
 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

SHANGHAI JIAO TONG UNIVERSITY

学士学位论文

BACHELOR'S THESIS

论文题目: TRADING STRATEGIES BASED ON

REINFORCEMENT LEARNING IN A-SHARE MARKET

学生姓名: 何静海

学生学号: 518020910068

专 业: 金融学

指导教师: 花成

学院 (系): 安泰经济与管理学院

教务处制表

TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKE

1

上海交通大学

学位论文原创性声明

本人郑重声明：所呈交的学位论文《Trading Strategies Based on

Reinforcement Learning in A-share Market》，是本人在导师的指导下，

独立进行研究工作所取得的成果。除文中已经注明引用的内容外，本

论文不包含任何其他个人或集体已经发表或撰写过的作品成果。对本

文的研究做出重要贡献的个人和集体，均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

 学位论文作者签名：

 日期： 2022 年 5 月

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

上海交通大学

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定，

同意学校保留并向国家有关部门或机构送交论文的复印件和电子版，

允许论文被查阅和借阅。本人授权上海交通大学可以将本学位论文的

全部或部分内容编入有关数据库进行检索，可以采用影印、缩印或扫

描等复制手段保存和汇编本学位论文。

 保密□，在 年解密后适用本授权书。

本学位论文属于

 不保密□。

（请在以上方框内打“√”）

指导教师签名： 学位论文作者签名：

日期：2022 年 5 月 7 日 日期： 2022 年 5 月 7 日

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

基于强化学习的 A股市场交易研究

摘要

设计交易策略是投资研究的核心问题之一。在现代机器学习算法和日益增进的计算能力

的帮助下，基于机器学习的算法交易和投资组合管理逐渐获得了行业与学术界的关注与重

视。然而，仅仅凭借基于回归和聚类的传统静态机器学习算法，在复杂和动态的股票市场中

设计一种普遍盈利的策略仍然是极具挑战的。

强化学习 (RL) 是一种旨在通过与提供奖励的环境交互进而找到最佳策略的算法。它

强调不断通过与未知环境的交互，习得在不同情境下的最优反应策略。这一过程与交易者在

股票市场中在不同的行情下通过做出多空决策以最优化收益的行为不谋而合。

在本文中，我们将强化学习算法应用于A股市场的股票交易，通过不断与环境进行交互

从而学习交易策略，以实现收益最大化。我们首先将股票市场的交易过程建模为马尔可夫决

策过程 (MDP)，并使用六种成熟的强化学习算法分别训练：TD3, DDPG, PPO, DDQN, A2C与

SAC。此外，考虑到不同的算法分别具有乐观与悲观的特性，为了获得更稳健的交易算法，

我们探索了将上述算法进行基于最优策略集成和基于模型组合的集成（BMC）交易算法。

我们分别通过在上证 50 (SEE.50)、沪深 300(CSI.300)和中证 500(CSI.500)成分股的

训练与回测交易中评估和比较我们的策略。通过与基准收益 ETF（SEE.50, CSI.300 与

CSI.500 指数）以及市场中的可交易指数型基金比较，我们发现大多数强化学习算法在收益

上都可以得到大幅度超过基准的回报与较高的夏普比率。此外，我们引入了加权集成的算法

以提升投资回报的稳健型。我们发现相比其他机器学习算法，集成算法可以得到更低的最大

回撤与波动率。这为 A 股市场量化交易与投资组合研究提供了额外思路与补充，并拓展了多

决策算法集成在中国市场中的应用。

关键词：算法交易，强化学习，马尔可夫决策，集成学习，A 股市场

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

4

TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

ABSTRACT

Designing trading strategies is one of the core issues in investment research. With

the help of modern machine learning algorithms and exponentially growing computing

capacity, algorithmic trading and portfolio management based on statistical learning are

gradually gaining popularity and empirical success. However, it remains thought-

provoking to design a universally profitable strategy in complex and dynamic stock

markets using traditional machine learning algorithms built primarily on regression and

clustering.

 Reinforcement Learning (RL) is a set of algorithms aiming to find the optimal

strategies for providing rewards from interacting with the environment. It focuses on

learning and exploring an unknown environment with feedback on agents' actions and

exploiting the best strategy. This process is compatible with a trader making long-short

decisions in the stock market and gaining profit from his/her actions.

In this paper, we apply reinforcement learning algorithms to the A-share market

and generate trading strategies to maximize total returns. We model the trading process

in the stock market as a Markov Decision Process and train RL agents separately using

six algorithms: Deep Deterministic Policy Gradient (DDPG), Proximal Policy

Optimization (PPO), Dual Deep Q-Network (DDQN), Advantage Actor-Critic (A2C),

Asynchronous Advantage Actor-Critic(A3C) and Soft Actor-Critic (SAC). Besides, in

order to obtain more robust trading algorithms, we ensemble these algorithms based on

Bayesian optimal strategy and Bayesian model combination (BMC).

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

5

We evaluate and compare the returns of our strategies with the baseline ETFs

(SEE.50, CSI.300, and CSI.500) and index-based funds in the market. We find that most

of our RL agents outperform the baselines in returns, and the ensembling methods are

more robust in terms of Sharp Ratio and maximum drawdown. Our work may

contribute to the field of algorithmic trading and ensembling-based portfolio

management in the A-share market.

Key words: Algorithmic Trading, Reinforcement Learning, Markov Decision Process,

Model Ensembling, A-Share Market

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

6

Content

Chapter One Introduction .. 1

Chapter Two Related Works .. 3

2.1 Reinforcement Learning .. 3

2.2 Algorithmic Trading... 4

2.3 Machine-Learning-Assisted Trading ... 4

Chapter Three Modeling of Stock Trading in RL Frameworks 6

3.1 Basics of Reinforcement Learning... 6

3.2 Formulation of Stock Trading .. 10

Chapter Four Deep Reinforcement Learning Algorithms in Trading 13

4.1 General Description of Model-Free RL, Q-learning, and Policy Gradient.. 13

4.2 Deep Q-Network (DQN).. 15

4.3 Double Deep Q-Network (DDQN) .. 16

4.4 Advantage Actor-Critic (A2C) .. 16

4.5 Soft Actor-Critic (SAC) ... 17

4.6 Deep Deterministic Policy Gradient (DDPG).. 18

4.8 Proximal Policy Optimization (PPO)... 19

Chapter Five Empirical Estimation in the A-share Market .. 20

5.1 General Introduction of Trading SSE.50, CSI. 300 and CSI.500 20

5.2 Basic MDP Settings for Trading .. 21

5.2.1 Trading Environment ... 21

5.2.2 Training and Validation Approach ... 22

5.2.3 Optimal Ensembling and Model Combination .. 24

5.3 Details of Backtesting .. 24

5.4 Performance Evaluation ... 26

5.4.1 Performance measurement ... 26

5.4.2 Backtesting Evaluation on SEE.50 components 28

5.4.3 Backtesting Evaluation on CSI.300 ... 32

5.4.4 Backtesting Evaluation on CSI.500 ... 36

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

7

5.4.5 Summary of RL agent's performance... 38

Chapter Six Conclusions and Discussions ... 42

6.1 Summaries and contributions ... 42

6.1.1 Feasibility of RL algorithms in A-share market algorithmic trading 42

6.1.2 Two ensembling schemes for RL algorithms in the A-share market....... 43

6.2 Limitations ... 45

6.2.1 Simplified trading environment ... 45

6.2.2 Unsatisfying drawdowns .. 46

6.2.3 Long training time and lack of convergence.. 46

6.3 Future works .. 47

6.3.1 Embedding framework for dimensional reduction 47

6.3.2 Multi-task agent for robust learning .. 48

6.3.3 Limit Order Books Market Setting .. 48

References .. 50

Acknowledgment ... 56

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

1

Chapter One Introduction

Stock trading can be simplified as longing and shorting companies' shares in the

financial market to maximize the return on the investment. When deciding how many

shares to buy or sell a piece of stock, one of the main challenges is to model and predict

the complex and dynamic price series, in which stiff trading strategies from so-called

experts always fail to make stable profits. From traditional financial modeling,

designing and testing asset pricing models are the main focus for trading strategies.

Some well-known ones include the capital asset pricing model (CAPM) [1] and Fama

& French factor model [2]. On the other hand, in computer science and statistics,

applying data-driven algorithms, especially machine learning techniques, to analyze

financial data is the mainstream [3]. Moreover, deep learning methods that implement

neural networks in finance have recently become appealing due to their attractive ability

to dig out meaningful representations and accurate predictions [4].

Reinforcement learning (RL) is an emerging branch of statistical learning and

machine learning algorithms. Unlike supervised and unsupervised learning, RL

algorithms are designed to generate the optimal strategy that maximizes the expected

reward in a dynamic and stochastic environment [5]. The last decade has witnessed

many significantly successful RL approaches in various domains such as

recommendation systems [6], games [7], and robotics [8]. One of the most famous

milestones might be AlphaGo [9], who beats the most talented human players in the

game of Go.

Ensembling methods can apply multiple learning algorithms to obtain better and

more robust performance than could be obtained from any of the constituents alone [10].

This methodology can derive from collective wisdom, which indicates that making a

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

2

decision based on different opinions can achieve a better result. Successful approaches

like Bootstrap Aggregating (Boosting) [11], Adaptive Bootstrap (Adaboost) [12], and

Random Forest [13] all outperform their component algorithms.

There are mainly four reasons why RL can help for better trading. Firstly, the aim

of designing optimal strategies under a non-deterministic situation resembles the go of

making long-short decisions. Secondly, RL trains an end-to-end agent who utilizes

available market information as input and trading actions as output. This feature can

bypass the challenging task of predicting future prizes used in the traditional predicting-

then-executing modeling. Thirdly, RL-based methods optimize overall (discounted)

profit directly. The discount factor in RL considers the cost of time, which aligns with

the risk-free rate in financial modeling. Lastly, based on the function approximation

method in RL, it is possible to generalize any market condition which requires extensive

dimensional data [14].

This paper aims to design and compare the latest RL algorithms' performances in

the A-share market, a market on which most past literature focuses little. Then we will

combine the strategies of different algorithms based on optimal and weighted

ensembling methods and search for any improvements in RL algorithms' collective

wisdom. To the best of our knowledge, there are very few thorough tests of RL

algorithm applications in the A-share market, especially considering ensembling

methods.

Our paper is organized according to the following structure. In Chapter Two, we

review some important literature closely related to our topic; in Chapter Three, we

describe our modeling of the trading process as an RL framework; in Chapter Four, we

propose the main algorithms used and the approaches to combine them; and in Section

Five, we apply the proposed algorithms to trading and backtesting in A-share market;

in the last part, we summarize our results and discuss some potential improvements for

future research.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

3

Chapter Two Related Works

Our works are generally related to three lines of literature: reinforcement learning,

algorithmic trading, ensembling methods, and machine-learning-assisted trading.

2.1 Reinforcement Learning

Reinforcement learning is a popular subfield of statistical learning that studies

complex control and decision-making problems. In Sutton and Barto's description [15],

RL problems usually possess a closed-loop problem, an agent figuring out decisions by

trial-and-error, and actions impacting short-term and long-term results. We typically

call the decision-maker an agent and call everything except the agent the environment.

The detailed formulations of RL will be discussed in Section Three.

Many algorithms have been proposed to solve RL problems, and generally, we can

divide them into tabular and approximation methods. The value function for every

action-state pair is presented in a tabular for tabular algorithms, and the agent may act

according to the optimal decisions by checking the table.

Dynamic programming (DP) [16], Monto Carlo (MC)[17] and temporal difference

(TD) [18] prove efficient in dealing with tabular settings. However, this tabular

modeling suffers from the dimensional curse and can hardly work in a high-dimensional

environment such as the financial market. Instead, function approximation methods aim

to find a great approximate function of high-dimensional data. In approximation RL

algorithms, we aim to generalize from previous experiences to unexplored states. Policy

gradient methods such as Natural policy gradient [19], actor-critic [20], and two

variants of actor-critic [21,22] gain great reputations for generalization ability. Further,

with deep learning, RL with neural networks working as function approximators lead

to great success in many domains like AlphaGo [9] in chess playing. Other famous

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

4

deep-learning-based RL algorithms include Q-network (DQN) [23], deep deterministic

policy gradient (DDPG) [24], proximal policy optimization (PPO) [25]. Our paper

mainly applies approximation-based RL algorithms in the finance field, famous for their

high dimensionality.

