠) = arg max
π∈Π

𝑄𝜋(𝑠, 𝑎)                          (3.7) 

This equation also indicates the following relation under optimal policy 𝜋⋆: 

                                         𝑉𝜋⋆
(𝑠) = max

𝑎∈𝐴
(𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎 𝑉𝜋⋆
(𝑠′)

𝑠′∈𝑆

) ;                    (3.8) 

                                        𝑄𝜋⋆
(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎 max
a′∈A

𝑄𝜋⋆
(𝑠′, 𝑎′).               

𝑠′∈𝑆

(3.9) 
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Bellman Optimality Equation shows the existence of the optimal strategy. It also 

provides us with the approach to finding the optimal 𝜋⋆ by finding the maximized 

representation of the value function 𝑄𝜋⋆
(𝑠, 𝑎) or 𝑉𝜋⋆

(𝑠). 

3.2 Formulation of Stock Trading 

Based on the stochasticity and interactivity in the trading process, we model our 

decision and the financial market as a Markov Decision Process (MDP), as shown in 

Figure 1.1. We depict the market information and our asset as state and the long-short 

decision as to the action in an MDP. For generality, we consider 𝐷  stocks (𝐷 ≤

|𝑀𝑎𝑟𝑘𝑒𝑡|) to trade. To better link our model with the real market, we also consider 

current restrictions on the A-share market. Therefore, in our model, leverage and short 

selling are not allowed. 

The state 𝑠 = [𝒑, 𝒉, 𝒊, 𝒃]  is a set that includes the information on the prices of 

stocks 𝒑 ∈ 𝑅+
𝐷  , the number of holdings of stocks 𝒉 ∈ 𝑍+

𝐷 , 𝒊  is an auxiliary part 

incorporating other market information (e.g., market index, technical indicators, and 

exchange ratio), and the remaining balance 𝑏 ∈ 𝑅+.   

The action 𝒂 ∈ 𝐴𝐷 is a vector of actions on all 𝐷 stocks. The available actions of 

each stock include selling, buying, and holding; the action will directly influence the 

holding position ℎ in state 𝑠. There will be some restrictions on the actions allowed 

to take under different 𝑠: 

1. selling: if the trader chooses to sell 𝑘 ∈ 𝑍+ shares of stock 𝑑, the state will change 

to 𝒉𝒕+𝟏[𝑑] = 𝒉𝒕[𝑑] − 𝑘. However, since we do not allow short selling in A-share, 

𝑘 ∈ [1, 𝒉𝒕[𝑑]], ∀𝑑 ∈ [1,2, ⋯ , 𝐷]. 

2. holding: if the trader chooses to take a holding position on stock 𝑑,  𝒉𝒕+𝟏[𝑑] =

𝒉𝒕[𝑑]. 

3. buying: if the trader chooses to buy 𝑘 shares of stock 𝑑 can be bought, and it 
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leads to 𝒉𝒕+𝟏[𝑑] = 𝒉𝒕[𝑑] + 𝑘, ∀𝑑 ∈ [1,2 ⋯ , 𝐷].  

For notational simplicity, we can write 𝒂𝒕 = 𝒌𝒕 ∈ 𝑍𝐷 as the position action vector. If 

we buy in stock 𝑑, 𝒌𝒕[𝑑] > 0, and for selling, 𝒌𝒕[𝑑] < 0. 

The reward r( 𝑠, 𝑎 , 𝑠next) directly comes from the change of the portfolio value 

when action a is taken at state s and observing the new state 𝑠next. The value is the 

portfolio is 𝑝⊤ℎ + 𝑏, which is the sum of the value and cash of the stock. We also 

consider the transaction cost 𝑐𝑡  to make our model closer to the real world. 

Specifically, the return of the action-state pair (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) can be written as: 

                          𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = (𝑏𝑡+1 + 𝑝𝑡+1
⊤ ℎ𝑡+1) − (𝑏𝑡 + 𝑝𝑡

⊤ℎ𝑡) − 𝑐𝑡 ,               (3.6) 

and the transaction cost 𝑐𝑡  here can be calculated by the sum of additional costs 

induced by selling and purchasing based on the commission ratio (usually around 

0.1%~1%). 

Moreover, since leverage is not allowed in our model, the cash should follow the 

restriction equation: 𝑏𝑡+1 = 𝑏𝑡 + (𝑝𝑡
⊤ℎ𝑡)𝑠𝑒𝑙𝑙 − (𝑝𝑡

⊤ℎ𝑡)𝑏𝑢𝑦 ,   where (⋅)𝑠𝑒𝑙𝑙  indicate 

the inner product of the selling fraction and (⋅)𝑏𝑢𝑦 indicating the purchased fraction. 

Under the aforementioned setting, the policy 𝜋(𝑎𝑡|𝑠𝑡), can be understood as when 

observing the market information at period 𝑡, how many shares of specific stocks to 

purchase or sell. Based on Q-learning and Bellman Optimality Equation, which is the 

most popular pattern of training modern reinforcement learning, we can try to find the 

𝜋 to maximize 𝑄𝜋(𝑠𝑡 , 𝑎𝑡). Thus, we can rewrite our training purpose as finding the 

trading strategy 𝜋 to maximize the value function: 

              max
𝜋∈Π

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝐸𝑠𝑡+1
[ 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛾𝐸𝑎𝑡+1

[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]].         (3.7)  

Following the deep reinforcement learning algorithms we will introduce in Chapter 

Four, we can use the output of a neural network to approximate the value of 𝑄 . 

Therefore, concluding the aforementioned settings, we can summarize our aim as:  
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approximating the value function of trading processes based on reinforcement 

learning algorithms and finding a nearly-optimal strategy. 
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Chapter Four Deep Reinforcement Learning Algorithms in Trading 

In this chapter, we would like to discuss some vital reinforcement learning 

algorithms based on neural networks. Theoretically, they are applied to solve almost 

any MDP problems once the 𝑀 = {𝑆, 𝐴, 𝑃, 𝑟, 𝛾}  is well formulated. The significant 

differences among them are the approximation and exploring strategies. Some famous 

RL algorithms include Advantage Actor-Critic (A2C), Soft Actor-Critic Algorithm 

(SAC), Deep Deterministic Policy Gradient (DDPG), Double Deep Q-Network 

(DDQN), Twined Delayed Deep Deterministic Policy Gradients (TD3), and Proximal 

Policy Optimization (PPO). All of these mentioned algorithms can achieve near-

optimal strategy by updating 𝑄(𝑠, 𝑎)-function. 

 In the following subsection, we first present the general approach of approximating 

𝑄𝜃(𝑠, 𝑎) , where 𝜃  is a group of parameters that decide the function 𝑄 . The main 

differences among those mentioned algorithms lie in the way they update 𝜃  and 

choose the policy 𝜋 to explore the environment.  

4.1  General Description of Model-Free RL, Q-learning, and Policy   

Gradient 

Model-free RL is a set of RL algorithms learning the optimal policy through 

maximizing the value function. This set of algorithms does not impose assumptions on 

the transition dynamics (i.e., the transition probability of MDP) but directly learns the 

optimal mapping function 𝑄𝜃
⋆(𝑠, 𝑎)  or 𝑉⋆(𝑠) . The most representative ones among 

them are the 𝑄-learning and policy gradient algorithms. 

𝑸 -learning, as its name suggests, is a set of RL algorithms to learn the best 

representation of the state-action value function 𝑄𝜃(𝑠, 𝑎) , where𝜃 is the parameter 

denoting the structure of 𝑄(𝑠, 𝑎). Based on Bellman Optimality Equation, under the 
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optimal policy 𝜋⋆,  we have the relationship: ∀(𝑠, 𝑎, 𝑠′), 𝑄𝜃
⋆(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +

𝛾 ∑ 𝑃𝑠𝑠′
𝑎 max

a′∈A
𝑄𝜃

𝜋⋆
(𝑠′, 𝑎′) .𝑠′∈𝑆  It means that once we achieve the 𝑄⋆, the optimal policy 

is to take greedy actions by 𝑎⋆(𝑠) = 𝜋⋆(𝑠) = arg𝑎∈𝐴 𝑄(𝑠, 𝑎).  

