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多目标深度强化学习算法及其在任务型对话系统中的应用

摘 要

本⽂对多⽬标的强化学习问题背景、算法设计、实际应⽤进⾏了系统性地探究。在多⽬标强化

学习问题中，智能体所接受的奖励信号是⼀些编码了许多可能冲突的⽬标的向量信号，⽽⽬标之间

的相对重要在算法学习阶段是未知的。这种多⽬标的设定具有⾮常好的研究价值与应⽤前景。传统

的强化学习限定奖励函数为⼀个需要精巧设计的标量函数，这限制了强化学习算法在优化⽬标较为

复杂的实际问题中的适⽤性和有效性。⽽向量化奖励的设定提供了⼀种直接简洁的强化学习奖励函

数设计⽅式，来建模复杂的优化⽬标。在这⼀设定中，智能体需要在学习阶段找到所有帕累托最优

的累积回馈和对应的最优策略，并且在执⾏阶段能根据实时的赋予的偏好来调整策略。为实现这⼀

⽬标，我们利⽤推⼴后的贝尔曼⽅程以及深度神经⽹络的表达能⼒，创新地提出了两种多⽬标强化

学习算法，来⾼效地学习可控参数化的最优策略的表⽰。针对多⽬标强化学习算法在学习阶段和执

⾏阶段的表现，我们提出了算法“覆盖率”和“迁移质量”两个量化指标，并在合成任务以及任务型对话

系统对话系统中进⾏了测评。实验结果验证了我们算法的有效性和可应⽤性。

关键词：强化学习 多⽬标优化 神经⽹络 收缩映射定理 任务型对话系统
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DEEP MULTI-OBJECTIVE REINFORCEMENT LEARNING AND
ITS APPLICATION IN TASK-ORIENTED DIALOGUE SYSTEMS

ABSTRACT

In the thesis, we study a new type of reinforcement learning (RL) problem where an agent receives vectorial
rewards that encode many possible competing objectives with unknown relative importance during learning.
This setting is worth exploring since the complicate scalarized reward engineering of conventional reinforce-
ment learning is often infeasible in practice. The goals of a multi-objective reinforcement learning agent are
two-fold: first, in the learning phase, to find all the potential optimal rewards in the convex coverage set of
environment’s Pareto frontier; second, in the execution phase, to adapt its policy optimally corresponding to
any real-time specified preferences. We propose two novel algorithms which exploit generalized Bellman
equations and the expressiveness on neural networks for sample-efficiently learning single controllable para-
metric representation of all optimal policies. Quantitative evaluation on synthetic tasks and a task-oriented
dialogue system with proposed two metrics, coverage ratio and adaptation quality, verifies the validity and
applicability of our algorithms.

KEY WORDS: Reinforcement Learning, Multi-Objective Optimization, Neural Networks,
Banach Fixed-Point Theorem, Task-Oriented Dialogue Systems
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Chapter 1 Introduction

Although we have been impressed by those popular scientific fictions telling that the rise of artificial intelli-
gence will bring an end to our human civilization, in reality, we still envision a bright future where humans
and intelligent systems exist and depend on each other in perfect harmony. Intrigued by the various challenges
on the path towards this better version future, researchers have developed many theories and techniques for
intelligence systems of service to humanity. One central concept that these theories and techniques emerge
around is the idea of the autonomous agent. An agent, whose definition in the textbook is “anything that can be
viewed as perceiving its environment through sensors and acting upon that environment through effectors"[1],
plays a crucial role in artificial intelligence research in the past decades. Autonomous agents can help us
in many meaningful ways. For example, agents can control manufacturing machines, in order to produce
products for a company; drive cars without of intervention from human drivers, trade goods or services on
markets and assist in scientific discovery. Hence, autonomous agents have enormous potential impacts on
improving the quality of our social and personal life.

So far, we are still on this promising path of designing better autonomous agents, typically computer
software as well as their supportive hardware, that interact with the environment with little or without human
control or intervention. Recent progress in deep reinforcement learning has witnessed the incomparable
success of many exciting and challenging areas. With this technology, we have built many autonomous
agents, to master the game of GO without human knowledge[2], to beat the human in many video games[3], to
automate synthesis planning in chemistry[4], and assist neuroscientist to study the function of grid cells[5]. We
can even use this technology to build conversational systems[6] to directly talk with us to satisfy our emotional
or informational demands. The future described in those scientific fictions is seemingly coming true step by
step. Should we worry about its terrible side, the horrible “out of control"?

One case that we should be on alert for is when an autonomous agent needs to make a decision under
multiple competing objectives. Consider a man crossing the road in front of an autonomous car with a
passenger at high speed. The car has to make a decision between avoiding hitting the man by risking its
passenger’s life or kill that man to ensure its passenger’s safety. These two objectives are conflicting. No
matter which decision the car makes eventually, this will become a terrifying story — the autonomous agent
decides to take human’s life. We have no chance to prevent this kind of tragedy, particularly if the autonomous
car is empowered by the current reinforcement learning technology. A reinforcement learning agent always
aims at maximizing a specific scalar reward signal, which ignores such extreme case, and is designed as some
fixed combination of multiple objectives.

The harmonious future for humans and intelligence systems relies on how we take care of the multi-
objective issue. First, the relative importance weight of each objective is unknown when we design and
train an autonomous agent. Second, if the designer fixes the weights according to its prior knowledge or
experience, that weight assignment for objectives may lead to unexpected results in practice. An acceptable
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solution is that we should let users, not the agent designer, to express their preferences for different objectives
to control the agent’s behavior. Moreover, the agents are therefore required to perform optimally under any
preference given by users when execution.