2.2 Algorithmic Trading

Algorithmic trading is the process in which traders consistently make long-short

decisions following a planned rule, given a set of financial assets aiming to maximize

profits. Broadly speaking, any financial assets can be traded based on algorithmic.

Based on trading frequency and style, algorithmic trading includes five categories [26]:

position trading (long-time-holding), swing trading, day trading, scalp trading (short

while every day), and high-frequency trading (tick level). According to the trading

regulations, day trading is more realistic in the A-share market.

Traditional algorithmic trading is generally based on time-series analysis. For

example, momentum strategies like Times Series Momentum [27] and Cross-Sectional

Momentum [28], and mean-reversion strategies such as Bollinger bands [29] are all

based on historical price patterns. However, some problems lie in most conventional

algorithmic trading strategies. Among them, the most significant is the lack of

generalization ability among different markets, concerning only a small fraction of

assets, and the inability to deal with long-term and periodic patterns.

2.3 Machine-Learning-Assisted Trading

Machine learning (ML) refers to a large family of computer algorithms that can

improve automatically through training and data. Ideally, financial data suit ML for its

abundancy and clearness, and there have already been quite a lot of works applying ML

in finance for different purposes. For example, Principal Component Analysis (PCA)

[30] and Deep Neural Networks [31] are applied to extract features and patterns of stock

https://en.wikipedia.org/wiki/Algorithm

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

5

markets. For price forecasting, researchers have implemented different methods in

financial data, from naïve algorithms (SVM [32], Lasso [33], and random forest [34])

to intricate neural networks (MLP [35], RNN [36], CNN [37] and LSTM). What is

noticeable is that Recurrent Neural Networks (RNN) and its extension Long-Short-

Term Memory (LSTM) neural networks are incredibly successful in time-series

predicting.

Specifically related to our works is RL-assisted reinforcement learning. Recurrent

reinforcement learning (RRL) [38] proves to have stable performance when exposed to

noisy data such as financial data, and its extension adaptive RNN [39] outperforms

most baselines Eur-US dollar exchange market. Trust Region Volatility Optimization

(TRVO) [40] proposed based on the risk-averse purpose for option hedging beats

traditional Black-Scholes delta strategies on simulated option price trajectories.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

6

Chapter Three Modeling of Stock Trading in RL Frameworks

This section discusses how to present the trading process in the stock market as a

Markov Decision Process (MDP), which is the basic framework for reinforcement

learning. We first review some important concepts and conclusions for reinforcement

learning; then, we present how to present the market information and long-short

positions in an RL pattern.

3.1 Basics of Reinforcement Learning

We usually model the environment for RL as a Markov Decision Process with

reward, 𝑀 = {𝑆, 𝐴, 𝑃, 𝑟, 𝛾}. 𝑆 is the set of possible states of the environment and in a

financial setting. For a specific state 𝑠 ∈ 𝑆, we can understand this as the current prices

of all stock shares in the market. 𝐴 is the feasible action set, and for an action 𝑎 ∈

𝐴, we can regard it as trading decisions like longing specific company's shares for a

certain amount. 𝑃(𝑠, 𝑎) is the transition probability matrix describing system

dynamics. Specifically, in an MDP, the distribution of state in step 𝑡 + 1 only depends

on (𝑠𝑡 , 𝑎𝑡), the state-action pair in step 𝑡. We formally present this Markovian property

as:

 𝑃(st+1 |𝑠𝑡 , 𝑎𝑡 , st−1, at−1, … a1, s0) = 𝑃(st+1 |𝑠𝑡 , 𝑎𝑡). (3.1)

After taking action 𝑎ℎ in the 𝑡𝑡ℎ step, the agent will receive a reward (maybe

even a stochastic one) based on 𝑠𝑡 , 𝑠𝑡−1, 𝑎𝑡, 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑠𝑡−1, 𝑎𝑡). The last component

𝛾 is the discount factor. It is the same as the discounted factor in the calculation of net

present value (NPV). In reinforcement learning, the cumulated reward in an epoch of

game is discounted summation of reward in each step for a long time period with a

length of 𝑇 : ∑  𝑇
𝑘=0  𝛾𝑘𝑟𝑡+𝑘+1. The aim of MDP is to maximize the (discounted)

cumulative reward.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

7

Besides these environmental factors, we always use a probability vector 𝜋(𝑎|𝑠)

to present the strategy, which means taking action 𝑎 (with probability) 𝜋(𝑎|𝑠) under

state 𝑠. In market settings, we can illustrate policy (𝜋(𝑎𝑡|𝑠𝑡)) as: "when given all the

stock prices at time 𝑡 (𝑠𝑡)" "a trader would long certain stocks and short others." (𝑎𝑡).

Informally speaking, the main goal of RL is to find the policy 𝜋 (long-short strategies),

which could optimize the long-term return ∑  𝑇
𝑘=0   𝛾𝑘𝑟𝑡+𝑘+1 (discounted market

returns). In Figure 1, we present a brief loop of RL in finance.

For simplicity, in the following parts, we use 𝑃𝑠𝑠′
𝑎 to represent transition

probability 𝑃(𝑠′|𝑠, 𝑎), 𝑟𝑠𝑠′
𝑎 for the reward 𝑟(𝑠′, 𝑠, 𝑎).

Figure 1.1: Structure of RL in Finance

Moreover, in MDP analysis, we usually introduce two critical measures of a policy 𝜋:

𝑄𝜋(𝑠, 𝑎) and 𝑉𝜋(𝑠) .

Definition 1(State Value Function). Given a state 𝑠 and time 𝑡, the value of the state

at 𝑡 under a fixed policy 𝜋 is the expected return of starting in the given state and

then following the policy.

 𝑉𝜋(𝑠) = 𝐸𝜋[𝑅𝑡 ∣ 𝑠𝑡 = 𝑠] = 𝐸𝜋 [∑  

𝑇

𝑘=0

 𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠]. (3.2)

Definition 2(Action Value Function). Given a state 𝑠 and action 𝑎 at time 𝑡, the

value of a state-action pair at 𝑡 under a fixed policy 𝜋 is the expected return of

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

8

starting in the given state, taking the given action, and then following the policy.

 𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝐸𝜋 [∑  

𝑇

𝑘=0

  𝛾𝑘𝑟𝑡+𝑘+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. (3.3)

By simple mathematical tricks, we can calculate the value function 𝑉𝜋(⋅)

recursively according to Bellman Equation listed in Lemma 1.

Lemma 1 (Bellman Equation). For a fixed policy 𝜋, we have the following recursive

relationship of the state value function 𝑉𝜋(𝑠) and state-action value function

𝑄𝜋(𝑠, 𝑎)

 𝑉𝜋(𝑠) = ∑  

𝑎∈𝒜(𝑠)

𝜋(𝑠, 𝑎) ∑  

𝑠′∈𝒮

P𝑠𝑠′
𝑎 [r𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)]

 = 𝐸𝜋[𝑟𝑡 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠].

 = ∑ 𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎),

𝑎∈𝐴

 ∀ 𝑡 ∈ 𝑍+. (3.4)

Similarly, we can also break the 𝑄(𝑠, 𝑎) into:

 𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑟𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

 = 𝑟𝑡(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠𝑠′
𝑎 𝑉𝜋(𝑠′)

𝑠′∈𝑆

 (3.5)

For small-scale problems like tabular MDP, if the model 𝑀 = {𝑆, 𝐴, 𝑃, 𝑟, 𝛾} is

provided, we can directly compute 𝑉𝜋 and 𝑄𝜋 based on the transition probabilities

and expected reward dynamics. For larger problems, especially continuous state and

action space problems like in the finance environment that we discussed in this paper,

it is impossible to visit every state and calculate the value functions. Therefore, we rely

on function approximations of the 𝑄 and 𝑉 functions through parameter updating.

Moreover, in continuous settings, the Bellman Equation can still work:

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

9

Corollary 1 (Integrated Bellman Equation) For a fixed policy 𝜋 , we have the

following recursive relationship of the value function:

 𝑉𝜋(𝑠) = ∫ 𝜋(𝑠, 𝑎)
𝑎∈𝐴(𝑠)

∫ P𝑠𝑠′
𝑎

𝑠′∈𝑆

[r𝑠𝑠′
𝑎 + 𝛾𝑉𝜋(𝑠′)]𝑑𝑠′𝑑𝑎. (3.6)

In the financial setting, states (such as the price of specific stocks) can be modeled

as continuous. One of the main differences in the algorithms we apply lies in presenting

and calculating the aforementioned Bellam Equation. The algorithms we may include

in the paper like Asynchronous Advantage Actor-Critic (A3C), Deep Q-Networks

(DQNs), Deep Deterministic Policy Gradient (DDPG), and Evolution Strategies (ES),

all have their unique ways of searching for the representation of value function and

derive the optimal policy 𝜋∗ to maximize 𝑉𝜋∗
(𝑠0) . Once given the numerical

representation of financial markets, we can apply them directly to stock trading.

Another important property for MDP and reinforcement learning is the Bellman

Optimality Equation [15]. This theorem provably secures the existence of the optimal

policy and value function. Formally, the Bellman Optimality Equation can be written

as follows.

Theorem 1 (Bellman Optimality Equation) There exists an optimal policy 𝜋⋆,

allowing the maximization of 𝑉-type and 𝑄-type value functions at the same time.

Formally written, we have that:

 𝜋⋆ = arg max
π∈Π

𝑉𝜋(𝑠) = arg max
π∈Π

𝑄𝜋(𝑠, 𝑎) (3.7)

This equation also indicates the following relation under optimal policy 𝜋⋆:

 𝑉𝜋⋆
(𝑠) = max

𝑎∈𝐴
(𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎 𝑉𝜋⋆
(𝑠′)

𝑠′∈𝑆

) ; (3.8)

 𝑄𝜋⋆
(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑃𝑠𝑠′

𝑎 max
a′∈A

𝑄𝜋⋆
(𝑠′, 𝑎′).

𝑠′∈𝑆

(3.9)

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

10

Bellman Optimality Equation shows the existence of the optimal strategy. It also

provides us with the approach to finding the optimal 𝜋⋆ by finding the maximized

representation of the value function 𝑄𝜋⋆
(𝑠, 𝑎) or 𝑉𝜋⋆

(𝑠).

3.2 Formulation of Stock Trading

Based on the stochasticity and interactivity in the trading process, we model our

decision and the financial market as a Markov Decision Process (MDP), as shown in

Figure 1.1. We depict the market information and our asset as state and the long-short

decision as to the action in an MDP. For generality, we consider 𝐷 stocks (𝐷 ≤

|𝑀𝑎𝑟𝑘𝑒𝑡|) to trade. To better link our model with the real market, we also consider

current restrictions on the A-share market. Therefore, in our model, leverage and short

selling are not allowed.

The state 𝑠 = [𝒑, 𝒉, 𝒊, 𝒃] is a set that includes the information on the prices of

stocks 𝒑 ∈ 𝑅+
𝐷 , the number of holdings of stocks 𝒉 ∈ 𝑍+

𝐷 , 𝒊 is an auxiliary part

incorporating other market information (e.g., market index, technical indicators, and

exchange ratio), and the remaining balance 𝑏 ∈ 𝑅+.

The action 𝒂 ∈ 𝐴𝐷 is a vector of actions on all 𝐷 stocks. The available actions of

each stock include selling, buying, and holding; the action will directly influence the

holding position ℎ in state 𝑠. There will be some restrictions on the actions allowed

to take under different 𝑠:

1. selling: if the trader chooses to sell 𝑘 ∈ 𝑍+ shares of stock 𝑑, the state will change

to 𝒉𝒕+𝟏[𝑑] = 𝒉𝒕[𝑑] − 𝑘. However, since we do not allow short selling in A-share,

𝑘 ∈ [1, 𝒉𝒕[𝑑]], ∀𝑑 ∈ [1,2, ⋯ , 𝐷].