This equality property also suggests that we can iteratively update the theta in a 

certain way until convergence, reaching the 𝑄𝜃
⋆. The unique ways we update 𝜃 and 

construct 𝑄𝜋 , is the key to understanding different 𝑄-learning algorithms. Generally 

speaking, we can update the 𝑄-function as: 

           𝑄𝜃𝑡+1
(𝑠, 𝑎) = (1 − 𝛼) 𝑄𝜃𝑡

(𝑠, 𝑎) + 𝛼 (𝑟(𝑠, 𝑎) + γmax
a′∈𝐴

𝑄𝜃𝑡
(𝑠′, 𝑎′)),              (4,1) 

where 𝛼 represents the learning tendency to the local optimality. We can also rewrite 

Equation (4.1) in a parameterized representation: 

                                  𝜃𝑡+1 = 𝜃𝑡 + 𝛼 (𝑌𝑡
𝑄 − 𝑄𝜃𝑡

(𝑠𝑡 , 𝑎𝑡)) ∇𝜃𝑡
𝑄𝜃𝑡

(𝑠𝑡 , 𝑎𝑡),                         (4.2) 

where the 𝑌𝑡
𝑄

 is the optimization target of 𝑄-function. For example, if taking a greedy 

updating strategy, we will take 𝑌𝑡
𝑄

= 𝑟(𝑠, 𝑎) + 𝛾 max
a

𝑄𝜃𝑡
(𝑠𝑡+1, 𝑎), and learning rate 

𝛼 =1, and the (4.1) will be 𝑄𝜃𝑡+1
(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + γmax

a′∈𝐴
𝑄𝜃𝑡

(𝑠′, 𝑎′). In the following 

sections, we will discuss some more computationally efficient or more accurate 

algorithms than the greedy ones.  

 Another important branch of model-free algorithms is policy gradient algorithms 

[52]. They mainly aim to learn the representation of policy 𝜋𝜃(𝑎|𝑠) (as well as the 

mapping function of the value function 𝑄𝑤(𝑠, 𝑎)). Sutton et al. [52] prove that under 

the assumption of 𝑄𝑤(𝑠, 𝑎) = ∇𝜃 log 𝜋𝜃(𝑎|𝑠)⊤𝑤, the expected loss is written as: 

                                        𝐽𝜃(𝜋𝜃) = 𝐸𝑠∼𝜌𝜋,𝑎∼𝜋𝜃 [𝑄𝑤(𝑠, 𝑎) − 𝑄𝜋(𝑠, 𝑎)]2,                        (4.3) 

can be minimized through gradient update:  

                                   ∇𝜃  𝐽𝜃(𝜋𝜃) = 𝐸𝑠∼𝜌𝜋,𝑎∼𝜋𝜃 [∇𝜃 logθ 𝜋(𝑎|𝑠) 𝑄𝑤(𝑠, 𝑎)]2.               (4.4) 
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4.2  Deep Q-Network (DQN) 

The Deep 𝑄-network (DQN) algorithm aims to use a multi-layered neural network 

(or other structural networks) to approximate the value function 𝑄𝜃(𝑠, 𝑎)  for any 

given state-action pair (𝑠, 𝑎) [46]. This algorithm is one of RL's first modern empirical 

successes by playing the game Atari, and its result was published in Nature. Its main 

algorithm is described below.  

The key of DQN can be summarized as using one 𝑄-networks with two sets of 

parameters 𝜃− (target) and 𝜃 (online) and experience replay. 𝜃− is the parameter of 

the target network and is updated comparatively slowly. This slow updating secures the 

convergence of gradient descent. Besides, the updating process can be understood as 

minimizing the squared loss each timestep by gradient: 

Algorithm: DQN with Experience Replay. 

Initialize the buffer of replay memory 𝐷 with capacity 𝑁 

Initialize action-value function 𝑄𝜃 with random weights 𝜃0 

Initialize target action-value function 𝑄෠𝜃−  with weights 𝜃− = 𝜃 

For episode 𝑡 = 1, ⋯ , 𝑀 do 

Initialize the first state 𝑠1  

For 𝑡 = 1, ⋯ , 𝑇 do 

With a probability of 𝜀 select a random available action 𝑎𝑡; otherwise, select based on 

𝑎 = arg max
𝑎∈𝐴

𝑄𝜃𝑡
(𝑠𝑡) 

Execute 𝑎𝑡 and observe 𝑟𝑡 and 𝑠𝑡 

Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷 

Sample random minibatch of transitions {(𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1)  from 𝐷 

Set  𝑦𝑗 ቊ
𝑟𝑗                𝑖𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

 𝑟𝑗 + 𝛾 max
a′

𝑄𝜃−෢ ൫𝑠𝑗+1, 𝑎′൯  𝑒𝑙𝑠𝑒
 . 

Perform gradient descent on squared loss 𝐿𝑗(𝜃) = (𝑦𝑖 − 𝑄𝜃൫𝑠𝑗 , 𝑎𝑗൯)
2
regarding 𝜃 

Every 𝐶 steps reset  𝑄෠ = 𝑄 

End For 

End For 
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 ∇𝜃𝑖
𝐿(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑟 + 𝛾𝑚𝑎𝑥

𝑎′
 𝑄(𝑠′, 𝑎′; 𝜃𝑖

−) − 𝑄(𝑠, 𝑎; 𝜃𝑖)) ∇𝜃𝑖
𝑄(𝑠, 𝑎; 𝜃𝑖)] .      (4.5) 

Then after updating the online selection parameter 𝜃 for 𝐶 timesteps, we will update 

the evaluation network 𝜃− = 𝜃. 

4.3  Double Deep Q-Network (DDQN) 

As its name suggests, DDQN is an improved version of Deep Q-Network. The main aim of 

DDQN is to solve the overestimation induced by using one network to select an action 

and evaluate the value function. [50]. So DDQN decouples the evaluation and selection 

network into two different networks. In DQN, the evaluation target can be written as 

the output from the evaluation parameter:  

                                       𝑌𝑡
𝐷𝑄𝑁 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 max

a′∈𝐴
𝑄𝜃−(𝑠, 𝑎′).                                      (4.6)  

However, in DDQN, we iteratively update two networks:  

                               𝑌𝑡
𝑄 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄𝜃𝑡

(𝑠𝑡 , arg max
a∈A

𝑄𝜃𝑡
′(𝑠𝑡 , 𝑎))                             (4.7) 

                       𝑌𝑡
𝐷𝑜𝑢𝑏𝑙𝑒𝑄 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄𝜃𝑡

′ (𝑠𝑡 , arg max
a∈A

𝑄𝜃𝑡
(𝑠𝑡 , 𝑎))                          (4.8) 

This double learning strategy is proved to be efficient both theoretically [49] and 

empirically [50]. Intuitively, DDQN can be regarded as a pessimistic version of DQN. 

4.4  Advantage Actor-Critic (A2C) 

The advantage actor-critic algorithm was proposed by Bator et al. [51]. It is a typical 

policy gradient descent strategy, by learning the parameterized policy 𝜋𝜃 . This 

algorithm is constructed based on the temporal difference approach [18] to approximate 

𝑉 -type value function. Generally speaking, it employs the neural network 

approximation of 𝑉𝜙(𝑠)  (critic) and 𝜋𝜃(𝑠)  (actor), and uses an 𝑛 -step temporal 

difference value to approximate the target of the value function. The primary approach 
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of A2C is shown in Figure 4.1.  

 The 'advantage' in A2C indicates the advantage function, which can be understood 

as the difference between the current value function and the target value. In fact, this 

advantage function has already frequently appeared in previously mentioned algorithms 

in the form of 𝑌𝑡
𝑄 − 𝑄𝜃(𝑠, 𝑎).  