In this thesis, we scholarly discuss the possibilities to realize this idealized solution, based on the
recent development of deep reinforcement learning. We formalize a simplified scenario of multi-objective
reinforcement learning, where the agent needs to adapt its policy to the user’s preferences. Theoretical
analysis and experimental evaluation are performed on two proposed algorithms aiming at solving that
particular scenario. We also apply our algorithms in task-oriented dialogue systems to verify the validity and
applicability of our approaches.

1.1 Motivating Scenarios

Just think about how we learn to do everything, e.g., swimming. Our coaches never tell the only objective of
swimming is the speed, or the fancy style. Swimming is a task involves many objectives — speed, stability,
endurance, energy efficiency, the beauty of style, etc. And our coaches never teach us which one among all
of these objects is most important, let along the relative importance weights for them. But we swim well.

We learn how to swim not by maximizing a certain criterion. Conversely, we learn it by exploring the
possibilities for all objectives. If we try to swim fast, we will soon be tired and therefore the endurance and
stability objectives will be impaired. If we try to swim for a long time, we need to keep better energy efficiency
and move at a relatively low speed. In fact, we learn swimming by learning how to make compromises among
many objectives. We can adapt to different environment, because we know how to make these compromises
to gain better utilities under some preferences. Like when our coaches are watching us swimming, we will
pay more attention to the beauty of style, and try to be the fastest one in the class, even though we are almost
exhausted.

Reflections on how we learn to give us inspiration. Learning for a task involving multiple objectives
is not a simple optimization problem. The reward is vectorized, and it requires a period during which the
learner can freely explore, and after that it can adapt to the environment with different preferences. This
implication is important to build a controllable or adaptive intelligent agent in the multi-objective settings.
The agent needs to explore and learn all potentially optimal solutions with unknown preferences, then reacts
corresponding to certain user preferences. In this type of scenario, the agent can truly master the task.

There are several real-world application scenarios support this explore-and-execute setting for multi-
objective learning. Think about a mining company mines gold and silver from several mines located in the
mountains. This company has only a few vans for transporting miners, and must decide to which mine each
van should go every morning. Miners are more efficient if there are more colleagues at the same mine. Since
the company aims to maximize revenue, the best strategy depends on the fluctuating prices of gold and silver.
To maximize revenue, The mining company wants to use an autonomous agent, which learns from simulation
with every price change, to respond with optimal real-time strategies without recomputing.

As the second example, a task-oriented dialogue system is developed without specified preferences on
dialogue success rate and dialogue brevity. Therefore, the system needs to explore all possible optimal
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conversational strategies under different preferences. The preference will be given by users and specific
application scenes after that. Like when a user is trying to ask information about the weather, then the user
probably hope the dialogue system can offer her thorough information. And in this case, the success objective
is more important than the brevity objective. However, when a user is driving and what to ask for direction
information, then the brevity of the dialogue would be critical since the drive does not want to interact too
many rounds. In the thesis, we summarize these explore-and-execute settings as delayed linear preference
scenarios, and study how to build efficient learning algorithms for these scenarios.

1.2 Research Questions

In the thesis, our goal is to answer the following question:
“Can we design efficient and practical multi-objective reinforcement learning algorithms in the delayed

linear preference scenario, for acquiring all potentially optimal policies in the learning phase, and adapting
optimally to any real-time specified preference in the execution phase?"

To answer this question, we need to formalize the delayed linear preference scenario and build a
theoretical framework to analyze and design new types of reinforcement learning algorithms in the multi-
objective settings. Besides, how to evaluate the performance of proposed algorithms also involves many
critical research problems. What evaluation environment we should use to test our algorithms? What is the
evaluation metric? Finally, the applicability of our proposed algorithms needs to be verified in a task-oriented
dialogue policy learning task.

1.3 Contribution and Outlines

In this section, we online the organization of this thesis and contributions we present. Our contributions can be
divided into three categories: theory contributions, evaluation contributions, and application contributions.

In Chapter 1 (this introduction), we have introduced and motivated multi-objective reinforcement learning
problems with kind of philosophical thinking and motivated the explore-and-execute setting for a realistic
learning process. Furthermore, we have summarized our research questions.

Chapter 2 provides the background on multi-objective reinforcement learning and the definition of
delayed linear preference scenario, which characterizes most realistic situations for multi-objective rein-
forcement learning. In this scenario, we only consider linear preferences parameterized by the relative
importance weights of objectives. The delayed linear preferences scenario begins with a learning phase,
where the agent is free to access the historical trajectory records or interacts with the simulated environment
to learn about the rewards, while the preference is unknown. The aim of the agent in this phase is to find
all linear optimal policies. Then in an analysis phase, the user can analyze the trade-off between multiple
objectives of the task for determining a suitable preference using the information learned by the agent. The
last phase of the delayed linear preference scenario is the execution phase. In this phase, a specific linear
preference function will be given to the agent, while learning is no longer allowed. The agent needs to respond
with an optimal policy achieving the best utility to the given preference. We also introduce related work and
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state our research focus in this chapter.
Chapter 3 presents theoretical results we have. We propose a theoretical framework for developing

and analysis value-based reinforcement learning algorithms. This framework is inspired by the Banach’s
fixed point theorem. Five essential components are involved in this framework for designing value-base
reinforcement learning algorithms. Many existing value-based reinforcement learning algorithms can be
explained under this theoretical framework. We use the framework to help us develop two value-based
algorithms, naive deep MORL algorithm and envelope deep MORL algorithm, for solving the delayed linear
preference scenario. Our proposed two algorithms are novel in the field of multi-objective reinforcement
learning.