2. holding: if the trader chooses to take a holding position on stock 𝑑, 𝒉𝒕+𝟏[𝑑] =

𝒉𝒕[𝑑].

3. buying: if the trader chooses to buy 𝑘 shares of stock 𝑑 can be bought, and it

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

11

leads to 𝒉𝒕+𝟏[𝑑] = 𝒉𝒕[𝑑] + 𝑘, ∀𝑑 ∈ [1,2 ⋯ , 𝐷].

For notational simplicity, we can write 𝒂𝒕 = 𝒌𝒕 ∈ 𝑍𝐷 as the position action vector. If

we buy in stock 𝑑, 𝒌𝒕[𝑑] > 0, and for selling, 𝒌𝒕[𝑑] < 0.

The reward r(𝑠, 𝑎 , 𝑠next) directly comes from the change of the portfolio value

when action a is taken at state s and observing the new state 𝑠next. The value is the

portfolio is 𝑝⊤ℎ + 𝑏, which is the sum of the value and cash of the stock. We also

consider the transaction cost 𝑐𝑡 to make our model closer to the real world.

Specifically, the return of the action-state pair (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) can be written as:

 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = (𝑏𝑡+1 + 𝑝𝑡+1
⊤ ℎ𝑡+1) − (𝑏𝑡 + 𝑝𝑡

⊤ℎ𝑡) − 𝑐𝑡 , (3.6)

and the transaction cost 𝑐𝑡 here can be calculated by the sum of additional costs

induced by selling and purchasing based on the commission ratio (usually around

0.1%~1%).

Moreover, since leverage is not allowed in our model, the cash should follow the

restriction equation: 𝑏𝑡+1 = 𝑏𝑡 + (𝑝𝑡
⊤ℎ𝑡)𝑠𝑒𝑙𝑙 − (𝑝𝑡

⊤ℎ𝑡)𝑏𝑢𝑦 , where (⋅)𝑠𝑒𝑙𝑙 indicate

the inner product of the selling fraction and (⋅)𝑏𝑢𝑦 indicating the purchased fraction.

Under the aforementioned setting, the policy 𝜋(𝑎𝑡|𝑠𝑡), can be understood as when

observing the market information at period 𝑡, how many shares of specific stocks to

purchase or sell. Based on Q-learning and Bellman Optimality Equation, which is the

most popular pattern of training modern reinforcement learning, we can try to find the

𝜋 to maximize 𝑄𝜋(𝑠𝑡 , 𝑎𝑡). Thus, we can rewrite our training purpose as finding the

trading strategy 𝜋 to maximize the value function:

 max
𝜋∈Π

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝐸𝑠𝑡+1
[𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛾𝐸𝑎𝑡+1

[𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]]. (3.7)

Following the deep reinforcement learning algorithms we will introduce in Chapter

Four, we can use the output of a neural network to approximate the value of 𝑄 .

Therefore, concluding the aforementioned settings, we can summarize our aim as:

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

12

approximating the value function of trading processes based on reinforcement

learning algorithms and finding a nearly-optimal strategy.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

13

Chapter Four Deep Reinforcement Learning Algorithms in Trading

In this chapter, we would like to discuss some vital reinforcement learning

algorithms based on neural networks. Theoretically, they are applied to solve almost

any MDP problems once the 𝑀 = {𝑆, 𝐴, 𝑃, 𝑟, 𝛾} is well formulated. The significant

differences among them are the approximation and exploring strategies. Some famous

RL algorithms include Advantage Actor-Critic (A2C), Soft Actor-Critic Algorithm

(SAC), Deep Deterministic Policy Gradient (DDPG), Double Deep Q-Network

(DDQN), Twined Delayed Deep Deterministic Policy Gradients (TD3), and Proximal

Policy Optimization (PPO). All of these mentioned algorithms can achieve near-

optimal strategy by updating 𝑄(𝑠, 𝑎)-function.

 In the following subsection, we first present the general approach of approximating

𝑄𝜃(𝑠, 𝑎) , where 𝜃 is a group of parameters that decide the function 𝑄 . The main

differences among those mentioned algorithms lie in the way they update 𝜃 and

choose the policy 𝜋 to explore the environment.

4.1 General Description of Model-Free RL, Q-learning, and Policy

Gradient

Model-free RL is a set of RL algorithms learning the optimal policy through

maximizing the value function. This set of algorithms does not impose assumptions on

the transition dynamics (i.e., the transition probability of MDP) but directly learns the

optimal mapping function 𝑄𝜃
⋆(𝑠, 𝑎) or 𝑉⋆(𝑠) . The most representative ones among

them are the 𝑄-learning and policy gradient algorithms.

𝑸 -learning, as its name suggests, is a set of RL algorithms to learn the best

representation of the state-action value function 𝑄𝜃(𝑠, 𝑎) , where𝜃 is the parameter

denoting the structure of 𝑄(𝑠, 𝑎). Based on Bellman Optimality Equation, under the

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

14

optimal policy 𝜋⋆, we have the relationship: ∀(𝑠, 𝑎, 𝑠′), 𝑄𝜃
⋆(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +

𝛾 ∑ 𝑃𝑠𝑠′
𝑎 max

a′∈A
𝑄𝜃

𝜋⋆
(𝑠′, 𝑎′) .𝑠′∈𝑆 It means that once we achieve the 𝑄⋆, the optimal policy

is to take greedy actions by 𝑎⋆(𝑠) = 𝜋⋆(𝑠) = arg𝑎∈𝐴 𝑄(𝑠, 𝑎).

This equality property also suggests that we can iteratively update the theta in a

certain way until convergence, reaching the 𝑄𝜃
⋆. The unique ways we update 𝜃 and

construct 𝑄𝜋 , is the key to understanding different 𝑄-learning algorithms. Generally

speaking, we can update the 𝑄-function as:

 𝑄𝜃𝑡+1
(𝑠, 𝑎) = (1 − 𝛼) 𝑄𝜃𝑡

(𝑠, 𝑎) + 𝛼 (𝑟(𝑠, 𝑎) + γmax
a′∈𝐴

𝑄𝜃𝑡
(𝑠′, 𝑎′)), (4,1)

where 𝛼 represents the learning tendency to the local optimality. We can also rewrite

Equation (4.1) in a parameterized representation:

 𝜃𝑡+1 = 𝜃𝑡 + 𝛼 (𝑌𝑡
𝑄 − 𝑄𝜃𝑡

(𝑠𝑡 , 𝑎𝑡)) ∇𝜃𝑡
𝑄𝜃𝑡

(𝑠𝑡 , 𝑎𝑡), (4.2)

where the 𝑌𝑡
𝑄

 is the optimization target of 𝑄-function. For example, if taking a greedy

updating strategy, we will take 𝑌𝑡
𝑄

= 𝑟(𝑠, 𝑎) + 𝛾 max
a

𝑄𝜃𝑡
(𝑠𝑡+1, 𝑎), and learning rate

𝛼 =1, and the (4.1) will be 𝑄𝜃𝑡+1
(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + γmax

a′∈𝐴
𝑄𝜃𝑡

(𝑠′, 𝑎′). In the following

sections, we will discuss some more computationally efficient or more accurate

algorithms than the greedy ones.

 Another important branch of model-free algorithms is policy gradient algorithms

[52]. They mainly aim to learn the representation of policy 𝜋𝜃(𝑎|𝑠) (as well as the

mapping function of the value function 𝑄𝑤(𝑠, 𝑎)). Sutton et al. [52] prove that under

the assumption of 𝑄𝑤(𝑠, 𝑎) = ∇𝜃 log 𝜋𝜃(𝑎|𝑠)⊤𝑤, the expected loss is written as:

 𝐽𝜃(𝜋𝜃) = 𝐸𝑠∼𝜌𝜋,𝑎∼𝜋𝜃 [𝑄𝑤(𝑠, 𝑎) − 𝑄𝜋(𝑠, 𝑎)]2, (4.3)

can be minimized through gradient update:

 ∇𝜃 𝐽𝜃(𝜋𝜃) = 𝐸𝑠∼𝜌𝜋,𝑎∼𝜋𝜃 [∇𝜃 logθ 𝜋(𝑎|𝑠) 𝑄𝑤(𝑠, 𝑎)]2. (4.4)

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

15

4.2 Deep Q-Network (DQN)

The Deep 𝑄-network (DQN) algorithm aims to use a multi-layered neural network

(or other structural networks) to approximate the value function 𝑄𝜃(𝑠, 𝑎) for any

given state-action pair (𝑠, 𝑎) [46]. This algorithm is one of RL's first modern empirical

successes by playing the game Atari, and its result was published in Nature. Its main

algorithm is described below.

The key of DQN can be summarized as using one 𝑄-networks with two sets of

parameters 𝜃− (target) and 𝜃 (online) and experience replay. 𝜃− is the parameter of

the target network and is updated comparatively slowly. This slow updating secures the

convergence of gradient descent. Besides, the updating process can be understood as

minimizing the squared loss each timestep by gradient:

Algorithm: DQN with Experience Replay.

Initialize the buffer of replay memory 𝐷 with capacity 𝑁

Initialize action-value function 𝑄𝜃 with random weights 𝜃0

Initialize target action-value function 𝑄෠𝜃− with weights 𝜃− = 𝜃

For episode 𝑡 = 1, ⋯ , 𝑀 do

Initialize the first state 𝑠1

For 𝑡 = 1, ⋯ , 𝑇 do

With a probability of 𝜀 select a random available action 𝑎𝑡; otherwise, select based on

𝑎 = arg max
𝑎∈𝐴

𝑄𝜃𝑡
(𝑠𝑡)

Execute 𝑎𝑡 and observe 𝑟𝑡 and 𝑠𝑡

Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷

Sample random minibatch of transitions {(𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from 𝐷

Set 𝑦𝑗 ቊ
𝑟𝑗 𝑖𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒

 𝑟𝑗 + 𝛾 max
a′

𝑄𝜃−෢ ൫𝑠𝑗+1, 𝑎′൯ 𝑒𝑙𝑠𝑒
 .

Perform gradient descent on squared loss 𝐿𝑗(𝜃) = (𝑦𝑖 − 𝑄𝜃൫𝑠𝑗 , 𝑎𝑗൯)
2
regarding 𝜃

Every 𝐶 steps reset 𝑄෠ = 𝑄

End For

End For

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

16

 ∇𝜃𝑖
𝐿(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑟 + 𝛾𝑚𝑎𝑥

𝑎′
 𝑄(𝑠′, 𝑎′; 𝜃𝑖

−) − 𝑄(𝑠, 𝑎; 𝜃𝑖)) ∇𝜃𝑖
𝑄(𝑠, 𝑎; 𝜃𝑖)] . (4.5)

Then after updating the online selection parameter 𝜃 for 𝐶 timesteps, we will update

the evaluation network 𝜃− = 𝜃.

4.3 Double Deep Q-Network (DDQN)

As its name suggests, DDQN is an improved version of Deep Q-Network. The main aim of

DDQN is to solve the overestimation induced by using one network to select an action

and evaluate the value function. [50]. So DDQN decouples the evaluation and selection

network into two different networks. In DQN, the evaluation target can be written as

the output from the evaluation parameter:

 𝑌𝑡
𝐷𝑄𝑁 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 max

a′∈𝐴
𝑄𝜃−(𝑠, 𝑎′). (4.6)

However, in DDQN, we iteratively update two networks:

 𝑌𝑡
𝑄 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄𝜃𝑡

(𝑠𝑡 , arg max
a∈A

𝑄𝜃𝑡
′(𝑠𝑡 , 𝑎)) (4.7)

 𝑌𝑡
𝐷𝑜𝑢𝑏𝑙𝑒𝑄 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄𝜃𝑡

′ (𝑠𝑡 , arg max
a∈A

𝑄𝜃𝑡
(𝑠𝑡 , 𝑎)) (4.8)

This double learning strategy is proved to be efficient both theoretically [49] and

empirically [50]. Intuitively, DDQN can be regarded as a pessimistic version of DQN.