 

Figure 4.1: Advantage Actor-Critic Architecture [22] 

 The agent takes action based on 𝜋𝜃 and update the parameter of policy network 

𝜃 based on gradient descent of entropy loss: 

                                    ∇𝜃𝐽(𝜃) = ∑ ∇𝜃 log 𝜋𝜃(𝑠𝑡 , 𝑎𝑡)

𝑡

(𝑅𝑡 − 𝑉𝜙(𝑠𝑡)),     (4.9) 

and update the value function network 𝜙 based on the gradient of squared loss: 

                                     ∇𝜙𝐿(𝜙) = ∑ ∇𝜙𝑉𝜙(𝑠𝑡) (𝑅𝑡 − 𝑉𝜙(𝑠𝑡))

𝑡

,                              (4.10) 

where the 𝑅𝑡 = ∑ 𝛾𝑘−1𝑟𝑡+𝑘 + 𝛾𝑛𝑉𝜙(𝑠𝑡+𝑛)𝑛
𝑘=1  , which is the 𝑛 -step lookahead value 

function. Besides, we can easily convert this 𝑉-type critic into 𝑄-type. 

4.5 Soft Actor-Critic (SAC) 

The soft actor-critic algorithm is a stable off-policy adaption of the actor-critic 

algorithm proposed by Haarnoja T et al. [47]. Different from A2C, it aims to maximize 
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the discounted reward and policy entropy at the same time. Formally speaking, it 

deploys three sets of networks (𝑄𝑤 , 𝑉𝜙 , 𝜋𝜃) and incorporates the log value of policy into 

the loss function. In the updating part, it applies gradient descent on all three parameters: 

                  𝐽𝑉(𝜙) = 𝐸𝑠𝑡∼𝐷 [𝑉𝜙(𝑠𝑡) − 𝐸𝑎𝑡∼𝜋𝜃
[𝑄𝑤(𝑠𝑡 , 𝑎𝑡) − log 𝜋𝜃(𝑎𝑡|𝑠𝑡)]]            (4.11) 

               𝐽𝑄(𝑤) = 𝐸(𝑠𝑡,𝑎𝑡)∼𝐷[൫𝑄𝑤(𝑠𝑡 , 𝑎𝑡) − 𝑟(𝑠𝑡 , 𝑎𝑡) − 𝛾𝐸𝑠𝑡+1
[𝑉𝜙(𝑠𝑡+1)]൯]           (4.12) 

𝐽𝜋(𝜃) = 𝐸𝑠𝑡∼𝐷[𝐷𝐾𝐿 (𝜋𝜃(⋅ | 𝑠𝑡)| exp
𝑄𝑤(𝑠𝑡 ,⋅)

𝑍𝑤(𝑠𝑡)
))].           (4.13) 

4.6 Deep Deterministic Policy Gradient (DDPG) 

Silver D. et al. [48] propose the Deep Deterministic Policy Gradient (DDPG), which 

is especially efficient in dealing with continuous control problems. Considering that we 

can always buy the integer number of shares closest to the real number from continuous 

problems, DDPG is still applicable in stock trading. The critical feature of DDPG is the 

deterministic policy gradient by updating parameter 𝜃 through: 

                         𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝐸𝑠∼𝜋𝜃
[∇𝜃𝜋𝜃(𝑠)∇𝜋𝑄𝜋𝜃൫𝑠, 𝜋𝜃(𝑠)൯|𝑎=𝜋𝜃(𝑠)]              (4.14) 

 For real practice, it is still computationally efficient to employ an approximation 

function 𝑄𝑤 ≈ 𝑄𝜋𝜃 (𝑠, 𝑎) , and similar to SAC, we can iteratively update 𝜃  and 𝑤 

through: 

𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝑤 (𝑟𝑡 + 𝛾𝑄𝑤𝑡
(𝑠𝑡+1, 𝜋𝜃𝑡

(𝑠𝑡+1)) − 𝑄𝑤𝑡
(𝑠𝑡 , 𝑎𝑡)) ∇w𝑄𝑤𝑡

(𝑠𝑡 , 𝑎𝑡) (4.15) 

                        𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝜃∇𝜃𝜋𝜃(𝑠)∇𝑎𝑄𝑤(𝑠𝑡 , 𝑎𝑡)|𝑎=𝜋𝜃(𝑠)  (4.16) 

4.7 Twin Delayed Deep Deterministic Policy Gradients (TD3) 

TD3 algorithm is designed to overcome the overoptimistic problem in DDPG for 

specific tasks [53], which can be understood as a pessimistic version of DDPG. TD3 is 

inspired by Double Q-learning and DDQN [49,50]. The overestimation problem still 
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exists in Equation (4.15) since the value estimation, and decision making are both based 

on the same 𝑄𝑤 . This makes the agent too optimistic about the value of the current 

state and his/her action.  

To deal with the overestimation issue, Fujimoto S. et al. [53] propose the Twin 

Delayed DDPG method by incorporating two actors and critics and updating their 

parameters iteratively. Technically, the key feature of TD3 lies in using four networks 

൫𝑄𝑤1
, 𝑄𝑤2

, 𝜋𝜃1
, 𝜋𝜃2

൯, which satisfies the relationship of 𝑖, 𝑗 = 1,2 separately:   

𝑤𝑡+1
𝑖 = 𝑤𝑡

𝑖 + 𝛼𝑤 (𝑟𝑡 + 𝛾𝑄𝑤𝑡

𝑗
(𝑠𝑡+1, 𝜋𝜃𝑡

𝑖 (𝑠𝑡+1)) − 𝑄𝑤𝑡
𝑖 (𝑠𝑡 , 𝑎𝑡)) ∇w

i 𝑄𝑤𝑡
𝑖 (𝑠𝑡 , 𝑎𝑡) (4.17) 

     𝜃𝑡+1
𝑖 = 𝜃𝑡

𝑖 + 𝛼𝜃∇𝜃
i 𝜋𝜃

𝑖 (𝑠)∇𝑎𝑄𝑤
𝑖 (𝑠𝑡 , 𝑎𝑡)|𝑎∼𝜋𝑖

𝜃(𝑠)+𝜖 (4.18) 

4.8 Proximal Policy Optimization (PPO) 

PPO is a typical policy gradient algorithm designed for RL by Shulman J. et al. [25]. 

It seeks more stable convergence by assuring the updated policy will not differ too much 

from the previous policy. A similar algorithm is Trust Region Policy Optimization 

(TRPO) [54], which is also proposed by Shulman. These two algorithms share the same 

motivation by adding penalty terms on drastic policy changes. 

Technically speaking, the PPO and TRPO solve the policy gradient of: 

 max
𝜃

 𝐸𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

𝐴𝑡] , 𝑠. 𝑡. 𝐸[𝐾𝐿൫𝜋𝜃𝑜𝑙𝑑
, 𝜋𝜃൯] ≤ 𝛿.    (4.17) 

What is special about PPO is the fact that it incorporates a 'clip' form penalty loss in the 

minimization. This turns the optimization problem (4.17) into: 

  max
𝜃

 𝐸𝑡 [(
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

𝐴𝑡 , 𝑐𝑙𝑖𝑝 (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖) 𝐴𝑡] , (4.18) 

which simplifies the optimization stage for calculations. 
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Chapter Five Empirical Estimation in the A-share Market 

5.1  General Introduction of Trading SSE.50, CSI. 300 and CSI.500 

SSE.50 Index is one of the main capitalization-weighted stock indices of the 

Shanghai Stock Exchange. It subsumes the top 50 companies by "float-adjusted" 

capitalization. Apart from this 50-company index, SSE 180 and SSE 380 also 

incorporate the SSE 50 Index. Meanwhile, SSE 50 and SSE 180 are sub-indices of the 

SSE Composite Index. Some representative stocks are shown in Table 1. 

Table 5.1 Some Components of SSE 50 Index 

Name Industry Ticker 

Shanghai Pudong Development 

Bank 

Banking 600000 

China Petroleum & Chemical 

Corporation 

Oil & Gas 600028 

CITIC Securities Financials 600030 

Foxconn  Manufacture & Internet 6001138 

Poly Real Estate Real estate 600048 

WuXi AppTec Medicine 603259 

 

CSI.300 Index and CSI.500 Index are the main stock market indices. They are 

designed to demonstrate the performance of the top 300 and top 300-800 (market-value 

based) stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock 

Exchange. CSI 300 is usually deemed as the Chinese version of the S&P 500 Index. 