Chapter 4 evaluates the performance of deep multi-objective reinforcement learning in the delayed
linear preferences scenario, by proposing two quantitative evaluation metrics and creating several synthetic
environments. The coverage ratio (CR) is proposed to measure a MORL agent’s ability to find all the
potentially optimal solutions in the convex coverage set in the learning phase, and the adaptation quality (AQ)
is proposed measure agent’s ability to adapt its policy to real-time specified preferences in the execution phase
These two metrics are technically sound and would be useful to future MORL algorithms research, especially
for the ones focusing on delayed linear preference scenarios. Three synthetic multi-objective reinforcement
learning environments are created to test our deep MORL algorithms. We compared proposed two deep
MORL algorithm in two synthetic environments.

Chapter 5 demonstrates an application of our deep MORL algorithms in the task-oriented spoken dialogue
system. Adaption to user preferences and balancing multiple objectives is rarely considered for task-oriented
dialogue policy learning. We consider the dialogue learning process as a delayed linear preference scenario
of multi-objective reinforcement learning. The rewards in this setting are vectors describing dialogue length
penalty for the brevity objective and task success reward for the success objective. Our proposed deep MORL
algorithm can learn almost all optimal policies during a learning phase, and adapt to user preference without
further learning when the system is deployed online. Our experiments confirm the applicability and show
potential advantages of our proposed deep MORL algorithms in dialogue policy learning. The task-oriented
dialogue system using our deep MORL algorithm will be more favored by users in real application scenarios.

Chapter 6 enumerates the main conclusions and contributions of this thesis, discusses the implications for
further work in multi-objective reinforcement learning and dialogue policy learning, and identifies potential
directions for future work.
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Chapter 2 Background

This chapter provides background on multi-objective reinforcement learning problems. First, in Section 2.1,
we introduce the mathematical descriptions of traditional reinforcement learning setting, Markov decision
processes (MDPs), as well as how classical planning and learning algorithms work in this single objective
setting, and how they can be extended to more general large state space cases with the help of deep neural
networks. We then, along parallel lines, formulate the multi-objective reinforcement learning problem as
a Multi-Objective Markov Decision Processes (MOMDPs) in Section 2.2. Distinct from the traditional
reinforcement learning problems, which can be treated as optimization problems, the optimality concepts in
the multi-objective reinforcement learning can be defined in various ways and selected by different types of
preference functions. Our thesis only pays attention to the cases where the preference functions are linear,
and unknown during learning processes. This special case is named delayed linear preference scenario and
defined triphasically in this section. We then discuss differences between our works and other related works
focusing on improving reward function design of reinforcement learning in Section 2.3. Finally, in Section
2.4, we highlight the focuses of our multi-objective reinforcement learning research.

2.1 Reinforcement Learning

Reinforcement Learning[7], generally speaking, is a process of learning how to make sequential decisions
— how an intelligent agent responds to situations with actions, to maximize cumulative numerical reward
signals. The learner carrying this kind of learning process must discover which actions may yield the greatest
cumulative reward in the future by trial-and-error search. Besides, the reward singles are often delayed in
the most cases of interest, which means a greedy policy always maximizing the immediate reward would be
suboptimal. To address the problem of reinforcement learning, scholars often formalize it using ideas from
the theory of dynamical systems, as the optimal control of Markov decision processes (MDPs). Details of
this standard mathematical formalization would be introduced in Section 2.1.1. The goal of traditional single
objective reinforcement learning is to find the optimal policy. Therefore, evaluation and control are two
elements invented mathematically to achieve this goal. We introduce this classical value-based reinforcement
learning approach in Section 2.1.2. Other policy-based approaches are also briefly mentioned in this section
to provide readers with a comprehensive overview.

Recent advances in reinforcement learning have brought the incomparable success to many interesting
and challenging areas, such as mastering the game of GO without human knowledge[2], beating human in
many video games[3], automating synthesis planning in chemistry[4], and assisting neuroscientist to study
the function of grid cells[5]. All of these great successful applications of reinforcement learning are due
to the reinvention of artificial neural networks, which is much deeper and more affordable than that of two
decades ago. This essential driving power is so-called deep learning[8]. Deep learning enables the machine
to learn to approximate functions, especially, when meeting with reinforcement learning, to approximate the
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value functions or parametric policies (as introduced in Section 2.1.2). We show readers how these basic
deep reinforcement learning algorithms work in Section 2.1.3. All the content mentioned in Section 2.1 is
fundamental to begin our voyage on deep multi-objective reinforcement learning.

2.1.1 Markov Decision Processes (MDPs)

In a reinforcement learning problem, we consider an agent interacting with the environment in a Markovian
setting: at each step, the agent determines which action to take based on its current observation about the
environment and itself, to which the environment reacts with a reward signal and transits to the next status.
Just think about a robot trying to move from the desk to the door in a room. Valid actions it may take at each
step are movements in four directions. It has to decide which direction it should go every step, base on the
observation of its current location in the room. The assumption behind this setting is that the environment is
observable, and all the necessary information for decision making is encoded in this observation of status, or
usually, we call this observation a “state". In the robot example, the states are possible locations of an agent in
that room. The reward signal in the conventional reinforcement learning settings should be a scalar. Like for
the robot routing in the room, the reward signal could be defined as the opposite number of distance between
its current location and the door. The closer to the door the robot is, the stronger the reward signal will be.

More specifically, a Markov decision process (MDP) models interactions between an agent and an
environment with single objective, which can be defined by a tupleM = ⟨S,A,P, r, γ⟩. In the tuple,

• S is a state space. s ∈ S is a state. S can be a discrete set or a continuous space depending on the
task. For some tasks, we may specify a state s0 ∈ S as the fixed initial state, which the interaction
always starts with.