4.4 Advantage Actor-Critic (A2C)

The advantage actor-critic algorithm was proposed by Bator et al. [51]. It is a typical

policy gradient descent strategy, by learning the parameterized policy 𝜋𝜃 . This

algorithm is constructed based on the temporal difference approach [18] to approximate

𝑉 -type value function. Generally speaking, it employs the neural network

approximation of 𝑉𝜙(𝑠) (critic) and 𝜋𝜃(𝑠) (actor), and uses an 𝑛 -step temporal

difference value to approximate the target of the value function. The primary approach

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

17

of A2C is shown in Figure 4.1.

 The 'advantage' in A2C indicates the advantage function, which can be understood

as the difference between the current value function and the target value. In fact, this

advantage function has already frequently appeared in previously mentioned algorithms

in the form of 𝑌𝑡
𝑄 − 𝑄𝜃(𝑠, 𝑎).

Figure 4.1: Advantage Actor-Critic Architecture [22]

 The agent takes action based on 𝜋𝜃 and update the parameter of policy network

𝜃 based on gradient descent of entropy loss:

 ∇𝜃𝐽(𝜃) = ∑ ∇𝜃 log 𝜋𝜃(𝑠𝑡 , 𝑎𝑡)

𝑡

(𝑅𝑡 − 𝑉𝜙(𝑠𝑡)), (4.9)

and update the value function network 𝜙 based on the gradient of squared loss:

 ∇𝜙𝐿(𝜙) = ∑ ∇𝜙𝑉𝜙(𝑠𝑡) (𝑅𝑡 − 𝑉𝜙(𝑠𝑡))

𝑡

, (4.10)

where the 𝑅𝑡 = ∑ 𝛾𝑘−1𝑟𝑡+𝑘 + 𝛾𝑛𝑉𝜙(𝑠𝑡+𝑛)𝑛
𝑘=1 , which is the 𝑛 -step lookahead value

function. Besides, we can easily convert this 𝑉-type critic into 𝑄-type.

4.5 Soft Actor-Critic (SAC)

The soft actor-critic algorithm is a stable off-policy adaption of the actor-critic

algorithm proposed by Haarnoja T et al. [47]. Different from A2C, it aims to maximize

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

18

the discounted reward and policy entropy at the same time. Formally speaking, it

deploys three sets of networks (𝑄𝑤 , 𝑉𝜙 , 𝜋𝜃) and incorporates the log value of policy into

the loss function. In the updating part, it applies gradient descent on all three parameters:

 𝐽𝑉(𝜙) = 𝐸𝑠𝑡∼𝐷 [𝑉𝜙(𝑠𝑡) − 𝐸𝑎𝑡∼𝜋𝜃
[𝑄𝑤(𝑠𝑡 , 𝑎𝑡) − log 𝜋𝜃(𝑎𝑡|𝑠𝑡)]] (4.11)

 𝐽𝑄(𝑤) = 𝐸(𝑠𝑡,𝑎𝑡)∼𝐷[൫𝑄𝑤(𝑠𝑡 , 𝑎𝑡) − 𝑟(𝑠𝑡 , 𝑎𝑡) − 𝛾𝐸𝑠𝑡+1
[𝑉𝜙(𝑠𝑡+1)]൯] (4.12)

𝐽𝜋(𝜃) = 𝐸𝑠𝑡∼𝐷[𝐷𝐾𝐿 (𝜋𝜃(⋅ | 𝑠𝑡)| exp
𝑄𝑤(𝑠𝑡 ,⋅)

𝑍𝑤(𝑠𝑡)
))]. (4.13)

4.6 Deep Deterministic Policy Gradient (DDPG)

Silver D. et al. [48] propose the Deep Deterministic Policy Gradient (DDPG), which

is especially efficient in dealing with continuous control problems. Considering that we

can always buy the integer number of shares closest to the real number from continuous

problems, DDPG is still applicable in stock trading. The critical feature of DDPG is the

deterministic policy gradient by updating parameter 𝜃 through:

 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝐸𝑠∼𝜋𝜃
[∇𝜃𝜋𝜃(𝑠)∇𝜋𝑄𝜋𝜃൫𝑠, 𝜋𝜃(𝑠)൯|𝑎=𝜋𝜃(𝑠)] (4.14)

 For real practice, it is still computationally efficient to employ an approximation

function 𝑄𝑤 ≈ 𝑄𝜋𝜃 (𝑠, 𝑎) , and similar to SAC, we can iteratively update 𝜃 and 𝑤

through:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝑤 (𝑟𝑡 + 𝛾𝑄𝑤𝑡
(𝑠𝑡+1, 𝜋𝜃𝑡

(𝑠𝑡+1)) − 𝑄𝑤𝑡
(𝑠𝑡 , 𝑎𝑡)) ∇w𝑄𝑤𝑡

(𝑠𝑡 , 𝑎𝑡) (4.15)

 𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝜃∇𝜃𝜋𝜃(𝑠)∇𝑎𝑄𝑤(𝑠𝑡 , 𝑎𝑡)|𝑎=𝜋𝜃(𝑠) (4.16)

4.7 Twin Delayed Deep Deterministic Policy Gradients (TD3)

TD3 algorithm is designed to overcome the overoptimistic problem in DDPG for

specific tasks [53], which can be understood as a pessimistic version of DDPG. TD3 is

inspired by Double Q-learning and DDQN [49,50]. The overestimation problem still

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

19

exists in Equation (4.15) since the value estimation, and decision making are both based

on the same 𝑄𝑤 . This makes the agent too optimistic about the value of the current

state and his/her action.

To deal with the overestimation issue, Fujimoto S. et al. [53] propose the Twin

Delayed DDPG method by incorporating two actors and critics and updating their

parameters iteratively. Technically, the key feature of TD3 lies in using four networks

൫𝑄𝑤1
, 𝑄𝑤2

, 𝜋𝜃1
, 𝜋𝜃2

൯, which satisfies the relationship of 𝑖, 𝑗 = 1,2 separately:

𝑤𝑡+1
𝑖 = 𝑤𝑡

𝑖 + 𝛼𝑤 (𝑟𝑡 + 𝛾𝑄𝑤𝑡

𝑗
(𝑠𝑡+1, 𝜋𝜃𝑡

𝑖 (𝑠𝑡+1)) − 𝑄𝑤𝑡
𝑖 (𝑠𝑡 , 𝑎𝑡)) ∇w

i 𝑄𝑤𝑡
𝑖 (𝑠𝑡 , 𝑎𝑡) (4.17)

 𝜃𝑡+1
𝑖 = 𝜃𝑡

𝑖 + 𝛼𝜃∇𝜃
i 𝜋𝜃

𝑖 (𝑠)∇𝑎𝑄𝑤
𝑖 (𝑠𝑡 , 𝑎𝑡)|𝑎∼𝜋𝑖

𝜃(𝑠)+𝜖 (4.18)

4.8 Proximal Policy Optimization (PPO)

PPO is a typical policy gradient algorithm designed for RL by Shulman J. et al. [25].

It seeks more stable convergence by assuring the updated policy will not differ too much

from the previous policy. A similar algorithm is Trust Region Policy Optimization

(TRPO) [54], which is also proposed by Shulman. These two algorithms share the same

motivation by adding penalty terms on drastic policy changes.

Technically speaking, the PPO and TRPO solve the policy gradient of:

 max
𝜃

 𝐸𝑡 [
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

𝐴𝑡] , 𝑠. 𝑡. 𝐸[𝐾𝐿൫𝜋𝜃𝑜𝑙𝑑
, 𝜋𝜃൯] ≤ 𝛿. (4.17)

What is special about PPO is the fact that it incorporates a 'clip' form penalty loss in the

minimization. This turns the optimization problem (4.17) into:

 max
𝜃

 𝐸𝑡 [(
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

𝐴𝑡 , 𝑐𝑙𝑖𝑝 (
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖) 𝐴𝑡] , (4.18)

which simplifies the optimization stage for calculations.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

20

Chapter Five Empirical Estimation in the A-share Market

5.1 General Introduction of Trading SSE.50, CSI. 300 and CSI.500

SSE.50 Index is one of the main capitalization-weighted stock indices of the

Shanghai Stock Exchange. It subsumes the top 50 companies by "float-adjusted"

capitalization. Apart from this 50-company index, SSE 180 and SSE 380 also

incorporate the SSE 50 Index. Meanwhile, SSE 50 and SSE 180 are sub-indices of the

SSE Composite Index. Some representative stocks are shown in Table 1.

Table 5.1 Some Components of SSE 50 Index

Name Industry Ticker

Shanghai Pudong Development

Bank

Banking 600000

China Petroleum & Chemical

Corporation

Oil & Gas 600028

CITIC Securities Financials 600030

Foxconn Manufacture & Internet 6001138

Poly Real Estate Real estate 600048

WuXi AppTec Medicine 603259

CSI.300 Index and CSI.500 Index are the main stock market indices. They are

designed to demonstrate the performance of the top 300 and top 300-800 (market-value

based) stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock

Exchange. CSI 300 is usually deemed as the Chinese version of the S&P 500 Index.

Some of the CSI 500 components are listed in Table 2.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

21

Table 5.2 Some Components of CSI 300 Index

Name Industry Ticker

Ping An Insurance Financials 601318

BOE Technology Group IT 000725

Midea Group Consumer Discretionary 000333

China Vanke Financials 000002

Kweichow Moutai Consumer Staples 600519

Industrial Bank Financials 601166

5.2 Basic MDP Settings for Trading

5.2.1 Trading Environment

In this part, we discuss how to design an exact RL training and validation

environment for a given number of stocks (here, we say components of an index), which

is a realization of the setting discussed in Chapter Three.

Taking the CSI. 300 as the example, for state space, we have that:

[1] Since there are 300 stocks available for trading, we have 𝑝𝑡 ∈ 𝑅+
300, ℎ𝑡 ∈

𝑍+
300, and the balance value is a positive real value 𝑏𝑡 ∈ 𝑅+.

[2] For auxiliary information 𝐼𝑡 , we incorporate the following technical

indicators for tradable stocks: 𝑀𝐴𝐶𝐷 ∈ 𝑅+
300, 𝐷𝑋(30) ∈ 𝑅+

300, 𝑅𝑆𝐼(30) ∈

𝑅+
300 𝑆𝑀𝐴(30. 𝑐𝑙𝑜𝑠𝑒) ∈ 𝑅+

300, 𝐵𝑂𝐿𝐿 ∈ 𝑅+
300 ; besides, we also incorporate

daily 𝑆𝐻𝐼𝐵𝑂𝑅 ∈ 𝑅1 , 𝐹𝑢𝑛𝑑 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑅1 (SSE Fund Index: SSE. 000011),

𝐵𝑜𝑛𝑑 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑅1(SSE Government Bond Index: SSE.000012) and 𝑉𝐼𝑋 ∈

𝑅1(CBOE China ETF Volatility Index).

The action space 𝑎𝑡 ∈ 𝑅300 represents the long-short decisions on trading day 𝑡.

Considering the convenience of the training process, we restrict the action space in

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

22

{−ℎ𝑚𝑎𝑥, −ℎ𝑚𝑎𝑥 + 1, … ,0,1, … . ℎ𝑚𝑎𝑥 − 1, ℎ𝑚𝑎𝑥}(ℎ𝑚𝑎𝑥 = 1 × 105) for each kind of

stock. Since ℎ𝑚𝑎𝑥 is set to be comparatively large, this setting can subsume most

trading settings.

The pipeline of our framework is demonstrated in Figure 5.1. The RL agents choose

long-short actions for all considered stocks based on their algorithms (when ensembling,

they cooperatively provide a decision). The trading environment will calculate the

change in net values and send it back to the agents as a reward. Meanwhile, the market

will turn to the next day, and new states are passed to agents. In the training stages, the

agents will update their policy networks according to the rules mentioned in Chapter

Five, while in the trading (validation) stage, we would not update the policy networks.

We will describe the details of training and validation in the following section.

Figure 5.1: Interactive pipeline of RL-trading Framework

5.2.2 Training and Validation Approach

The training and validation procedure in our backtesting setting are conducted

according to the fixed-length 'rolling window' scheme in Figure 5.2 (Figure (5.2a)

shows trading with only one algorithm, and Figure (5.2b) shows trading based on

ensembling methods). The whole validation period is divided into nonoverlapped,

consecutive, and same-length validation windows. Before each validation window, RL

algorithms needed to be trained in a broader training window, during which the

parameters in the algorithms are updated based on gradient descent. Then all parameters

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

23

are kept fixed throughout the following validation window. After one 'training-

validation' pair, the window moves forward by the length of the validation window and

starts a new training round. This rolling-window scheme is quite close to the validation

process in the Fama&French three-factor model and has no in-sample estimation errors.