Some of the CSI 500 components are listed in Table 2. 
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Table 5.2 Some Components of CSI 300 Index 

Name Industry Ticker 

Ping An Insurance Financials 601318 

BOE Technology Group IT 000725 

Midea Group Consumer Discretionary 000333 

China Vanke Financials 000002 

Kweichow Moutai Consumer Staples 600519 

Industrial Bank Financials 601166 

 

5.2  Basic MDP Settings for Trading 

5.2.1 Trading Environment 

In this part, we discuss how to design an exact RL training and validation 

environment for a given number of stocks (here, we say components of an index), which 

is a realization of the setting discussed in Chapter Three.  

Taking the CSI. 300 as the example, for state space, we have that: 

[1] Since there are 300 stocks available for trading, we have 𝑝𝑡 ∈ 𝑅+
300, ℎ𝑡 ∈

𝑍+
300, and the balance value is a positive real value 𝑏𝑡 ∈ 𝑅+. 

[2] For auxiliary information 𝐼𝑡 , we incorporate the following technical 

indicators for tradable stocks: 𝑀𝐴𝐶𝐷 ∈ 𝑅+
300, 𝐷𝑋(30) ∈ 𝑅+

300, 𝑅𝑆𝐼(30) ∈

𝑅+
300  𝑆𝑀𝐴(30. 𝑐𝑙𝑜𝑠𝑒) ∈ 𝑅+

300, 𝐵𝑂𝐿𝐿 ∈ 𝑅+
300 ; besides, we also incorporate 

daily 𝑆𝐻𝐼𝐵𝑂𝑅 ∈ 𝑅1 , 𝐹𝑢𝑛𝑑 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑅1  (SSE Fund Index: SSE. 000011), 

𝐵𝑜𝑛𝑑 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑅1(SSE Government Bond Index: SSE.000012) and 𝑉𝐼𝑋 ∈

𝑅1(CBOE China ETF Volatility Index). 

The action space 𝑎𝑡 ∈ 𝑅300 represents the long-short decisions on trading day 𝑡. 

Considering the convenience of the training process, we restrict the action space in 
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{−ℎ𝑚𝑎𝑥, −ℎ𝑚𝑎𝑥 + 1, … ,0,1, … . ℎ𝑚𝑎𝑥 − 1, ℎ𝑚𝑎𝑥}(ℎ𝑚𝑎𝑥 = 1 × 105)  for each kind of 

stock. Since ℎ𝑚𝑎𝑥  is set to be comparatively large, this setting can subsume most 

trading settings.  

The pipeline of our framework is demonstrated in Figure 5.1. The RL agents choose 

long-short actions for all considered stocks based on their algorithms (when ensembling, 

they cooperatively provide a decision). The trading environment will calculate the 

change in net values and send it back to the agents as a reward. Meanwhile, the market 

will turn to the next day, and new states are passed to agents. In the training stages, the 

agents will update their policy networks according to the rules mentioned in Chapter 

Five, while in the trading (validation) stage, we would not update the policy networks. 

We will describe the details of training and validation in the following section. 

 

Figure 5.1: Interactive pipeline of RL-trading Framework 

5.2.2 Training and Validation Approach 

The training and validation procedure in our backtesting setting are conducted 

according to the fixed-length 'rolling window' scheme in Figure 5.2 (Figure (5.2a) 

shows trading with only one algorithm, and Figure (5.2b) shows trading based on 

ensembling methods). The whole validation period is divided into nonoverlapped, 

consecutive, and same-length validation windows. Before each validation window, RL 

algorithms needed to be trained in a broader training window, during which the 

parameters in the algorithms are updated based on gradient descent. Then all parameters 
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are kept fixed throughout the following validation window. After one 'training-

validation' pair, the window moves forward by the length of the validation window and 

starts a new training round. This rolling-window scheme is quite close to the validation 

process in the Fama&French three-factor model and has no in-sample estimation errors. 

The procedure of training and validating ensembling models differs slightly from 

that of single-agent ones. To choose or assign weight to different algorithms in an 

ensembling model, we need an extra 'rebalancing window' to evaluate the algorithms' 

most recent performance. As shown in Figure 5.2b, there is one rebalance window 

between validation and training. After training, the algorithms are fixed and evaluated 

by their Sharpe ratio during the rebalance window. Then the optimal model (Bayesian 

optimal) or the weights (Bayesian ensembling) are decided for the validation window. 

After one 'training-rebalance-validation' epoch, the window moves forward by a 

validation window length. Since we only use historical information during the 

validation, there is no risk for in-sample or look-forward errors. 

 

Figure 5.2: Rolling-window validation workflow 
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5.2.3 Optimal Ensembling and Model Combination 

In this section, we will explain how to implement ensembling based on optimal and 

weighted strategies. As mentioned in the previous section, when applying the 

ensembling strategy for trading, we select an action regarding all available algorithms' 

Sharpe ratio in 'rebalance windows.' Naturally, one can choose the 'best-performed' 

algorithm, holding the belief that it can still perform well, at least for a short period. 

This strategy can be understood as choosing the Bayesian optimal model when 

ensembling, which has been discussed by Yang et al. [63].  

Another approach to incorporating historical performance is to assign a confidence 

level for each agent's suggested action. Since the Sharpe ratio is one of the key 

measurements for investment, in this paper, we use the Sharpe ratio during the 

'rebalance window' as the criteria for assigning weights. Specifically, for algorithm 𝑚 

with a Sharpe ratio of 𝑆ℎ𝑎𝑟𝑝𝑒𝑚
𝑟 , we assign a confidence weight 𝑤𝑚 =

𝑆ℎ𝑎𝑟𝑝𝑚
𝑟

∑ 𝑆ℎ𝑎𝑟𝑝𝑒𝑖
𝑟𝑀

𝑖
. In 

this way, we can decide our final trading action according to all agents' suggestions: 

𝑎𝑓𝑖𝑛𝑎𝑙 = ∑ 𝑤𝑚𝑎𝑚𝑚  . This approach considering advice from more agents, might be 

more robust and stable compared with only deploying one agent. 

5.3  Details of Backtesting  

All experiments are conducted on a server with two GeForce RTX 3090 GPUs and 

256 GB RAM. RL algorithms and trading environments are written with Python; neural 

networks for all RL agents are written with Pytorch; visualizations are based on 

packages Pyfolio and Empyrical. 
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Figure 5.3: Training and validation details 

We obtain all stock market data from the CSMAR database, collecting daily stock 

close, open, high, and low prices with trading volume for all components in SSE.50, 

CSI.300, and CSI.500 indices from January 1st, 2015, to January 28th, 2022. The first 

training epoch begins on January 1st, 2015, and ends on January 1st, 2019, and then we 

begin the first epoch of rebalancing and validating. Then we move the validation 

window forward by one window length. For training simplicity, we set the rebalancing 

window and validation window to be the same all the time, and there are three different 

sizes (21 days, 42 days, and 63 days) of window lengths being tested.   

We deploy five RL algorithms: DDPG, A2C, TD3, PPO, and SAC for single-agent 

trading and ensembling. The value-function and policy networks are multilayer 

perceptron (MLP). The 𝛾 of every algorithm is its corresponding daily spot rate. In the 

training stage, considering the different convergence properties, we assign algorithm 

𝑚 with 𝑠𝑡𝑒𝑝𝑚 as training epoch. During the first period of training, with the aim of 

collecting more possible paths, agent 𝑚 will be updated by 8 × 𝑡𝑜_𝑠𝑡𝑒𝑝𝑚 times. For 

the latter training epoch, the parameters will be updated for 
3×𝑟𝑜𝑢𝑛𝑑

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑛𝑑
× 𝑡𝑜_𝑠𝑡𝑒𝑝𝑚 

times. The 
3×𝑟𝑜𝑢𝑛𝑑

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑛𝑑
 grows larger when the validation window forwards to help our 

agents learn and update parameters more when training periods move on, which is 

essential to capture more recent market information and patterns. 

For macro-level information 𝐼𝑡, we include daily SHIBOR and half-year spot rate 

to capture daily interest information; CNY-USD to represent exchange information; and 
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Shanghai Securities Composite Index (SSCI) to capture market-level fluctuation. In 

order to avoid look-forward traps, all information used for trading lags for one day. 