• A is an action space. A also can be discrete or continuous depending on the task.
• P is a stochastic transition kernel. P (s′ |s, a) depicts the transition probability from the state s ∈ S

to the next state s′ ∈ S when the action a ∈ A is taken.
• r : S × A → R is the reward function. r (s, a) describes the immediate reward the will receive when

taking an action a ∈ A on a state s ∈ S. r can be a stochastic function. However, in the most cases,
we prefer a deterministic form of r , and returns of this kind of reward function can be interpreted as
expected immediate rewards.

• γ ∈ [0, 1) is a discount factor, which quantifies the relative importance between short-term and
long-term rewards. We will explain this part later.

The discounted total reward or discounted cumulative reward is often calculated by

r̂τ :=
∞∑
t=0

γtr (st, at ), (2–1)

when the agent execute a trajectory τ = {(st, at )}∞t=0. Here we assume the interaction has infinite rounds.
Therefore, this model is also called infinite-horizon Markov decision process. The finite cases can be regarded
as special cases of this model. Discount factor γ plays a role in the equation 2–1. When t goes larger, γt

becomes smaller and smaller, which impair the relative importance of the reward from the far future. From
another perspective, adding a discount factor γ ∈ [0, 1) guarantees the convergence of equation 2–1.
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The goal of the reinforcement learning agent is to find a mapping between states and actions which can
produce trajectories maximizing this discounted total reward. This mapping is usually named as a policy. We
will discuss it in the next section.

2.1.2 Policy: Evaluation and Control

An agent performs its actions under a certain strategy. This strategy instructs it to select actions based
on current state, to maximize the expected total reward according to the description of Markov decision
process mentioned above. This strategy can vary over time or be steady. Commonly, we desire to obtain a
time-independent strategy, or say, a stationary policy.

Stationary policies Π contains all the functions that map each state s ∈ S to a probability distribution
over action space A. For any π ∈ Π, π(a |s), or π(s, a), indicates the probability that an agent will take the
action a ∈ A in the state s ∈ S. We define the value function of a stationary policy π (only shortly say policy
in the rest of thesis) given the underlying MDPM,

V π (s) := Eτ∼(P,π) |s0=s [r̂τ] = Eτ∼(P,π) |s0=s


∞∑
t=0

γtr (st, at )
 . (2–2)

The value function denotes the expected discounted total reward gained by performing a policy π. This concept
is commonly used for evaluating and analyzing a policy, or searching for optimal policy. In reinforcement
learning, the stochastic transition kernel P is often unknown (some people call this model-free reinforcement
learning), the latter goal could be formulate as the task for solving arg maxπ∈Π Ṽ π (s0), where Ṽ π (s0) is an
estimation of the real value function and s0 is some fixed initial state. We also define V ∗(s) := maxπ∈Π V π (s)

and π∗ as the corresponding optimal policy.
How do we find the optimal policy? This question actually can be decomposed into two basic questions:

first, how do we evaluate a policy, estimate its value function? Second, how do we control and improve the
current policy, if the value function estimation is acquirable. Almost all the existing model-free reinforcement
learning approaches are solving the problem by answering these two questions. According to their differ-
ences on this two dimensions, our approaches can generally be divided into two categories[9], policy-based
approaches and value-based approaches.

The policy-based approaches, such as REINFORCE[10], is that they directly compute Ṽ π (s0) = 1
N

∑N
i=1 r̂τi

or other equivalent estimators by sampling for evaluating a policy π, and directly optimize the quantity of
interest via ascending along the policy gradients

η ∝ ∇θEπθ

[
Ṽ πθ (s0)

]
= Eπθ

[
∇θ log πθ · Ṽ πθ (s0)

]
, (2–3)

where η is the step size for updating policy parameters by θ ← θ + η. These approaches are straightforward
to the optimization task, that is a primary advantage. However, their main drawback is sample inefficiency.
Because they estimate the policy gradient from rollouts for evaluation, the variance is usually extremely large.
A popular solution to this problem is to use other value-based evaluation to replace rollout estimates, in turn
at the cost of bias. This solution is called actor-critic methods[11, 12] We will introduce value-based evaluation
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later. Another drawback is the inherent sample inefficiency of on-policy learning, the policy evaluation used
for optimization is strictly for and can only obtain with the current policy, otherwise significant biases will
be incurred[13].

By contrast, value-based approaches indirectly evaluating and optimizing the policy, like Q-learning[14],
can overcome this on-policy limitation. These methods support the off-policy settings to learn from any
trajectory sampled from the same environment. The fundamental idea to the value-based approaches is the
use of Bellman’s equation[15], which describes the relationship between a value function, and a so-called
Q-value function. Similar to the definition of the value function, a Q-value function of a policy π is

Qπ (s, a) := Eτ∼(P,π) |s0=s,a0=a [r̂τ] = Eτ∼(P,π) |s0=s,a0=a


∞∑
t=0

γtr (st, at )
 , (2–4)

which describes the expected discounted total reward from taking action a ∈ A in state s ∈ S, then acting
according to policy π. As we expand their definitions, the value and Q-value have following alternatively
recursive relations

(i.) Qπ (s, a) = r (s, a) + γEs′∼P ( · |s,a)V π (s′), (ii.) V π (s′) = Ea′∼π ( · |s′)Qπ (s′, a′). (2–5)

Combining equation 2–5 (i) and (ii), we derive the Bellman expectation equation

Qπ (s, a) = r (s, a) + γEP,πQπ (s′, a′). (2–6)

This recursive equation of Q-value function provide us with an efficient way to evaluate a policy using out
latest guess about its Q-value Qπ

k
(s, a), that is

Qπ
k+1(s, a) ← r (s, a) +

∑
s′∈S,a′∈A

P (s′ |s, a)π(a′ |s′)Qπ
k (s′, a′). (2–7)

As we repeat the equation 2–7, the estimate of Q-value function will be monotonically preciser, which has a
theoretical guarantee that we will explain in Section 3.1.