The procedure of training and validating ensembling models differs slightly from

that of single-agent ones. To choose or assign weight to different algorithms in an

ensembling model, we need an extra 'rebalancing window' to evaluate the algorithms'

most recent performance. As shown in Figure 5.2b, there is one rebalance window

between validation and training. After training, the algorithms are fixed and evaluated

by their Sharpe ratio during the rebalance window. Then the optimal model (Bayesian

optimal) or the weights (Bayesian ensembling) are decided for the validation window.

After one 'training-rebalance-validation' epoch, the window moves forward by a

validation window length. Since we only use historical information during the

validation, there is no risk for in-sample or look-forward errors.

Figure 5.2: Rolling-window validation workflow

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

24

5.2.3 Optimal Ensembling and Model Combination

In this section, we will explain how to implement ensembling based on optimal and

weighted strategies. As mentioned in the previous section, when applying the

ensembling strategy for trading, we select an action regarding all available algorithms'

Sharpe ratio in 'rebalance windows.' Naturally, one can choose the 'best-performed'

algorithm, holding the belief that it can still perform well, at least for a short period.

This strategy can be understood as choosing the Bayesian optimal model when

ensembling, which has been discussed by Yang et al. [63].

Another approach to incorporating historical performance is to assign a confidence

level for each agent's suggested action. Since the Sharpe ratio is one of the key

measurements for investment, in this paper, we use the Sharpe ratio during the

'rebalance window' as the criteria for assigning weights. Specifically, for algorithm 𝑚

with a Sharpe ratio of 𝑆ℎ𝑎𝑟𝑝𝑒𝑚
𝑟 , we assign a confidence weight 𝑤𝑚 =

𝑆ℎ𝑎𝑟𝑝𝑚
𝑟

∑ 𝑆ℎ𝑎𝑟𝑝𝑒𝑖
𝑟𝑀

𝑖
. In

this way, we can decide our final trading action according to all agents' suggestions:

𝑎𝑓𝑖𝑛𝑎𝑙 = ∑ 𝑤𝑚𝑎𝑚𝑚 . This approach considering advice from more agents, might be

more robust and stable compared with only deploying one agent.

5.3 Details of Backtesting

All experiments are conducted on a server with two GeForce RTX 3090 GPUs and

256 GB RAM. RL algorithms and trading environments are written with Python; neural

networks for all RL agents are written with Pytorch; visualizations are based on

packages Pyfolio and Empyrical.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

25

Figure 5.3: Training and validation details

We obtain all stock market data from the CSMAR database, collecting daily stock

close, open, high, and low prices with trading volume for all components in SSE.50,

CSI.300, and CSI.500 indices from January 1st, 2015, to January 28th, 2022. The first

training epoch begins on January 1st, 2015, and ends on January 1st, 2019, and then we

begin the first epoch of rebalancing and validating. Then we move the validation

window forward by one window length. For training simplicity, we set the rebalancing

window and validation window to be the same all the time, and there are three different

sizes (21 days, 42 days, and 63 days) of window lengths being tested.

We deploy five RL algorithms: DDPG, A2C, TD3, PPO, and SAC for single-agent

trading and ensembling. The value-function and policy networks are multilayer

perceptron (MLP). The 𝛾 of every algorithm is its corresponding daily spot rate. In the

training stage, considering the different convergence properties, we assign algorithm

𝑚 with 𝑠𝑡𝑒𝑝𝑚 as training epoch. During the first period of training, with the aim of

collecting more possible paths, agent 𝑚 will be updated by 8 × 𝑡𝑜_𝑠𝑡𝑒𝑝𝑚 times. For

the latter training epoch, the parameters will be updated for
3×𝑟𝑜𝑢𝑛𝑑

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑛𝑑
× 𝑡𝑜_𝑠𝑡𝑒𝑝𝑚

times. The
3×𝑟𝑜𝑢𝑛𝑑

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑛𝑑
 grows larger when the validation window forwards to help our

agents learn and update parameters more when training periods move on, which is

essential to capture more recent market information and patterns.

For macro-level information 𝐼𝑡, we include daily SHIBOR and half-year spot rate

to capture daily interest information; CNY-USD to represent exchange information; and

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

26

Shanghai Securities Composite Index (SSCI) to capture market-level fluctuation. In

order to avoid look-forward traps, all information used for trading lags for one day.

In addition, some critical parameters for each agent during the training process are

listed below:

A2C parameters: updating steps=5 (the number of steps to run before each update);

total step (𝑡𝑜_𝑠𝑡𝑒𝑝𝑎2𝑐)=80000; learning rate=0.0005; learning decay=0.99.

DDPG parameters: 𝜏=0.0015 (soft update rate); actor learning rate=0.0001 and

critic learning rate=0.001; 𝑡𝑜_𝑠𝑡𝑒𝑝𝐷𝐷𝑃𝐺=60000.

TD3 parameters: learning rate=0.0003; 𝜏 =0.005 (soft update rate); gradient

steps=100 (the number of parametric updates between two steps); total step

(𝑡𝑜_𝑠𝑡𝑒𝑝𝑡𝑑3)=100000.

SAC parameters: updating steps=3 (the number of steps to run before each update);

total step (𝑡𝑜_𝑠𝑡𝑒𝑝𝑠𝑎𝑐)=100000; learning rate=0.0003; learning decay=0.99;

𝜏=0.005 (soft update rate)

PPO parameters: updating steps=3 (the number of steps to run before each update);

total step (𝑡𝑜_𝑠𝑡𝑒𝑝𝑝𝑝𝑜)=150000; learning rate=0.0003; learning decay=0.99; 𝜖𝑐𝑙𝑖𝑝 =

0.2.

5.4 Performance Evaluation

5.4.1 Performance measurement

To examine the effectiveness of the investment results of our trading strategy, we

use a large number of performance metrics. Apart from the widely used annualized rate

of return and Sharpe ratio, we would like to introduce some other well-known indicators

in this section.

Max drawdown evaluates the portfolio's downside risk, measuring the maximum

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

27

values from peaks to troughs. We can calculate it by 𝑀𝐷 =
(𝑉𝑡−𝑉𝑝)

𝑉𝑝
, which is always

nonpositive in value.

Treynor ratio is a measure of risk-adjusted portfolio performance, which is

constructed based on systematic risks, following 𝑇𝑟𝑒𝑦𝑛𝑜𝑟𝑝 =
𝑟𝑝−𝑟𝑓

𝛽𝑝
. The 𝛽𝑝 value we

use here represents our strategy's linear reaction towards the market portfolio, which

we take as the corresponding index return. A portfolio or trading strategy with a high

Treynor ratio indicates more returns from a unit of risk.

Sortino ratio is a variant of the Sharpe ratio by only considering downside risks.

We can calculate it from 𝑆𝑜𝑟𝑡𝑖𝑛𝑜𝑝 =
𝑟𝑝−𝑟𝑓

𝜎𝑑
, where the 𝜎𝑑

2 = ∫ ൫𝑟𝑓 − 𝑟𝑝൯
2

𝑓൫𝑟𝑝൯𝑑𝑟𝑝
𝑟𝑓

−∞
.

Intuitively, we can also rewrite it as 𝑆𝑜𝑟𝑡𝑖𝑛𝑜𝑝 =
𝑟𝑝−𝑟𝑓

√𝐸[𝑚𝑎𝑥 ൫𝑟𝑝−𝑟𝑓,0൯
2

]

 . Different from

Sharpe, Sortino only considers the risks in the periods when the risk-free financial

instruments outperform the portfolio.

Calmar ratio measures the risk-adjusted return by max drawdown ratio and can be

regarded as replacing the standard deviation risk in Sharpe ratios with downside risk.

Usually, we will calculate it through the equation: 𝐶𝑎𝑙𝑚𝑎𝑟𝑝 =
𝑟𝑝−𝑟𝑓

|𝑀𝐷𝑝|
. Fund managers

always desire a larger Calmar ratio since more returns are obtained with unit risk.

Omega ratio is initially defined as Ω൫𝑟𝑓൯ =
∫ 𝐹(𝑟)𝑑𝑟

∞
𝑟𝑓

∫ 𝐹(𝑟)𝑑𝑟
𝑟𝑓

−∞

 , which is the times'

probability of gaining more than 𝑟𝑓 over that of less than 𝑟𝑓. With a simple calculation,

we may find that Ω(𝑟𝑓) = 1 +
𝑟𝑝−𝑟𝑓

𝐸[max (𝑟−𝑟𝑓,0)]
 . A larger Omega ratio indicates more

chances of getting positive profits and thus better investment performance.

Tail ratio estimates the stability of portfolios and investment strategies. For stock-

based funds, we usually use the first top 95 percent and the last 5 percent to construct

the Tail ratio: 𝑇𝑎𝑖𝑙 =
𝒓𝟎.𝟗𝟓

𝒓𝒐.𝟎𝟓
 . A larger tail ratio indicates more chances of getting a

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

28

positive return in extreme cases.

5.4.2 Backtesting Evaluation on SEE.50 components

This section will demonstrate some of the backtesting results of trading

components in the SEE.50 index. The training stage starts on January 1st, 2015, and the

first validation period starts on January 1st, 2020. We stop the validation period until

February 28th, 2022. For the validation of ensembling algorithms, we try different

lengths of rebalancing windows as 21 days (one trading month), 42 days (two trading

months), and 63 days (three trading months). Besides, in order to avoid unexpected

systematic market risks, our agents will clear all positions when the market volatility

exceeds the 90-percent quantile of the historical turbulence in training periods. The

initial cash for backtesting is 1 × 107.

Figure 5.3 below illustrates the performance of all single agents, the optimal

ensembling agent, and the weighted ensemble agent for a 21-day window length. We

use the return of passively investing SEE.50 as the baseline to better illustrate each

agent's performance. We can see that all agents achieve annualized returns over 30%

and Sharpe ratios over 1.2, while the baseline only maintains an annualized return of

7.25% and a Sharpe ratio of 0.44. However, the risk control of RL agents is generally

poor, which we will discuss in Chapter Six.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

29

Figure 5.4: Accumulative return of RL-SSE.50 strategy

Table 5.1 below summarizes the investment performance of the optimal

ensembling strategy. From the table, we see that from all performance measures, SAC

achieves the most prominent return, reaching over 100% annualized return, and this

return secures a comparatively high Sharpe ratio of 1.84, regardless of the fact that the

MMD is -44%. Besides, all other agents generally achieve better results than the

baseline if only profitability is considered. Among them, two ensemble agents achieve

the most plausible results, balancing both return and risk.

Table 5.2 Performance summaries of different agents in SEE. 50

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

30

From Eastmoney (http://fund.eastmoney.com/trade/zs.html), we can see that stock-

based funds' top 5% quantile investment performance (annualized return) is only 21.3%.

From Table 5.1, we can see that our ensembling strategy's annualized performance

(return and Sharpe) can rank at least around the three.

The following Table 5.2 documents the ensembling details of the optimal

ensembling model (rechoose models every month). We present the exact model used

by the optimal ensembling agents in this table during specific validation periods. It can

be observed that all models are employed during the backtesting, and with the

advantages of choosing the 'best' among all agents, the ensembling algorithm only has

a -15% MMD, which is comparable to the baseline MMD, while keeping a 10-time

annualized return.