In addition, some critical parameters for each agent during the training process are 

listed below:  

A2C parameters: updating steps=5 (the number of steps to run before each update); 

total step (𝑡𝑜_𝑠𝑡𝑒𝑝𝑎2𝑐)=80000; learning rate=0.0005; learning decay=0.99. 

DDPG parameters: 𝜏=0.0015 (soft update rate); actor learning rate=0.0001 and 

critic learning rate=0.001; 𝑡𝑜_𝑠𝑡𝑒𝑝𝐷𝐷𝑃𝐺=60000.  

TD3 parameters: learning rate=0.0003; 𝜏 =0.005 (soft update rate); gradient 

steps=100 (the number of parametric updates between two steps); total step 

(𝑡𝑜_𝑠𝑡𝑒𝑝𝑡𝑑3)=100000. 

SAC parameters: updating steps=3 (the number of steps to run before each update); 

total step ( 𝑡𝑜_𝑠𝑡𝑒𝑝𝑠𝑎𝑐 )=100000; learning rate=0.0003; learning decay=0.99; 

𝜏=0.005 (soft update rate) 

PPO parameters: updating steps=3 (the number of steps to run before each update); 

total step (𝑡𝑜_𝑠𝑡𝑒𝑝𝑝𝑝𝑜)=150000; learning rate=0.0003; learning decay=0.99; 𝜖𝑐𝑙𝑖𝑝 =

0.2. 

5.4  Performance Evaluation 

5.4.1 Performance measurement 

To examine the effectiveness of the investment results of our trading strategy, we 

use a large number of performance metrics. Apart from the widely used annualized rate 

of return and Sharpe ratio, we would like to introduce some other well-known indicators 

in this section.  

Max drawdown evaluates the portfolio's downside risk, measuring the maximum 
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values from peaks to troughs. We can calculate it by 𝑀𝐷 =
(𝑉𝑡−𝑉𝑝)

𝑉𝑝
, which is always 

nonpositive in value.  

Treynor ratio is a measure of risk-adjusted portfolio performance, which is 

constructed based on systematic risks, following 𝑇𝑟𝑒𝑦𝑛𝑜𝑟𝑝 =
𝑟𝑝−𝑟𝑓

𝛽𝑝
. The 𝛽𝑝 value we 

use here represents our strategy's linear reaction towards the market portfolio, which 

we take as the corresponding index return. A portfolio or trading strategy with a high 

Treynor ratio indicates more returns from a unit of risk. 

Sortino ratio is a variant of the Sharpe ratio by only considering downside risks. 

We can calculate it from 𝑆𝑜𝑟𝑡𝑖𝑛𝑜𝑝 =
𝑟𝑝−𝑟𝑓

𝜎𝑑
, where the 𝜎𝑑

2 = ∫  ൫𝑟𝑓 − 𝑟𝑝൯
2

𝑓൫𝑟𝑝൯𝑑𝑟𝑝
𝑟𝑓

−∞ 
. 

Intuitively, we can also rewrite it as 𝑆𝑜𝑟𝑡𝑖𝑛𝑜𝑝 =
𝑟𝑝−𝑟𝑓

√𝐸[𝑚𝑎𝑥 ൫𝑟𝑝−𝑟𝑓,0൯
2

]

 . Different from 

Sharpe, Sortino only considers the risks in the periods when the risk-free financial 

instruments outperform the portfolio.   

Calmar ratio measures the risk-adjusted return by max drawdown ratio and can be 

regarded as replacing the standard deviation risk in Sharpe ratios with downside risk. 

Usually, we will calculate it through the equation: 𝐶𝑎𝑙𝑚𝑎𝑟𝑝 =
𝑟𝑝−𝑟𝑓

|𝑀𝐷𝑝|
. Fund managers 

always desire a larger Calmar ratio since more returns are obtained with unit risk. 

Omega ratio is initially defined as Ω൫𝑟𝑓൯ =
∫ 𝐹(𝑟)𝑑𝑟  

∞
𝑟𝑓

∫ 𝐹(𝑟)𝑑𝑟  
𝑟𝑓

−∞

 , which is the times' 

probability of gaining more than 𝑟𝑓 over that of less than 𝑟𝑓. With a simple calculation, 

we may find that Ω(𝑟𝑓) = 1 +
𝑟𝑝−𝑟𝑓

𝐸[max (𝑟−𝑟𝑓,0)]
 . A larger Omega ratio indicates more 

chances of getting positive profits and thus better investment performance. 

Tail ratio estimates the stability of portfolios and investment strategies. For stock-

based funds, we usually use the first top 95 percent and the last 5 percent to construct 

the Tail ratio: 𝑇𝑎𝑖𝑙 =
𝒓𝟎.𝟗𝟓

𝒓𝒐.𝟎𝟓
 . A larger tail ratio indicates more chances of getting a 
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positive return in extreme cases. 

5.4.2 Backtesting Evaluation on SEE.50 components 

This section will demonstrate some of the backtesting results of trading 

components in the SEE.50 index. The training stage starts on January 1st, 2015, and the 

first validation period starts on January 1st, 2020. We stop the validation period until 

February 28th, 2022. For the validation of ensembling algorithms, we try different 

lengths of rebalancing windows as 21 days (one trading month), 42 days (two trading 

months), and 63 days (three trading months). Besides, in order to avoid unexpected 

systematic market risks, our agents will clear all positions when the market volatility 

exceeds the 90-percent quantile of the historical turbulence in training periods. The 

initial cash for backtesting is 1 × 107. 

Figure 5.3 below illustrates the performance of all single agents, the optimal 

ensembling agent, and the weighted ensemble agent for a 21-day window length. We 

use the return of passively investing SEE.50 as the baseline to better illustrate each 

agent's performance. We can see that all agents achieve annualized returns over 30% 

and Sharpe ratios over 1.2, while the baseline only maintains an annualized return of 

7.25% and a Sharpe ratio of 0.44. However, the risk control of RL agents is generally 

poor, which we will discuss in Chapter Six. 



 

     TRADING STRATEGIES BASED ON REINFORCEMENT 

LEARNING IN A-SHARE MARKET 

29 

 

Figure 5.4: Accumulative return of RL-SSE.50 strategy 

Table 5.1 below summarizes the investment performance of the optimal 

ensembling strategy. From the table, we see that from all performance measures, SAC 

achieves the most prominent return, reaching over 100% annualized return, and this 

return secures a comparatively high Sharpe ratio of 1.84, regardless of the fact that the 

MMD is -44%. Besides, all other agents generally achieve better results than the 

baseline if only profitability is considered. Among them, two ensemble agents achieve 

the most plausible results, balancing both return and risk.  

Table 5.2 Performance summaries of different agents in SEE. 50 
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From Eastmoney (http://fund.eastmoney.com/trade/zs.html), we can see that stock-

based funds' top 5% quantile investment performance (annualized return) is only 21.3%. 

From Table 5.1, we can see that our ensembling strategy's annualized performance 

(return and Sharpe) can rank at least around the three. 

The following Table 5.2 documents the ensembling details of the optimal 

ensembling model (rechoose models every month). We present the exact model used 

by the optimal ensembling agents in this table during specific validation periods. It can 

be observed that all models are employed during the backtesting, and with the 

advantages of choosing the 'best' among all agents, the ensembling algorithm only has 

a -15% MMD, which is comparable to the baseline MMD, while keeping a 10-time 

annualized return. 

Table 5.3 Some ensembling details of the optimal ensemble model 

 

Figure 5.5 to Figure 5.8 separately demonstrate the accumulative return of our 

trader during the whole validation period, 6-month volatility, 6-month-based 

annualized Sharpe ratio, top five drawdowns, beta (based on the index), and the 

distribution of returns. We can see that, apart from some small drawdowns, the 

ensembling agent can obtain continuous profits. Besides, considering risk control, the 

ensembling agent has a stable six-month beta and volatility across the backtesting 

periods.  