Moreover, let Q∗(s, a) denote the optimal Q-value function, similar recursive equations describing the
relationship between the optimal value function and the optimal Q-value function,

(i.) Q∗(s, a) = r (s, a) + γEs′∼P ( · |s,a)V ∗(s′), (ii.) V π (s′) = max
a′∈A

Q∗(s′, a′). (2–8)

Equations (i) and (ii) in 2–8 inspires us to conclude the Bellman optimality equation,

Q∗(s, a) = r (s, a) + γEP max
a′∈A

Q∗(s′, a′). (2–9)

The classical Q-learning utilizes this equation to perform

Qk+1(s, a) ← Qk (s, a) + α
(
r (s, a) + γmax

a′∈A
Qk (s′, a′) −Qk (s, a)

)
, (2–10)

when {s, a, s′} is a step in a given trajectory, to converge to the optimal Q-value Q∗(s, a), where α is a step size
parameter, and the term r (s, a) + γmaxa′∈A Qk (s′, a′) − Qk (s, a) is called time-difference error (TD-error).
The corresponding deterministic optimal policy can be extracted by π(s) = arg maxainA Q∗(s, a).
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The key drawback of value-based methods is that we have to maintain the value function or the Q-value
function. When the state and action spaces are small and discrete, we can use a tabular method to maintain the
Q-value function. However, when the state space is large or continuous, we need to seek help from function
approximation. That is why deep neural networks can bring so much vigor to reinforcement learning. And
we will see how deep learning and reinforcement learning interact in the next section.

2.1.3 Deep Neural Networks as Function Approximators

In the real world, intelligent agents are confronted with tasks associated with high-dimensional sensory inputs.
To tackle these real tasks, traditional value-based reinforcement learning is limited by its ability to derive an
efficient representation of the environment state, store the information of value function, and then generalize
past experience to new situations. Fortunately, the recent emergence of deep neural networks provides us
with great tools to represent the high-dimensional state, approximate the value function, and generalize on
new unseen states. By feeding sufficient data into deep learning models, they can learn better representations
than using handcraft features[16]. This motivates the new approach of deep reinforcement learning[17].

In this approach, a neural network function approximator with parameters θ is used to estimate the
Q-value function, as defined in Section 2.1.2. We refer this neural network as a Q-network. A Q-network can
be trained by minimizing a series of loss functions

Lk (θ) = Es,a
[
(yk −Q(s, a; θ))2

]
, (2–11)

which changes at each iteration k, where yk = Es′
[
r (s, a) + γmaxa′ Q(s′, a′; θk )

]
is the target of iteration k.

The target is fixed during optimizing the loss function. And the parameters of the Q-network are updated by
θk+1 ← θk − η, where

η ∝ ∇θ=θk Lk (θ) = −Es,a,s′
[(

r + γmax
a′∈A

Q(s′, a′; θk ) −Q(s, a; θk )
)
∇θ=θk Q(s, a; θ)

]
. (2–12)

This algorithm is model-free and off-policy. In practice, the exploration is made via ϵ-greedy strategy which
follows the greedy strategy at+1 = maxa∈A Q(st, at ; θk ) with probability 1−ϵ and selects action randomly with
probability ϵ . A technique known as experience replay is also used in the deep reinforcement learning. The
agent’s trajectories associated with immediate rewards are stored in a replay buffer D = {(sit, a

i
t, r

i
t, s

i
t+1)}t,i.

When applying minibatch Q-network updates, we sample experiences from D to estimate equation 2–12.
This approach brings several advantages to traditional reinforcement learning. First, due to the experience

reply, each step of experience can be used in many times of Q-network updates, which improves sample
efficiency. Second, the state space of reinforcement learning now can be easily extended to any high-
dimensional space, such as visual input. The flexibility of the architecture design in deep learning easily
extends to the design of Q-network. Therefore, deep reinforcement learning would be a popular method for
solving sequential decision-making problem in a wide range of scientific and industrial fields.

Although we have witnessed the great success of deep reinforcement learning, the mainstream reinforce-
ment learning approaches are restricted in scalarized reward settings, where the reward function has to return a
scalar. This restriction indicates that we have to undertake the heavy reward engineering to combine different
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attributes otherwise the reinforcement learning may fail[18]. A better solution to encode multiple potentially
competing objectives into the reward function design is needed. Nevertheless, in some applications, the
relative importance weights of different attributes may change over time. If a reinforcement learning agent is
trained using one reward with specific relative weights, its policy is not easily adaptive. Therefore, in the next
section, we discuss an extension of conventional reinforcement learning, which allows the reward singles to
be vectors encoding multiple attributes directly.