Table 5.3 Some ensembling details of the optimal ensemble model

Figure 5.5 to Figure 5.8 separately demonstrate the accumulative return of our

trader during the whole validation period, 6-month volatility, 6-month-based

annualized Sharpe ratio, top five drawdowns, beta (based on the index), and the

distribution of returns. We can see that, apart from some small drawdowns, the

ensembling agent can obtain continuous profits. Besides, considering risk control, the

ensembling agent has a stable six-month beta and volatility across the backtesting

periods.

start date end date used

model

start date end date used

model

2019-01-01 2019-02-01 SAC 2021-07-04 2021-08-04 A2C

2020-02-02 2021-03-03 TD3 2021-12-04 2022-01-03 PPO

2021-03-03 2021-04-03 TD3 2022-01-03 2022-01-30 DDPG

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

31

Figure 5.4: Accumulative return of the optimal-ensembling RL-SSE.50 strategy

Figure 5.5: Six-month volatility of the optimal-ensembling RL-SSE.50 strategy

Figure 5.6: Beta of the optimal-ensembling RL-SSE.50 strategy

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

32

Figure 5.7: Five largest MMDs of the optimal-ensembling RL-SSE.50 strategy

Figure 5.8: Return quantiles of the optimal-ensembling RL-SSE.50

Generally, we can see that the optimal ensembling strategy in SEE.50 may introduce

a bit more risk while bringing much more return compared with baseline, which

therefore leads to an over 1.8 Sharpe ratio. The performance of weighted ensemble is

also remarkable, and we will detailly analyze it when discussing CSI.300 back testing.

5.4.3 Backtesting Evaluation on CSI.300

This section will demonstrate some of the backtesting results of trading

components in the CSI.300 index. Since its long-term training pattern is quite similar

to SEE.50, we would like to look more detailly into the short-run performance pattern

of our ensembling agents.

We demonstrate the result of backtesting, whose training stage starts on January 1st,

2015, and the first validation period starts on October 1st, 2020. We end the validation

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

33

period until July 31st, 2021, which indicates a 9-month validation. For the validation of

ensembling algorithms, we test the rebalancing window length as 63 days. Besides, in

order to avoid unexpected systematic market risks, our agents will clear all positions

when the market volatility exceeds the 90-percent quantile of the historical turbulence

in training periods.

Table 5.2 summarizes all agents' performance during this period. We can see that

among all agents, TD3 performs the best considering return metrics, while optimal and

weighted ensembling achieve desirable returns and volatility at the same time. To better

compare, we add the return of passively investing CSI.300 as the baseline to better

illustrate each agent's performance. We can see that all agents reach an annualized

return over 23% and a Sharpe ratio over 1.3, while the baseline only holds an annualized

return of 16.29% and a Sharpe ratio of 0.88. This demonstrates the superiority of

utilizing RL in trading frameworks.

Table 5.4 Performance summaries of different agents in CSI. 300

Considering two ensemble agents that achieve plausible results with accumulative

returns of 63.74% and 85.49%, the Sharpe of 1.81 and 2.07, Calmar ratio of 3.,78 and

6.27 and Sortino ratio of 2.23 and 3.79. From Eastmoney, we can see the average

investment performance of stock-based funds seldom achieve more than 30% for a

nine-month return. Thus, we can see that our strategy's annualized performance (return

and Sharpe) can rank at least within the top three for both ensembling methodologies.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

34

Details of ensembling weights in the weighted ensembling strategy are

documented in Table 5.3. From the table, we can see that the weights of different agents

vary based on their performance in the corresponding validation window. We may see

that since TD3 always stands out from all agents, its weights are always the largest.

Table 5.5 Ensembling details of weighted ensemble model

start date end date TD3 SAC A2C PPO DDPG

2020-09-01 2020-01-05 1.04 -1.16 -0.22 1.25 0.093

2020-01-05 2021-04-12 0.81 -0.03 0.15 -0.14 0.21

2021-04-12 2021-07-30 0.49 0.08 0.02 -0.07 0.46

Figures 5.9 to 5.15 separately demonstrate the accumulative return of our

weighted-ensembling trader during the whole validation period, 6-month volatility, 6-

month-based beta, 6-month-based annualized Sharpe ratio, top five drawdowns, beta

(based on the index), and the distribution of returns.

Our strategy may introduce a bit more risk while bringing much more return, which

therefore leads to an over 2 Sharpe ratio. We can see that; our strategy significantly

outperforms the passive baseline. Moreover, what is noticeable is that the beta of this

trading strategy is only 0.25, and the alpha is 1.34. This demonstrates its great

robustness against systematic risks and gains abnormal returns.

Figure 5.9: Accumulative return of weighted-ensembling RL-CSI.300 strategy

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

35

Figure 5.10: Beta of weighted-ensembling RL-CSI.300 strategy

Figure 5.11: Volatility of weighted-ensembling RL-CSI.300 strategy

Figure 5.12: Sharp ratio of weighted-ensembling RL-CSI.300 strategy

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

36

Figure 5.13: Five main drawdowns of weighted-ensembling RL-CSI.300 strategy

Figure 5.14: Summary of returns of weighted-ensembling RL-CSI.300 strategy

Figure 5.15: Return quantiles of weighted-ensembling RL-CSI.300 strategy

5.4.4 Backtesting Evaluation on CSI.500

This section demonstrates some backtesting results of trading components in the

SEE.50 index. The training stage starts on January 1st, 2015, and the first validation

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

37

period starts on January 1st, 2020. We end the validation period by February 28th, 2022.

For the validation of ensembling algorithms, we try different lengths of rebalancing

windows, including 21 days (one trading month), 42 days (two trading months), and 63

days (three trading months). Besides, in order to avoid unexpected systematic market

risks, our agents will clear all positions when the market volatility exceeds the 90-

percent quantile of the historical turbulence in training periods. For convergence

concern, we double the training epoch considering the high dimensionality.

The following Table 5.3 summarizes the investment performance of all single-

algorithm traders, the optimal ensembling strategy and the weighted ensembling

strategy, with a 63-day window length. For better comparison, we add the return of

passively investing CSI.500 as the baseline to better illustrate each agent's performance.

We can see that all agents reach an annualized return of over 20%, which is double

of benchmark return. They also achieve Sharpe ratios over 0.9, while the baseline only

holds an annualized return of 10.95% and a Sharpe ratio of 0.6. Among all single-agent

traders, TD3 performs best in return measures, beating the baseline by five times.

However, a significant problem related to this is the poor risk control, reaching a max

drawdown over 40%, which indicates consecutively losing 40% net value during

specific periods.

 Fortunately, our ensembling methods keep a good balance between returns and

risks. From the table, we can also see that from all performance measures, both

ensemble agents achieve good results with an annualized return of 40.61% and 40.24%,

the Sharpe of 1.73 and 1.77, Calmar ratio of 1.87 and 2.33, and a max drawdown of

only 17.2% and 15.2%. From the famous fund evaluation website Eastmoney

(http://fund.eastmoney.com/data/fundranking), we can see the average investment

performance of stock-based funds seldom exceeds 10%, and we can see that our

strategy's annualized performance (return and Sharpe) can rank at least around the top

five.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

38

Table 5.6 Performance summaries of different agents in CSI. 500

We would now take the example of trading CSI.500 components to analyze the

performance differences between weighted detailly. In all settings, the optimal

ensembling agent outperforms the weighted ensembling one. This conclusion is

relatively straightforward since the weighted ensembling method dilutes the power of

choosing the optimal agent's action. However, this voting scheme also brings benefits

considering risk measurement since it avoids putting all eggs in the same basket, even

though this basket is the so-called best one. This situation is especially true when there

is an unexpected market shock, in which recent performance no longer holds for the

next period. By considering action advice from all agents, weighted ensembling

sacrifices some returns for better stability, which can be observed from the higher

Sharpe, Calmar, and Sortino ratio and lower max drawdown.

5.4.5 Summary of RL agent's performance

From the three sets of experiments conducted above, we now summarize five main

properties of the reinforcement trader: 1) profitability, 2) risks, 3) optimism and

pessimism, 4) long-run and short-run performance 5) data dimensionality.

 For profitability, RL agents reveal strong power in capturing the rising trend of the

financial market and gaining more from proactive actions. From repetitive experiments,

RL agents, on average, earn 68.7% more from the rising market trend. Besides, most

RL agents achieve annualized returns over 50%, and the return rates are even more

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

39

prominent (over 70%) considering the short-run (backtesting for only one year). From

the perspective of the Sharpe ratio, most agents still obtain desirable results (in SEE.

50 backtesting, DDPG with 1,34, and TD3 with 1.43)

 For risks, single-RL agents tend to be more aggressive investors with

comparatively poor risk control, while ensembling methods incorporate a more risk-

aversion attitude. Taking the standard deviation (std), for instance, under CSI.300

setting, the annualized standard deviation of TD3 is nearly 73%, SAC is around 69%,

OPP is over 76%, weighted ensembling is 44.80%, and optimal ensembling is 50.04%.

For comparison, the baseline index volatility is only 19.22% during this period. Besides,

the max drawdown ratio also demonstrates the same results. Moreover, the single-agent

algorithm with high returns tends to possess more risks, while the ensembling scheme

can somehow improve the return-risk tradeoff. All of these demonstrate the risk

reduction potential possessed by ensembling methods.

The belief (optimism and pessimism) of the market also influences investment

performance. The differences between optimistic and pessimistic RL algorithms are

always discussed for computational convergence in the field of computer science and

artificial intelligence. The reinforcement learning community usually endorses

pessimistic algorithms since optimistic ones always cannot find the global optimal

regarding over-optimism. However, in a trading setting, optimism works better in

blooming periods. For example, considering Figure 5.4 (backtesting in SEE.50), the

DDPG outperforms TD3 (DDPG's pessimistic and dual-actor version) by 47% from

100d to 200d when the market experienced prosperity. This phenomenon also widely

exists in other backtesting scenarios.

 To compare the long-run and short-run performance, we truncate the backtesting

(CSI.300) of the optimal ensembling model on January 1st, 2021. We summarize

annualized return, Sharpe ratio, and MDD in Table 5.4. Besides, we append the nine-

month testing results mentioned for comparison. We can see that RL agents perform

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

40

much better in short-period backtesting, with one-year backtesting possessing an

average of 29% more annualized return than two-year testing. The difference between

nine-month testing and the other two is even more drastic, with the nine-month

annualized return having twice of one-year results. Besides, the Sharpe ratio and max

drawdown (risk control) in short-term evaluations.

 This 'short period beats long period' possibly only generally comes from lack of

training. Since we spend most of our training epochs in the first stage, when the

validation window moves forwards, the pattern captured may no longer be useful.

Though our training scheme has already taken this problem into consideration, long-

run success still cannot be guaranteed. This indicates that retraining is still required for

long-run evaluation.

Table 5.7 Comparison between long-run and short-run performance

 Ann. return Sharpe ratio MMD

Nine-month backtesting 127.91% 2.07 -20.39%

One-year backtesting 79.24% 1.81 -23.21%

Two-year backtesting 47.17% 1.53 -25.33%

We would also like to compare the computation and scalability problems, which

may be more related to computational or practical concerns. As the dimensionality of

financial data increases, within the same training epoch, the achieved returns fall, and

risks soar. This generally derives from lacking convergence since the larger model

contains more parameters. Besides, the training time also lasts longer for a larger model,

which is demonstrated in Table 5.5. This reveals the problem of scalability, which we

need to solve in further works.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

41

Table 5.8 Training time comparison for different sizes of input

Index State dimension Experiment time (s)

SEE. 50 459 2.70h

CSI. 300 3011 17.64h

CSI. 500 4672 23.18h

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

42

Chapter Six Conclusions and Discussions

6.1 Summaries and contributions

From the backtesting results, we prove the feasibility of applying state-of-the-art

reinforcement learning algorithms in the A-share market and test their performance on

portfolio construction of different sizes. All algorithms perform much better than the

baseline algorithms after long training epochs. Further, we explore the possibility of

ensembling-RL and Bayesian ensembling-RL, which possess better profitability and

stability. Besides, we analyze in detail the action patterns of optimistic and pessimistic

RL algorithms under different economic scenarios. When the market is booming, we

find that optimistic algorithms (A2C and DDPG) perform better. In gloomy periods,

pessimistic algorithms (SAC and TD3) may work better, which looks like the

investment patterns of human investors.