 

 

start date end date used 

model 

start date end date used 

model 

2019-01-01 2019-02-01 SAC 2021-07-04 2021-08-04 A2C 

2020-02-02 2021-03-03 TD3 2021-12-04 2022-01-03 PPO 

2021-03-03 2021-04-03 TD3 2022-01-03 2022-01-30 DDPG 
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Figure 5.4: Accumulative return of the optimal-ensembling RL-SSE.50 strategy 

 

Figure 5.5: Six-month volatility of the optimal-ensembling RL-SSE.50 strategy 

 

 

Figure 5.6: Beta of the optimal-ensembling RL-SSE.50 strategy 
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Figure 5.7: Five largest MMDs of the optimal-ensembling RL-SSE.50 strategy 

 

Figure 5.8: Return quantiles of the optimal-ensembling RL-SSE.50 

Generally, we can see that the optimal ensembling strategy in SEE.50 may introduce 

a bit more risk while bringing much more return compared with baseline, which 

therefore leads to an over 1.8 Sharpe ratio. The performance of weighted ensemble is 

also remarkable, and we will detailly analyze it when discussing CSI.300 back testing. 

 

5.4.3 Backtesting Evaluation on CSI.300 

This section will demonstrate some of the backtesting results of trading 

components in the CSI.300 index. Since its long-term training pattern is quite similar 

to SEE.50, we would like to look more detailly into the short-run performance pattern 

of our ensembling agents.  

We demonstrate the result of backtesting, whose training stage starts on January 1st, 

2015, and the first validation period starts on October 1st, 2020. We end the validation 
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period until July 31st, 2021, which indicates a 9-month validation. For the validation of 

ensembling algorithms, we test the rebalancing window length as 63 days. Besides, in 

order to avoid unexpected systematic market risks, our agents will clear all positions 

when the market volatility exceeds the 90-percent quantile of the historical turbulence 

in training periods. 

Table 5.2 summarizes all agents' performance during this period. We can see that 

among all agents, TD3 performs the best considering return metrics, while optimal and 

weighted ensembling achieve desirable returns and volatility at the same time. To better 

compare, we add the return of passively investing CSI.300 as the baseline to better 

illustrate each agent's performance. We can see that all agents reach an annualized 

return over 23% and a Sharpe ratio over 1.3, while the baseline only holds an annualized 

return of 16.29% and a Sharpe ratio of 0.88. This demonstrates the superiority of 

utilizing RL in trading frameworks. 

Table 5.4 Performance summaries of different agents in CSI. 300 

  

Considering two ensemble agents that achieve plausible results with accumulative 

returns of 63.74% and 85.49%, the Sharpe of 1.81 and 2.07, Calmar ratio of 3.,78 and 

6.27 and Sortino ratio of 2.23 and 3.79. From Eastmoney, we can see the average 

investment performance of stock-based funds seldom achieve more than 30% for a 

nine-month return. Thus, we can see that our strategy's annualized performance (return 

and Sharpe) can rank at least within the top three for both ensembling methodologies. 
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Details of ensembling weights in the weighted ensembling strategy are 

documented in Table 5.3. From the table, we can see that the weights of different agents 

vary based on their performance in the corresponding validation window. We may see 

that since TD3 always stands out from all agents, its weights are always the largest.  

Table 5.5 Ensembling details of weighted ensemble model 

start date end date TD3 SAC A2C PPO DDPG 

2020-09-01 2020-01-05 1.04 -1.16 -0.22 1.25 0.093 

2020-01-05 2021-04-12 0.81 -0.03 0.15 -0.14 0.21 

2021-04-12 2021-07-30 0.49 0.08 0.02 -0.07 0.46 

 

Figures 5.9 to 5.15 separately demonstrate the accumulative return of our 

weighted-ensembling trader during the whole validation period, 6-month volatility, 6-

month-based beta, 6-month-based annualized Sharpe ratio, top five drawdowns, beta 

(based on the index), and the distribution of returns.  

Our strategy may introduce a bit more risk while bringing much more return, which 

therefore leads to an over 2 Sharpe ratio. We can see that; our strategy significantly 

outperforms the passive baseline. Moreover, what is noticeable is that the beta of this 

trading strategy is only 0.25, and the alpha is 1.34. This demonstrates its great 

robustness against systematic risks and gains abnormal returns. 

 

 

Figure 5.9: Accumulative return of weighted-ensembling RL-CSI.300 strategy 
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Figure 5.10: Beta of weighted-ensembling RL-CSI.300 strategy 

 

Figure 5.11: Volatility of weighted-ensembling RL-CSI.300 strategy  

 

 

Figure 5.12: Sharp ratio of weighted-ensembling RL-CSI.300 strategy 
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Figure 5.13: Five main drawdowns of weighted-ensembling RL-CSI.300 strategy 

 

 

 

Figure 5.14: Summary of returns of weighted-ensembling RL-CSI.300 strategy 

 

 

Figure 5.15: Return quantiles of weighted-ensembling RL-CSI.300 strategy 

5.4.4 Backtesting Evaluation on CSI.500 

This section demonstrates some backtesting results of trading components in the 

SEE.50 index. The training stage starts on January 1st, 2015, and the first validation 
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period starts on January 1st, 2020. We end the validation period by February 28th, 2022. 

For the validation of ensembling algorithms, we try different lengths of rebalancing 

windows, including 21 days (one trading month), 42 days (two trading months), and 63 

days (three trading months). Besides, in order to avoid unexpected systematic market 

risks, our agents will clear all positions when the market volatility exceeds the 90-

percent quantile of the historical turbulence in training periods. For convergence 

concern, we double the training epoch considering the high dimensionality. 

The following Table 5.3 summarizes the investment performance of all single-

algorithm traders, the optimal ensembling strategy and the weighted ensembling 

strategy, with a 63-day window length. For better comparison, we add the return of 

passively investing CSI.500 as the baseline to better illustrate each agent's performance.  

We can see that all agents reach an annualized return of over 20%, which is double 

of benchmark return. They also achieve Sharpe ratios over 0.9, while the baseline only 

holds an annualized return of 10.95% and a Sharpe ratio of 0.6. Among all single-agent 

traders, TD3 performs best in return measures, beating the baseline by five times. 

However, a significant problem related to this is the poor risk control, reaching a max 

drawdown over 40%, which indicates consecutively losing 40% net value during 

specific periods. 

 Fortunately, our ensembling methods keep a good balance between returns and 

risks. From the table, we can also see that from all performance measures, both 

ensemble agents achieve good results with an annualized return of 40.61% and 40.24%, 

the Sharpe of 1.73 and 1.77, Calmar ratio of 1.87 and 2.33, and a max drawdown of 

only 17.2% and 15.2%. From the famous fund evaluation website Eastmoney 

(http://fund.eastmoney.com/data/fundranking), we can see the average investment 

performance of stock-based funds seldom exceeds 10%, and we can see that our 

strategy's annualized performance (return and Sharpe) can rank at least around the top 

five. 
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Table 5.6 Performance summaries of different agents in CSI. 500 

We would now take the example of trading CSI.500 components to analyze the 

performance differences between weighted detailly. In all settings, the optimal 

ensembling agent outperforms the weighted ensembling one. This conclusion is 

relatively straightforward since the weighted ensembling method dilutes the power of 

choosing the optimal agent's action. However, this voting scheme also brings benefits 

considering risk measurement since it avoids putting all eggs in the same basket, even 

though this basket is the so-called best one. This situation is especially true when there 

is an unexpected market shock, in which recent performance no longer holds for the 

next period. By considering action advice from all agents, weighted ensembling 

sacrifices some returns for better stability, which can be observed from the higher 

Sharpe, Calmar, and Sortino ratio and lower max drawdown. 

5.4.5 Summary of RL agent's performance 

From the three sets of experiments conducted above, we now summarize five main 

properties of the reinforcement trader: 1) profitability, 2) risks, 3) optimism and 

pessimism, 4) long-run and short-run performance 5) data dimensionality. 