2.2 Problem Formulation

In this section, we give the mathematical formulation of the multi-objective reinforcement learning (MORL),
where the agent interacts with environment receiving vectorial rewards. In contrast with conventional re-
inforcement learning settings, this reward design would enable the encoding of the reward for multiple
potentially conflict objectives without specifying their relative importance in advance. Similar to the con-
ventional reinforcement learning, the whole process of interaction can be modeled as an extended Markov
decision process, known as multi-objective Markov decision process (MOMDP). We will introduce the details
of this mathematical model in Section 2.2.1 parallel to the previous introduction of MDP. Since we are using
vectorial rewards in this problem setting, our goal is no longer a straightforward optimization problem. There
might be many optimal policies in the multi-objective reinforcement learning. To select the desired policy, we
have to specify a certain preference. Optimality concepts and preferences functions are described in Section
2.2.2. Finally, multi-objective reinforcement learning may have different application scenarios, according to
the whether the preferences will be given or not. Here we focus on one kind of common scenario — delayed
linear preference scenario, defined in Section 2.2.3, where preferences are unknown during the learning
phase and will be revealed during the execution phase.

2.2.1 Multi-Objective Markov Decision Processes (MOMDPs)

Let us consider that robot example again. Now the task for it is not to move from the desk to the door, but
to move to some location on the line segment between the desk and the door in a room. However, when
learning by itself, the robot does not know the destination, unless its owner gives him an instruction, “Go
to the one-third of that line, closer to the door!". Of course, the owner will not be crazily patient to instruct
robot for training to move to every where on the line segment. The robot should learn all possible solutions
by itself. And when its owner is back to give an order, it should be able to perform perfectly.

As your notice, the state space is not changed at this time. It is still a set containing possible locations in
that room. And the action space and the transition kernel is also not changed. The actions are movements in
four directions, and the transition kernel is common Euclidean rules plus some noise. The only thing changed
is the reward function — it is no longer a single scalar describing how far it is to the door. The reward function
here should at least encode two objectives: the distance to the door, and the distance to the desk. These
two objectives are conflicting, since the physical constraint does not allow a robot to be both close to the
door and the desk at the same time. While learning, the relative importance weights for these two objectives
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are unknown, unless an owner specifies them when execution. This setting, similar to the previous MDP
formulation, can be formalized as a multi-objective Markov decision process[19] (MOMDP), which describes
interactions between an agent and an environment with multiple objectives. We provide formal definitions.

Definition 2.1 (MOMDPs). The multi-objective Markov decision process is defined by a five-element tuple
M = ⟨S,A,P, r, γ⟩. In the tuple,

• S is a state space. s ∈ S is a state. S can be a discrete set or a continuous space depending on the
task. For some tasks, we may specify a state s0 ∈ S as the fixed initial state, which the interaction
always starts with.

• A is an action space. A also can be discrete or continuous depending on the task.
• P is a stochastic transition kernel. P (s′ |s, a) depicts the transition probability from the state s ∈ S

to the next state s′ ∈ S when the action a ∈ A is taken.
• r : S × A → Rm is the reward function, where m is the number of potentially competing objectives

encoded in the reward. r (s, a) describes the immediate reward the will receive when taking an action
a ∈ A on a state s ∈ S. r can be a stochastic function. However, in the most cases, we prefer a
deterministic form of r , and returns of this kind of reward function can be interpreted as expected
immediate rewards.

• γ ∈ [0, 1) is a discount factor, which quantifies the relative importance of short-term and long-term
rewards, as we will explain in above article.

Definition 2.2 (Discounted Total Rewards). The discounted total reward or discounted cumulative reward
of an agent acting following a MOMDP is the following summation

r̂τ :=
∞∑
t=0

γtr(st, at ),

when the agent execute a trajectory τ = {(st, at )}∞t=0, where γ ∈ [0, 1) is the discount factor.

As in conventional Markov decision process, in multi-objective Markov decision process, we also aim at
finding the good time-independent policy. A policy and its corresponding value-function in the multi-objective
Markov decision process are defined as follows.

Definition 2.3 (Stationary Policies). The set of stationary policies Π of a given multi-objective Markov
decision processM is all the functions that map from state space to a probability distribution over actions
space π : S → ∆(A). For any π ∈ Π, π(a |s), or π(s, a), indicates the probability that an agent following
policy π will take the action a ∈ A in the state s ∈ S. The the policy is deterministic, we will simply use the
notation π(s) = a to describe that the agent will take the action a in the state s with probability one.

Definition 2.4 (Value Functions). Give policy π and the underlying MOMDPM, the value function of π is
defined by

V π (s) := Eτ∼(P,π) [r̂τ] = Eτ∼(P,π)


∞∑
t=0

γtr(st, at )
 ,

which indicates the expected discounted total reward when performing the policy π with the initial state s.
Notice that the value function returns a vector. We use V π

i (s) to denote the total reward of the i-th objective.
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In the goal of reinforcement learning is always finding the optimal policy. In the single-objective
settings, this goal can be expressed as arg maxπ V π (s0), a straightforward optimization problem. However, in
the multi-objective settings, the definition of policy optimality is not clear. The vectorized value functions do
not keep a linear order to support maximization. We will discuss the optimality concepts of multi-objective
reinforcement learning policy in the next section.

2.2.2 Optimality Concepts and Preferences Functions

In multi-objective reinforcement learning settings, it is hard to assert one vectorial return is superior to all
the others. In fact, in MOMDPs, a single policy dominating all others often does not exist. When conflicting
objectives are involved, no policy could simultaneously maximize all of those objectives. For this reason,
people usually employs a different dominance concept based on Pareto optimality.

Definition 2.5. (Pareto Optimality) A policy π is strongly dominated by another polity π′, we often denote
it as π ≻ π′，if and only if it outperforms π on all m objectives. i.e.,

π′ ≻ π ⇔ ∀i ∈ [m],V π′

i (s0) > V π
i (s0).

Similarly, we can define the weak dominance π′ ⪰ π as

π′ ⪰ π ⇔ ∀i ∈ [m],V π′

i (s0) ≥ V π
i (s0).