6.1.1 Feasibility of RL algorithms in A-share market algorithmic

trading

In this paper, we extend the use of reinforcement learning into the field of the A-

share market and demonstrate its great potential in handling high-dimensional financial

inputs. We find that reinforcement learners are remarkably suitable for algorithmic

trading and can well capture the system dynamics and give comparatively 'correct'

decisions compared with the market index (passive investment). By consecutively

interacting with the market and exploring historical paths repeatedly, the agent can

generally understand how to avoid loss and maximize long-run profits. Among them,

taking trading CSI.500 index for two years as an example, the A2C agent achieves

63.39% returns, TD3 agent achieves 99.15%, DDPG achieves 74.06%, and SAC

achieves 49.94%, while the passive baseline only has 23.10%.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

43

However, one main limitation of employing an RL agent is instability and volatility.

From experiments, we find that even after training for longer epochs, desirable returns

are not secured, though with high probability. The instability may derive from the

intrinsic stochasticity learning pattern of RL, since each time, the learning path is totally

different, and this will result in different learning results. Another possible reason for

this is that the market itself might not satisfy the MDP setting, and deploying a

reinforcement learning algorithm may only reach nearly-optimal results rather than

converging to the global optimality. Therefore, each time of backtesting will lead us to

somewhere closer to the best results instead of a fixed one. Besides, this instability may

come from lacking skillful fine-tuning or fewer layers in networks to extract complex

value functions.

Return volatility mainly comes from the risk-return tradeoff (single-task trap) and

pattern detection failure. Since we only feed one single agent with one day return as a

reward and train it with the target to maximize the discounted long-run profits, risk-

aversion may be neglected. Therefore, the agent might only fix our target at the profits

and consider less about potential risks. Another culprit to volatility (especially the

downside one) is pattern detection failure. This indicates that the actual market

fluctuates frequently and can be detrimentally influenced by unpredictable information

outside of the market (e.g., wars and plagues). An RL agent will not be able to capture

these patterns since it can only learn from its experiences. To cope with this problem,

an ensembling approach with rebalancing windows will help since it provides us a tool

to test which agent can deal with the financial market best and collect wisdom from

different knowledge bases.

6.1.2 Two ensembling schemes for RL algorithms in the A-share

market

The ensembling method seeks to incorporate the information and knowledge from

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

44

different constituents and combine them with the aim of obtaining more robust and

excellent performance. It can also overcome the single-task trap encountered when only

having one agent for two reasons:

1) Multi-agents with rebalancing windows provide an extra validation chance.

Taking optimal ensembling strategy as the example, if we need to choose an

agent for the next 63 days' trading, before taking action, we can use the

rebalancing window to evaluate each agent's recent 21 days' performance.

Holding the belief that market patterns will not change so rapidly, a recently

wise strategy has a higher probability of performing well.

2) Ensembling strategy provides more robust investment advice. A simple

illustration of robustness is that if deploying 𝑛 identical agents (with an

approximated value function of 𝑓𝑖(𝑠, 𝑎) + 𝜖) and feed them with independent

paths, the averaged value function will have a standard deviation of
𝜖

√𝑛
. This is

also true for our ensembling scheme. Taking the
𝑆ℎ𝑎𝑟𝑝𝑚

𝑟

∑ 𝑆ℎ𝑎𝑟𝑝𝑒𝑖
𝑟𝑀

𝑖
 can avoid 'putting

all eggs in the same basket,' Therefore, if the so-called best model in optimal

ensembling fails to obtain desirable returns, other agents' advice will make

some compensations.

3) Ensembling provides more chances to win under different market trends. Since

we incorporate optimistic who always overestimate currently obtained value

function and pessimistic agents who always underestimate that, ensembling

introduces more possibilities to explore and exploit well under different

economic settings.

For all these reasons, we suppose that ensembling methods might be a more stable

and robust choice, and the backtesting results also justify our expectations. For instance,

in the backtesting of CSI. 500, we may find that the weighted ensembling outperforms

optimal ensembling in Sharpe (1.77 vs. 1.73) while performing worse in annualized

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

45

return rate a little bit (40.24 vs. 40.61). This indicates lower volatility, therefore

avoiding some controllable risks. However, sometimes choosing to trust only one agent

might not be a good choice since continuous investment success is not always secured.

This can be seen in the backtesting of CSI.300, where weighted ensembling beats the

optimal one in both returns and stability.

6.2 Limitations

Though our ensemble RL agent has achieved quite successful results in backtesting,

there are still some limitations in our work, such as simplified trading settings,

unsatisfying drawdown rate, and long training time. Some future works are needed to

deal with these challenges.

6.2.1 Simplified trading environment

In our work, we may oversimplify the stock trading process in the A-share market.

We assume that all bids are traded under the close price, and there are sufficient shares

for traders to purchase and sell. However, all aforementioned assumptions are not

realistic for real-world trading. In the exact trading scenario, we may need to consider

more about ask-bid prices and the limited volume of available stocks. We adopt this

trading setting since, currently, in China, the market still keeps on the 'T1' trading policy,

which indicates that we may only allow making purchases once a day for the same type

of stock. However, our research ultimately desires to analyze and develop algorithms

for the exact trading procedure.

To make the trading environment closer to the real market, tick-level data needed

to be considered. Considering tick level data, however, may raise two significant

challenges. The first one is that we need to consider the market timing, which means

when to make deals, since, under current regulation, only one trade is allowed every

day. Secondly, the new model will incorporate exponentially larger volumes of

information since, on every trading day, thousands of trading steps should be included.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

46

These two issues make training an ML/RL-based agent significantly more challenging.

The same data challenge also arises when considering the exact available volume of

stocks since this adds another dimension for every stock.

6.2.2 Unsatisfying drawdowns

The maximum drawdown (MDD) measures how much the largest observed value

loss between two near peaks. During our backtesting, though achieving comparatively

high annualized return and Sharpe ratio, the maximum drawdown during all trading

days is comparatively large (around 20% to 30%), which still can be improved

compared with the average MDD of 20.1%.

A possible solution to lowering the drawdown rate is to incorporate an additional

term describing the consecutive drawdown as a reward for the agent. For example, we

can rewrite the reward as 𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = (𝑏𝑡+1 + 𝑝𝑡+1
⊤ ℎ𝑡+1) − (𝑏𝑡 + 𝑝𝑡

⊤ℎ𝑡) − 𝑐𝑡 −

ζ𝐷𝐷(𝑝) , where 𝜁𝐷𝐷(𝑝) provides an additional penalty if there are consecutive 𝑝

days of loss. Besides, a clearing strategy is another approach. This indicates clearing all

positions if the net value of the portfolio has consecutively dropped for specific days.

6.2.3 Long training time and lack of convergence

The average training time of our models is listed in Table 5.5. We may find that the

whole training time cost is comparatively long, especially for CSI. 500. Besides, we

also find that the RL agents' performance is significantly poorer in CSI. 500 and

CSI.300 than CSI. 50. A possible explanation for this phenomenon is non-convergence,

which is quite usual for ML in high-dimensional data.

Compared with the trading environment for CSI. 50, CSI. 500 setting has around

3000 more features, which definitely leads to a higher computation burden. Therefore,

it will be harder for RL agents to explore the hidden transition dynamics since larger

input networks and more weights are needed to approximate the value function.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

47

Because of this immense computation burden, within the same training budget, worse

investment returns are understandable.

A possible solution to this computational issue is dimension reduction. Technically

speaking, we can pre-train an embedding ℰ(𝑠) , projecting raw feature space to an

exacted low-dimension space. This ℰ(𝑠): 𝑆 → 𝑆− can lower the dimension of state

space faced by the agent, and then it is possible for our model to obtain better results.

6.3 Future works

In order to tackle all aforementioned challenges and to build more robust and

computationally efficient algorithms, some further works, such as embedding

framework, multi-task RL, and environment improvements, may be useful.

6.3.1 Embedding framework for dimensional reduction

Since one main challenge we face is dealing with high-dimension portfolios,

employing dimension reduction technics for preprocessing turns out to be a

straightforward approach. After compressing the states, the agent may face easier

learning tasks, which may save online training time and improve learning quality. This

dimensionality reduction approach can be compared to extracting factors from the noisy

market in portfolio management theories.

Autoencoder is a promising approach for pretraining the embedding space. Various

types of autoencoders, including autoencoder [60], variational autoencoder [61], and

Wasserstein autoencoder [62], are widely applied to unlabeled coding data. The

encoding is 'supervised' by a corresponding decoder, whose objective is to regenerate

the uncompressed data. To be specific, the encoder and decoder pair (ℰ(𝑠), 𝒟(𝑠−))

work cooperatively to improve the encoding efficiency by minimizing:

ℰ∗, 𝒟∗ = arg min
ℰ,𝒟

𝑑𝑖𝑠𝑡(ℰ(𝑠), 𝒟൫ℰ(𝑠)൯).

We have tried to train RL agents on the embedding space based on a Wasserstein

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

48

autoencoder. The 'Embedding the RL' framework achieves higher training performance

and lower time consumption (briefly illustrated in Table 6.1). Further extension work

has been submitted to the UTD-24 journal, INFORMS Journal on Computing.

Table 6.1 Training time comparison for embedding and non-embedding

 State

dimension

Experiment

time (s)

Embedded

dimension

Embedded

experiment time

SEE. 50 459 2.70h 200 57min

CSI. 300 3011 17.64h 450 2.67h

CSI. 500 4672 23.18h 700 4.74h

6.3.2 Multi-task agent for robust learning

To cope with volatility and drawdown ratio, we propose to employ multi-task

learning in the RL framework. Multi-task means that our RL agent may face a vector

of rewards containing different objectives, and our algorithms need to balance these

tasks. Some works have already addressed robust RL learning based on a multi-task

strategy [55, 56, 57, 58]. These works achieve more stable results by sacrificing some

profits from a single task. However, paying more attention to the variance and risks in

the market is even more important to many investors, and this provides some place for

further work in a multi-task setting.

Further exploration under our setting could include adding more objectives such as

maximizing monthly return, minimizing weekly drawdown, and controlling daily

variance. Besides, an important type of meta-learning algorithm named distillation

could be implied in a multi-task manner [55]. All these can be considered in future

projects.

6.3.3 Limit Order Books Market Setting

Real market trading rules in the A-share market differ from our experimental

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

49

environment. In a real trading scenario, the Limit Order Books (LOB) setting is closer

to the exact trading environment. In this type of market, traders submit their actions

(buy or sell) with preferred amounts for specific financial instruments. The lowest

selling price is the ask price, and the highest-selling price is the bid price. Whenever

there is an ask price lower than the bid price, a deal is executed based on their average.

This LOB setting provides investors with much more market transactional information

and links closer to the actual trading setting.

Sun et al. [59] have tried to explore a reinforcement trading facing LOB settings;

however, considering trading only one piece of asset, the computation burden is too

large to implement with portfolio management. Nevertheless, we can still briefly model

how to set up the environment. For example, at a given moment 𝑡, we consider trading

𝑛 types of stocks and can observe the top five selling and purchasing orders (ten prices

and ten purchasable quantities in total), then the total environment would be 20𝑛. This

setting may not be difficult to handle without 'T1' regulation, since the state space

remains small. However, for a real-world trading environment in the A-share market,

during each trading day the investor also needs to decide when to make a deal, and

he/she also needs to decide on the offer price and quantity, which adds burdens to the

action space.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

50

REFERENCE

[1] Fama E F, French K R. The capital asset pricing model: Theory and evidence[J].

Journal of economic perspectives, 2004, 18(3): 25-46.

[2] Fama E F, French K R. Common risk factors in the returns on stocks and bonds[M].

University of Chicago Press, 2021.

[3] De Spiegeleer J, Madan D B, Reyners S, et al. Machine learning for quantitative

finance: fast derivative pricing, hedging and fitting[J]. Quantitative Finance, 2018,

18(10): 1635-1643.

[4] Bengio Y, Courville A C, Vincent P. Unsupervised feature learning and deep

learning: A review and new perspectives[J]. CoRR, abs/1206.5538, 2012, 1: 2012.

[5] Sutton R S. Generalization in reinforcement learning: Successful examples using

sparse coarse coding[J]. Advances in neural information processing systems, 1996:

1038-1044.

[6] Zheng G, Zhang F, Zheng Z, et al. DRN: A deep reinforcement learning framework

for news recommendation [C]. //Proceedings of the 2018 World Wide Web

Conference. 2018: 167-176.