 For profitability, RL agents reveal strong power in capturing the rising trend of the 

financial market and gaining more from proactive actions. From repetitive experiments, 

RL agents, on average, earn 68.7% more from the rising market trend. Besides, most 

RL agents achieve annualized returns over 50%, and the return rates are even more 
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prominent (over 70%) considering the short-run (backtesting for only one year). From 

the perspective of the Sharpe ratio, most agents still obtain desirable results (in SEE. 

50 backtesting, DDPG with 1,34, and TD3 with 1.43) 

 For risks, single-RL agents tend to be more aggressive investors with 

comparatively poor risk control, while ensembling methods incorporate a more risk-

aversion attitude. Taking the standard deviation (std), for instance, under CSI.300 

setting, the annualized standard deviation of TD3 is nearly 73%, SAC is around 69%, 

OPP is over 76%, weighted ensembling is 44.80%, and optimal ensembling is 50.04%. 

For comparison, the baseline index volatility is only 19.22% during this period. Besides, 

the max drawdown ratio also demonstrates the same results. Moreover, the single-agent 

algorithm with high returns tends to possess more risks, while the ensembling scheme 

can somehow improve the return-risk tradeoff. All of these demonstrate the risk 

reduction potential possessed by ensembling methods. 

The belief (optimism and pessimism) of the market also influences investment 

performance. The differences between optimistic and pessimistic RL algorithms are 

always discussed for computational convergence in the field of computer science and 

artificial intelligence. The reinforcement learning community usually endorses 

pessimistic algorithms since optimistic ones always cannot find the global optimal 

regarding over-optimism. However, in a trading setting, optimism works better in 

blooming periods. For example, considering Figure 5.4 (backtesting in SEE.50), the 

DDPG outperforms TD3 (DDPG's pessimistic and dual-actor version) by 47% from 

100d to 200d when the market experienced prosperity. This phenomenon also widely 

exists in other backtesting scenarios.  

 To compare the long-run and short-run performance, we truncate the backtesting 

(CSI.300) of the optimal ensembling model on January 1st, 2021. We summarize 

annualized return, Sharpe ratio, and MDD in Table 5.4. Besides, we append the nine-

month testing results mentioned for comparison. We can see that RL agents perform 
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much better in short-period backtesting, with one-year backtesting possessing an 

average of 29% more annualized return than two-year testing. The difference between 

nine-month testing and the other two is even more drastic, with the nine-month 

annualized return having twice of one-year results. Besides, the Sharpe ratio and max 

drawdown (risk control) in short-term evaluations. 

  This 'short period beats long period' possibly only generally comes from lack of 

training. Since we spend most of our training epochs in the first stage, when the 

validation window moves forwards, the pattern captured may no longer be useful. 

Though our training scheme has already taken this problem into consideration, long-

run success still cannot be guaranteed. This indicates that retraining is still required for 

long-run evaluation. 

 

Table 5.7 Comparison between long-run and short-run performance 

 Ann. return Sharpe ratio MMD 

Nine-month backtesting 127.91% 2.07 -20.39% 

One-year backtesting 79.24% 1.81 -23.21% 

Two-year backtesting 47.17%   1.53    -25.33% 

 

We would also like to compare the computation and scalability problems, which 

may be more related to computational or practical concerns. As the dimensionality of 

financial data increases, within the same training epoch, the achieved returns fall, and 

risks soar. This generally derives from lacking convergence since the larger model 

contains more parameters. Besides, the training time also lasts longer for a larger model, 

which is demonstrated in Table 5.5. This reveals the problem of scalability, which we 

need to solve in further works. 
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Table 5.8 Training time comparison for different sizes of input 

Index State dimension Experiment time (s) 

SEE. 50 459 2.70h 

CSI. 300 3011 17.64h 

CSI. 500 4672 23.18h 
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Chapter Six Conclusions and Discussions 

6.1  Summaries and contributions 

From the backtesting results, we prove the feasibility of applying state-of-the-art 

reinforcement learning algorithms in the A-share market and test their performance on 

portfolio construction of different sizes. All algorithms perform much better than the 

baseline algorithms after long training epochs. Further, we explore the possibility of 

ensembling-RL and Bayesian ensembling-RL, which possess better profitability and 

stability. Besides, we analyze in detail the action patterns of optimistic and pessimistic 

RL algorithms under different economic scenarios. When the market is booming, we 

find that optimistic algorithms (A2C and DDPG) perform better. In gloomy periods, 

pessimistic algorithms (SAC and TD3) may work better, which looks like the 

investment patterns of human investors.  

6.1.1 Feasibility of RL algorithms in A-share market algorithmic 

trading 

In this paper, we extend the use of reinforcement learning into the field of the A-

share market and demonstrate its great potential in handling high-dimensional financial 

inputs. We find that reinforcement learners are remarkably suitable for algorithmic 

trading and can well capture the system dynamics and give comparatively 'correct' 

decisions compared with the market index (passive investment). By consecutively 

interacting with the market and exploring historical paths repeatedly, the agent can 

generally understand how to avoid loss and maximize long-run profits. Among them, 

taking trading CSI.500 index for two years as an example, the A2C agent achieves 

63.39% returns, TD3 agent achieves 99.15%, DDPG achieves 74.06%, and SAC 

achieves 49.94%, while the passive baseline only has 23.10%. 
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However, one main limitation of employing an RL agent is instability and volatility. 

From experiments, we find that even after training for longer epochs, desirable returns 

are not secured, though with high probability. The instability may derive from the 

intrinsic stochasticity learning pattern of RL, since each time, the learning path is totally 

different, and this will result in different learning results. Another possible reason for 

this is that the market itself might not satisfy the MDP setting, and deploying a 

reinforcement learning algorithm may only reach nearly-optimal results rather than 

converging to the global optimality. Therefore, each time of backtesting will lead us to 

somewhere closer to the best results instead of a fixed one. Besides, this instability may 

come from lacking skillful fine-tuning or fewer layers in networks to extract complex 

value functions.  

Return volatility mainly comes from the risk-return tradeoff (single-task trap) and 

pattern detection failure. Since we only feed one single agent with one day return as a 

reward and train it with the target to maximize the discounted long-run profits, risk-

aversion may be neglected. Therefore, the agent might only fix our target at the profits 

and consider less about potential risks. Another culprit to volatility (especially the 

downside one) is pattern detection failure. This indicates that the actual market 

fluctuates frequently and can be detrimentally influenced by unpredictable information 

outside of the market (e.g., wars and plagues). An RL agent will not be able to capture 

these patterns since it can only learn from its experiences. To cope with this problem, 

an ensembling approach with rebalancing windows will help since it provides us a tool 

to test which agent can deal with the financial market best and collect wisdom from 

different knowledge bases. 

6.1.2 Two ensembling schemes for RL algorithms in the A-share 

market 

The ensembling method seeks to incorporate the information and knowledge from 
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different constituents and combine them with the aim of obtaining more robust and 

excellent performance. It can also overcome the single-task trap encountered when only 

having one agent for two reasons: 

1) Multi-agents with rebalancing windows provide an extra validation chance. 

Taking optimal ensembling strategy as the example, if we need to choose an 

agent for the next 63 days' trading, before taking action, we can use the 

rebalancing window to evaluate each agent's recent 21 days' performance. 

Holding the belief that market patterns will not change so rapidly, a recently 

wise strategy has a higher probability of performing well.  

2) Ensembling strategy provides more robust investment advice. A simple 

illustration of robustness is that if deploying 𝑛  identical agents (with an 

approximated value function of  𝑓𝑖(𝑠, 𝑎) + 𝜖) and feed them with independent 

paths, the averaged value function will have a standard deviation of 
𝜖

√𝑛
. This is 

also true for our ensembling scheme. Taking the 
𝑆ℎ𝑎𝑟𝑝𝑚

𝑟

∑ 𝑆ℎ𝑎𝑟𝑝𝑒𝑖
𝑟𝑀

𝑖
 can avoid 'putting 

all eggs in the same basket,' Therefore, if the so-called best model in optimal 

ensembling fails to obtain desirable returns, other agents' advice will make 

some compensations. 

3) Ensembling provides more chances to win under different market trends. Since 

we incorporate optimistic who always overestimate currently obtained value 

function and pessimistic agents who always underestimate that, ensembling 

introduces more possibilities to explore and exploit well under different 

economic settings.  