If there is no policy π′ such that π′ ≻ π, then we say that the policy π is a Pareto optimal policy, and its
corresponding value V π (s0) is a Pareto optimal solution. The set of all Pareto-optimal policies is denoted
by Π∗ := {π | ∄π′ ∈ Π, π′ ≻ π}, which maps to the Pareto frontier F ∗ := {V π (s0) | π ∈ Π∗}. Sometimes we
will also use the definition F ∗ := {r̂τ | τ ∼ (P, π), π ∈ Π∗} for the Pareto frontier alternatively.

Figure 2–1 (a.) illustrates an two dimensional example of Pareto frontier. Every node in this figure
indicates an solution (value or real discounted total reward) consisting of quantities of two objectives. Nodes
{A, B, C, D, E, F, G, H} are obviously Pareto optimal solutions, since they are on the outer boundary. And
the node L is obviously not a Pareto optimal solutions since it is dominated by many other solutions in this
figure. One thing worth our attention is that the node K is actually a Pareto optimal solution. No solution in
this figure dominates node K on both objectives 1 and 2. The Pareto frontier is unnecessary to be convex.

As we see, there would be many optimal solutions and their corresponding optimal policies in the
multi-objective reinforcement learning problem. This causes ambiguity when an agent tries to perform an
action since in a sequential decision-making process, an agent can only perform one policy which leads to one
result. What if that result is optimal but not desired? Back to the robot example, any policy that efficiently
moves to the line segment between the door and the desk is optimal regarding Pareto optimality. However, in
the end, where should the robot go in one specific execution?

In fact, in the multi-objective reinforcement learning, an agent has to serve one preference in one
execution. In the robot example, the preference is expressed by the owner. Mathematically, we would say a
preference is a function which maps the m-dimensional reward to a one-dimensional scalar. With a preference
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Figure 2–1 Pareto frontier, convex coverage set, and linear preference functions. (a.) Pareto frontier may encapsulate local
concave parts, whereas CCS is a convex subset of Pareto frontier. (b.) Linear preferences select optimal solution from CCS

with highest utility, which can be represented by the projection length along the direction of preference.

function, all the optimal solutions are comparable so that an agent can select the most desired one and perform
the corresponding optimal policy towards it.

Definition 2.6 (Preference Functions). A preference function f : Rm → R maps the value or reward
consisting of quantity of m objectives in to one real scalar. Given value function V π or discounted total
rewards r̂τ, τ ∼ π, we name the real value f ◦ V π (s) or f (r̂τ ) the policy’s utility under preference f .

There are many types of preference functions. Such as a max preference f (r) = maxi∈[m] ri, to
express a greater liking to the one performing extremely outstanding on some objective, a min preference
f (r) = mini∈[m] ri, to express a greater liking to the one has no flaw on all the objective, and a linear
preference fω (r) = ω⊺r, which is parameterized by the relative importance weights ω ∈ Ω, and Ω is an
(m− 1)-simplex. The goal of the agent is to find policy maximizing the gained reward singles under a certain
preference f , or say, to maximize the utitility. Therefore, we can rewrite the this goal when a preference f is
given as arg maxπ f ◦ V π (s0), and its solution π f is called preferred optimal policy.

Suppose we already know the preference function f , how much would the MOMDP be different from
the single-objective MDP? Intuitively, since the preference function provides a viable scalarization scheme,
can we simply conver a MOMDP to an MDP by replacing multi-dimensional immediate rewards r(s, a) with
f ◦ r(s, a)? At the first glance, we may believe the answer to be yes, but that positive result does not hold
true for all preference function. Note that given a reward sequence r0, r1, . . . , and its discounted cumulation
r̂ =

∑∞
t=0 γ

trt , we will find f (r̂) ,
∑∞

t=0 γ
t f (rt ) when f is not additive or homogeneous. In this case,

a simple conversion may not exist. Therefore, different preference functions may lead different levels of
difficulty for solving MOMDPs.

The majority of multi-objective reinforcement learning algorithms proposed so far are in the scenario that
f is specified[20]. Since they all aim at finding a single policy which is most preferred on the Pareto frontier,
these algorithms are categorized into so-called single-policy algorithms. One fundamental distinction among
the single-policy algorithms proposed so far is the form of f in which these preferences are expressed.

What intrigues us most is the case when preference f is not (or cannot be) specified initially. This
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situation would be more common in the real application and substantially more challenging. For example,
autonomous traders search for optimal policies to invest different goods in an open market and their returns
constantly fluctuate. It is hard to afford expensive real-time learning corresponding to the preference defined
by current returns and then react in a short time. Thus, the learning needs to be done in advance, when
more computational resources are available. And after being deployed to the real market, it is able to quickly
respond the real-time price with the optimal trading policy. In the next section, we will discuss a scenario
closer to this kind of realistic situation. And our thesis mainly focuses on that scenario.

2.2.3 Delayed Linear Preference Scenarios

In this thesis, we are interested in the non-trivial delayed linear preferences scenarios. As its name indicates,
in these scenarios, we only consider linear preferences (see definition 2.6). Suppose the agent receives a
multi-objective reward r(st, at ) at time t. Its real utility increases by fω (r(st, at )) = ω⊺r(st, at ), where
relative importances weights ω ∈ Ω, and Ω is an (m − 1)-simplex.

In this special case, a MOMDP collapses into a classical MDP once we knew a linear preference function.
Furthermore, when we restrict preference functions to be linear, the preferred solutions can only come from
a convex coverage set[20] (CCS) of the Pareto frontier.