[7] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without

human knowledge[J]. Nature, 2017, 550(7676): 354-359.

[8] Kober J, Bagnell J A, Peters J. Reinforcement learning in robotics: A survey[J].

The International Journal of Robotics Research, 2013, 32(11): 1238-1274.

[9] Silver D, Huang A, Maddison C J, et al. Mastering the game of Go with deep neural

networks and tree search[J]. Nature, 2016, 529(7587): 484-489.

[10] Dietterich T G. Ensemble methods in machine learning[C]//International workshop

on multiple classifier systems. Springer, Berlin, Heidelberg, 2000: 1-15.

[11] Oza N C, Russell S J. Online bagging and boosting[C]//International Workshop on

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

51

Artificial Intelligence and Statistics. PMLR, 2001: 229-236.

[12] Margineantu D D, Dietterich T G. Pruning adaptive boosting[C]//ICML. 1997, 97:

211-218.

[13] Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression

tool for compound classification and QSAR modeling[J]. Journal of chemical

information and computer sciences, 2003, 43(6): 1947-1958.

[14] Nevmyvaka Y, Feng Y, Kearns M. Reinforcement learning for optimized trade

execution[C]//Proceedings of the 23rd international conference on Machine

learning. 2006: 673-680.

[15] Sutton R S, Barto A G. Introduction to reinforcement learning[M]. Cambridge:

MIT press, 1998.

[16] Busoniu L, Babuska R, De Schutter B, et al. Reinforcement learning and dynamic

programming using function approximators[M]. CRC press, 2017.

[17] Bouzy B, Chaslot G. Monte-Carlo Go reinforcement learning

experiments[C]//2006 IEEE symposium on computational intelligence and games.

IEEE, 2006: 187-194.

[18] Menache I, Mannor S, Shimkin N. Basis function adaptation in temporal difference

reinforcement learning[J]. Annals of Operations Research, 2005, 134(1): 215-238.

[19] Kakade S M. A natural policy gradient[J]. Advances in neural information

processing systems, 2001, 14.

[20] Konda V R, Tsitsiklis J N. Actor-critic algorithms[C]//Advances in neural

information processing systems. 2000: 1008-1014.

[21] Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for deep reinforcement

learning[C]//International conference on machine learning. PMLR, 2016: 1928-

1937.

[22] https://openai.com/blog/baselines-acktr-a2c/

[23] Gu S, Lillicrap T, Sutskever I, et al. Continuous deep q-learning with model-based

acceleration[C]//International conference on machine learning. PMLR, 2016:

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

52

2829-2838.

[24] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement

learning[J]. arXiv preprint arXiv:1509.02971, 2015.

[25] Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization

algorithms[J]. arXiv preprint arXiv:1707.06347, 2017.

[26] Gomber P, Haferkorn M. High frequency trading[M]//Encyclopedia of Information

Science and Technology, Third Edition. IGI Global, 2015: 1-9.

[27] Moskowitz T J, Ooi Y H, Pedersen L H. Time series momentum[J]. Journal of

financial economics, 2012, 104(2): 228-250.

[28] Jegadeesh N, Titman S. Cross-sectional and time-series determinants of

momentum returns[J]. The Review of Financial Studies, 2002, 15(1): 143-157.

[29] Bollinger J. Bollinger on Bollinger bands[M]. New York: McGraw-Hill, 2002.

[30] Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics

and intelligent laboratory systems, 1987, 2(1-3): 37-52.

[31] Sze V, Chen Y H, Yang T J, et al. Efficient processing of deep neural networks: A

tutorial and survey[J]. Proceedings of the IEEE, 2017, 105(12): 2295-2329.

[32] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J].

Neural processing letters, 1999, 9(3): 293-300.

[33] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the

Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.

[34] Breiman L. Random forests[J]. Machine learning, 2001, 45(1): 5-32.

[35] Tang J, Deng C, Huang G B. Extreme learning machine for multilayer

perceptron[J]. IEEE transactions on neural networks and learning systems, 2015,

27(4): 809-821.

[36] Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization[J].

arXiv preprint arXiv:1409.2329, 2014.

[37] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document

recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

53

[38] Almahdi S, Yang S Y. An adaptive portfolio trading system: A risk-return portfolio

optimization using recurrent reinforcement learning with expected maximum

drawdown[J]. Expert Systems with Applications, 2017, 87: 267-279.

[39] Dempster M A H, Leemans V. An automated FX trading system using adaptive

reinforcement learning[J]. Expert Systems with Applications, 2006, 30(3): 543-552.

[40] Bisi L, Sabbioni L, Vittori E, et al. Risk-averse trust region optimization for

reward-volatility reduction[J]. arXiv preprint arXiv:1912.03193, 2019.

[41] Cumming J, Alrajeh D D, Dickens L. An investigation into the use of reinforcement

learning techniques within the algorithmic trading domain[J]. Imperial College

London: London, UK, 2015.

[42] Deng Y, Bao F, Kong Y, et al. Deep direct reinforcement learning for financial

signal representation and trading[J]. IEEE transactions on neural networks and

learning systems, 2016, 28(3): 653-664.

[43] Moody J E, Saffell M. Reinforcement learning for trading[J]. Advances in Neural

Information Processing Systems, 1999: 917-923.

[44] Moody J, Wu L, Liao Y, et al. Performance functions and reinforcement learning

for trading systems and portfolios[J]. Journal of Forecasting, 1998, 17(5‐6): 441-

470.

[45] Pendharkar P C, Cusatis P. Trading financial indices with reinforcement learning

agents[J]. Expert Systems with Applications, 2018, 103: 1-13.

[46] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep

reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

[47] Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor[C]//International

conference on machine learning. PMLR, 2018: 1861-1870.

[48] Silver D, Lever G, Heess N, et al. Deterministic policy gradient

algorithms[C]//International conference on machine learning. PMLR, 2014: 387-

395.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

54

[49] Hasselt H. Double Q-learning[J]. Advances in neural information processing

systems, 2010, 23.

[50] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-

learning[C]//Proceedings of the AAAI conference on artificial intelligence. 2016,

30(1).

[51] Barto A G , Sutton R S , Anderson C W . Neuronlike adaptive elements that can

solve difficult learning control problems[J]. Systems Man & Cybernetics IEEE

Transactions on, 1983, 13(5):p.834-846.

[52] Sutton R S, McAllester D, Singh S, et al. Policy gradient methods for reinforcement

learning with function approximation[J]. Advances in neural information

processing systems, 1999, 12.

[53] Fujimoto S, Hoof H, Meger D. Addressing function approximation error in actor-

critic methods[C]//International conference on machine learning. PMLR, 2018:

1587-1596.

[54] Schulman J, Levine S, Abbeel P, et al. Trust region policy optimization[C]//

International conference on machine learning. PMLR, 2015: 1889-1897.

[55] Teh Y, Bapst V, Czarnecki W M, et al. Distral: Robust multi-task reinforcement

learning[J]. Advances in neural information processing systems, 2017, 30.

[56] Andreas J, Klein D, Levine S. Modular multi-task reinforcement learning with

policy sketches[C]// International Conference on Machine Learning. PMLR, 2017:

166-175.

[57] Guo Z D, Pires B A, Piot B, et al. Bootstrap latent-predictive representations for

multi-task reinforcement learning[C]// International Conference on Machine

Learning. PMLR, 2020: 3875-3886.

[58] Wilson A, Fern A, Ray S, et al. Multi-task reinforcement learning: a hierarchical

bayesian approach[C]// Proceedings of the 24th international conference on

Machine learning. 2007: 1015-1022.

[59] Sun S, Wang R, He X, et al. DeepScalper: A Risk-Aware Deep Reinforcement

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

55

Learning Framework for Intraday Trading with Micro-level Market Embedding[J].

arXiv preprint arXiv:2201.09058, 2021.

[60] Ng A. Sparse autoencoder[J]. CS294A Lecture notes, 2011, 72(2011): 1-19.

[61] Kingma D P, Welling M. Auto-encoding variational bayes[J]. arXiv preprint

arXiv:1312.6114, 2013.

[62] Tolstikhin I, Bousquet O, Gelly S, et al. Wasserstein auto-encoders[J]. arXiv

preprint arXiv:1711.01558, 2017.

[63] Yang H, Liu X Y, Zhong S, et al. Deep reinforcement learning for automated stock

trading: An ensemble strategy[C]//Proceedings of the First ACM International

Conference on AI in Finance. 2020: 1-8.

 TRADING STRATEGIES BASED ON REINFORCEMENT

LEARNING IN A-SHARE MARKET

56

ACKNOWLEDGMENT

During this graduation project, I received great support and encouragement from many

important people. I would like to express my sincerest to my research thesis and

graduation supervisor. His always help, support, and guidance throughout my

admission and graduation seasons provide me with great encouragement to dive deeper

into the field of operations and reinforcement learning. Starting working under his

guidance last year, I have learned far more beyond reinforcement and machine earning

knowledge and am deeply amazed and influenced by his life philosophy.

I would show my greatest gratitude to my research supervisor from UC, Berkeley IEOR.

I started to work with him more than one year ago, and his careful guidance, warm

support, and always willingness to help greatly influenced me and encouraged me to

pursue further the intersection of operations, quantitative finance, and machine learning,

which will be my further research interest and focus during my upcoming Ph.D. period.

I would also show my earnest thanks to my research advisors from Statistics & Data

Science at Yale University and EECS at the University of Maryland. It is your help and

guidance that instructs me to explore deeper into the field of theoretical reinforcement

learning. Your patience, tolerance, and careful guidance led me to get familiarized with

the domain of RL and provided me with the idea for my graduation thesis.

I would like to sincerely show my gratitude to my parents from the bottom of my heart.

I have always been someone who may cause trouble and worries for you, but you have

always been there for me. Thank you so much for creating such a warm and sweet

environment for me to grow up in and become someone ready to step into society by

himself independently. I love you forever and ever.

Finally, I would like to express my warmest thanks to my girlfriend. Your love,

company, and encouragement give me the courage to overcome all difficulties and

provide me with the harbor of my life's voyage. I cannot help imagining our bright,

sweet and wonderful future.

	Chapter One Introduction
	Chapter Two Related Works
	2.1 Reinforcement Learning
	2.2 Algorithmic Trading
	2.3 Machine-Learning-Assisted Trading

	Chapter Three Modeling of Stock Trading in RL Frameworks
	3.1 Basics of Reinforcement Learning
	3.2 Formulation of Stock Trading

	Chapter Four Deep Reinforcement Learning Algorithms in Trading
	4.1 General Description of Model-Free RL, Q-learning, and Policy Gradient
	4.2 Deep Q-Network (DQN)
	4.3 Double Deep Q-Network (DDQN)
	4.4 Advantage Actor-Critic (A2C)
	4.5 Soft Actor-Critic (SAC)
	4.6 Deep Deterministic Policy Gradient (DDPG)
	4.8 Proximal Policy Optimization (PPO)

	Chapter Five Empirical Estimation in the A-share Market
	5.1 General Introduction of Trading SSE.50, CSI. 300 and CSI.500
	5.2 Basic MDP Settings for Trading
	5.2.1 Trading Environment
	5.2.2 Training and Validation Approach
	5.2.3 Optimal Ensembling and Model Combination

	5.3 Details of Backtesting
	5.4 Performance Evaluation
	5.4.1 Performance measurement
	5.4.2 Backtesting Evaluation on SEE.50 components
	5.4.3 Backtesting Evaluation on CSI.300
	5.4.4 Backtesting Evaluation on CSI.500
	5.4.5 Summary of RL agent's performance

	Chapter Six Conclusions and Discussions
	6.1 Summaries and contributions
	6.1.1 Feasibility of RL algorithms in A-share market algorithmic trading
	6.1.2 Two ensembling schemes for RL algorithms in the A-share market

	6.2 Limitations
	6.2.1 Simplified trading environment
	6.2.2 Unsatisfying drawdowns
	6.2.3 Long training time and lack of convergence

	6.3 Future works
	6.3.1 Embedding framework for dimensional reduction
	6.3.2 Multi-task agent for robust learning
	6.3.3 Limit Order Books Market Setting

	REFERENCE
	ACKNOWLEDGMENT