For all these reasons, we suppose that ensembling methods might be a more stable 

and robust choice, and the backtesting results also justify our expectations. For instance, 

in the backtesting of CSI. 500, we may find that the weighted ensembling outperforms 

optimal ensembling in Sharpe (1.77 vs. 1.73) while performing worse in annualized 
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return rate a little bit (40.24 vs. 40.61). This indicates lower volatility, therefore 

avoiding some controllable risks. However, sometimes choosing to trust only one agent 

might not be a good choice since continuous investment success is not always secured. 

This can be seen in the backtesting of CSI.300, where weighted ensembling beats the 

optimal one in both returns and stability.  

6.2  Limitations 

Though our ensemble RL agent has achieved quite successful results in backtesting, 

there are still some limitations in our work, such as simplified trading settings, 

unsatisfying drawdown rate, and long training time. Some future works are needed to 

deal with these challenges. 

6.2.1 Simplified trading environment 

In our work, we may oversimplify the stock trading process in the A-share market. 

We assume that all bids are traded under the close price, and there are sufficient shares 

for traders to purchase and sell. However, all aforementioned assumptions are not 

realistic for real-world trading. In the exact trading scenario, we may need to consider 

more about ask-bid prices and the limited volume of available stocks. We adopt this 

trading setting since, currently, in China, the market still keeps on the 'T1' trading policy, 

which indicates that we may only allow making purchases once a day for the same type 

of stock. However, our research ultimately desires to analyze and develop algorithms 

for the exact trading procedure. 

To make the trading environment closer to the real market, tick-level data needed 

to be considered. Considering tick level data, however, may raise two significant 

challenges. The first one is that we need to consider the market timing, which means 

when to make deals, since, under current regulation, only one trade is allowed every 

day. Secondly, the new model will incorporate exponentially larger volumes of 

information since, on every trading day, thousands of trading steps should be included. 
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These two issues make training an ML/RL-based agent significantly more challenging. 

The same data challenge also arises when considering the exact available volume of 

stocks since this adds another dimension for every stock.  

6.2.2 Unsatisfying drawdowns 

The maximum drawdown (MDD) measures how much the largest observed value 

loss between two near peaks. During our backtesting, though achieving comparatively 

high annualized return and Sharpe ratio, the maximum drawdown during all trading 

days is comparatively large (around 20% to 30%), which still can be improved 

compared with the average MDD of 20.1%.  

A possible solution to lowering the drawdown rate is to incorporate an additional 

term describing the consecutive drawdown as a reward for the agent. For example, we 

can rewrite the reward as  𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = (𝑏𝑡+1 + 𝑝𝑡+1
⊤ ℎ𝑡+1) − (𝑏𝑡 + 𝑝𝑡

⊤ℎ𝑡) − 𝑐𝑡 −

ζ𝐷𝐷(𝑝) , where 𝜁𝐷𝐷(𝑝)  provides an additional penalty if there are consecutive 𝑝 

days of loss. Besides, a clearing strategy is another approach. This indicates clearing all 

positions if the net value of the portfolio has consecutively dropped for specific days. 

6.2.3 Long training time and lack of convergence 

The average training time of our models is listed in Table 5.5. We may find that the 

whole training time cost is comparatively long, especially for CSI. 500. Besides, we 

also find that the RL agents' performance is significantly poorer in CSI. 500 and 

CSI.300 than CSI. 50. A possible explanation for this phenomenon is non-convergence, 

which is quite usual for ML in high-dimensional data.   

Compared with the trading environment for CSI. 50, CSI. 500 setting has around 

3000 more features, which definitely leads to a higher computation burden. Therefore, 

it will be harder for RL agents to explore the hidden transition dynamics since larger 

input networks and more weights are needed to approximate the value function. 
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Because of this immense computation burden, within the same training budget, worse 

investment returns are understandable. 

A possible solution to this computational issue is dimension reduction. Technically 

speaking, we can pre-train an embedding ℰ(𝑠) , projecting raw feature space to an 

exacted low-dimension space. This ℰ(𝑠): 𝑆 → 𝑆−  can lower the dimension of state 

space faced by the agent, and then it is possible for our model to obtain better results. 

6.3  Future works 

In order to tackle all aforementioned challenges and to build more robust and 

computationally efficient algorithms, some further works, such as embedding 

framework, multi-task RL, and environment improvements, may be useful. 

6.3.1 Embedding framework for dimensional reduction 

Since one main challenge we face is dealing with high-dimension portfolios, 

employing dimension reduction technics for preprocessing turns out to be a 

straightforward approach. After compressing the states, the agent may face easier 

learning tasks, which may save online training time and improve learning quality. This 

dimensionality reduction approach can be compared to extracting factors from the noisy 

market in portfolio management theories. 

Autoencoder is a promising approach for pretraining the embedding space. Various 

types of autoencoders, including autoencoder [60], variational autoencoder [61], and 

Wasserstein autoencoder [62], are widely applied to unlabeled coding data. The 

encoding is 'supervised' by a corresponding decoder, whose objective is to regenerate 

the uncompressed data. To be specific, the encoder and decoder pair (ℰ(𝑠), 𝒟(𝑠−)) 

work cooperatively to improve the encoding efficiency by minimizing: 

ℰ∗, 𝒟∗ = arg min
ℰ,𝒟

𝑑𝑖𝑠𝑡(ℰ(𝑠), 𝒟൫ℰ(𝑠)൯). 

We have tried to train RL agents on the embedding space based on a Wasserstein 
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autoencoder. The 'Embedding the RL' framework achieves higher training performance 

and lower time consumption (briefly illustrated in Table 6.1). Further extension work 

has been submitted to the UTD-24 journal, INFORMS Journal on Computing. 

Table 6.1 Training time comparison for embedding and non-embedding 

 State 

dimension 

Experiment 

time (s) 

Embedded 

dimension 

Embedded 

experiment time 

SEE. 50 459 2.70h 200 57min 

CSI. 300 3011 17.64h 450 2.67h 

CSI. 500 4672 23.18h 700 4.74h 

 

6.3.2 Multi-task agent for robust learning 

To cope with volatility and drawdown ratio, we propose to employ multi-task 

learning in the RL framework. Multi-task means that our RL agent may face a vector 

of rewards containing different objectives, and our algorithms need to balance these 

tasks. Some works have already addressed robust RL learning based on a multi-task 

strategy [55, 56, 57, 58]. These works achieve more stable results by sacrificing some 

profits from a single task. However, paying more attention to the variance and risks in 

the market is even more important to many investors, and this provides some place for 

further work in a multi-task setting. 

Further exploration under our setting could include adding more objectives such as 

maximizing monthly return, minimizing weekly drawdown, and controlling daily 

variance. Besides, an important type of meta-learning algorithm named distillation 

could be implied in a multi-task manner [55]. All these can be considered in future 

projects. 

6.3.3 Limit Order Books Market Setting 

Real market trading rules in the A-share market differ from our experimental 
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environment. In a real trading scenario, the Limit Order Books (LOB) setting is closer 

to the exact trading environment. In this type of market, traders submit their actions 

(buy or sell) with preferred amounts for specific financial instruments. The lowest 

selling price is the ask price, and the highest-selling price is the bid price. Whenever 

there is an ask price lower than the bid price, a deal is executed based on their average. 

This LOB setting provides investors with much more market transactional information 

and links closer to the actual trading setting. 

Sun et al. [59] have tried to explore a reinforcement trading facing LOB settings; 

however, considering trading only one piece of asset, the computation burden is too 

large to implement with portfolio management. Nevertheless, we can still briefly model 

how to set up the environment. For example, at a given moment 𝑡, we consider trading 

𝑛 types of stocks and can observe the top five selling and purchasing orders (ten prices 

and ten purchasable quantities in total), then the total environment would be 20𝑛. This 

setting may not be difficult to handle without 'T1' regulation, since the state space 

remains small. However, for a real-world trading environment in the A-share market, 

during each trading day the investor also needs to decide when to make a deal, and 

he/she also needs to decide on the offer price and quantity, which adds burdens to the 

action space. 
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