Definition 2.7 (Convex Coverage Sets). In an MOMDP, given its Pareto frontier F ∗, the convex coverage
set is defined by

CCS := {r̂ ∈ F ∗ | ∃ω ∈ Ω s.t. ω⊺r̂ ≥ ω⊺r̂′,∀r̂′ ∈ F ∗}.

We use Π∗CCS to denote the set of all corresponding policies.

Figure 2–1 (a.) shows an example of CCS and Pareto frontier. The CCS is a subset of the Pareto frontier,
containing all the solutions settled on the outer convex boundary. When a specific linear preference is given,
as Figure 2–1 (b.) shows, one solution in the CCS with the largest projection length along the direction of
the relative importances weights will be selected as the preferred optimal solution.

Another key feature of a delayed linear preference scenario is that the linear preference is initially
unrevealed, until a later phase of this scenario. Formally, the delayed linear preference scenario contains
three consecutive phases: learning phase, analysis phase, and execution phase.

Learning Phase In the learning phase, the agent is free to access the historical trajectory records or interacts
with the simulated environment to learn about the rewards. Here, the computational resources are relatively
adequate, while the linear preferences are unknown. We are interested in finding the linear optimal policies
ΠL that generate the whole CCS. A policy π ∈ ΠL only if it there exists at least one linear preference
function fω, such that under this preference function, no other policy π′ generates higher real utility. Put in
mathematical language, this means that

π ∈ ΠL ⇒ ∃ ω ∈ Ω, s.t. ∀π′ ∈ Π,ω⊺vπ (s0) ≥ ω⊺vπ′ (s0),
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Figure 2–2 Delayed linear preference scenarios. (a.) In equestrianism (sports of horse riding) example we want to train a horse
to walk and run. Three objectives, speed, stability, and efficiency are involved. (b.) A task-oriented chatbot example. Users

may expect their dialogue with the chatbot to be brief or to be more informative depending on different scenes.

where s0 is a fixed initial state. The agent in this phase is suppose to acquire ΠL ⊆ Π∗CCS such that FΠL = CCS.
Thus for any relative importance weight ω, one of policies in the learned ΠL is optimal. This phase prepares
the multi-objective reinforcement learning agent for tackling various future preferences.

Analysis Phase In the analysis phase, the commander or the user can analyze the trade-off between multiple
objectives of the task for determining a preference by using the information learned by the agent during the
learning phase. This phase sometimes can be skipped, since the in some cases, the preference is totally up to
the environment, such as the prices in a fluctuant market, which is not specified by the commander. However,
for the most cases, users wish to express a preference to control or adjust the behavior of the agent, where
an analysis phase is important. Available information an learned agent can offer includes the predicted or
sampled CCS of objectives and the corresponding optimal real utilities for some relative importance weights
of interest.

Execution Phase In the execution phase, a specific linear preference function fω (·) will be given to the
agent, while learning in this phase is not allowed. The agent needs to respond with an optimal policy πω from
the learned set of policies ΠL to the given preference, using limited computational resources. The process
of selecting the specific preferred optimal policy is called policy adaptation. The goal of efficiently selecting
the preferred optimal policy by using the previously learned Πω is often not trivial since the CCS can be very
large or continuous. A parametric representation ΠL (ω) = πω is more favorable in this case.

Our delayed linear preference scenario also capture a lot of realistic scenarios. Figure 2–2 presents two
motivative real-life examples of delayed linear preference scenario. In the first example (a.), when training
an equestrian, learning how to trade off speed, stability, and efficiency of horse riding is important, while the
relative weights are unclear during training. After training, the horse rider can analysis the strength and the
weakness of her horse. Then in a specific contest, the horse rider needs to perform the best riding strategy
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according to a preference. In a race, the speed is the most important. However, in a vaulting, the stability
is the first priority. Similarly, in the second example, a task-oriented dialogue system is developed in the
learning phase without specifying preferences on dialogue success rate and dialogue brevity. The preference
should be given by users and specific application scenes. Like when a user is trying to ask information about
the weather, then the user probably hope the dialogue system can offer her thorough information. And in this
case, the success objective is more important than the brevity objective. However, when a user is driving and
what to ask for direction information, then the brevity of the dialogue would be critical since the drive does
not want to interact too many rounds.

The goal of multi-objective reinforcement learning in delayed linear preference function scenarios is to
answer two questions:

• How to efficiently learn representations for all linear optimal policies in the learning phase? i.e., How
do we solve the multi-objective optimization and maintain potentially optimal policies?

• How do we efficiently select an optimal policy from learned representations corresponding to a
specified preference in the execution phase? i.e., How to align preferences with policies?

In Chapter 3, we propose two novel value-base algorithms aiming at solving the above two questions
of multi-objective reinforcement learning. And in Chapter 5, the policy learning for task-oriented dialogue
systems can be abstracted as a delayed linear preference scenario, to which we apply our algorithms.

2.3 Related Works

In spite of the wide success in reinforcement learning theory and applications, multi-objective reinforcement
learning is still a relatively unexplored topic. In this section, we introduce mainstream methods to detour
the multi-objective reward design, as well as existing affirmative methods for dealing with multi-objective
reinforcement learning problems.

2.3.1 Inverse Reinforcement Learning

Instead of directly dealing with a multi-attribute reward function, most research studies the inverse reinforce-
ment learning (IRL)[18, 21] problem to learn a scalar reward function from expert’s demonstrations, or directly
imitate the expert’s policy, bypassing the intermediate steps for solving a scalar reward function[22]. IRL is
effective when the unrevealed preference among objectives is fixed, and expert’s demonstrations are available.
In our delayed linear preference scenarios, the unrevealed preference is not fixed, which can change up to
different situations. Therefore, inverse reinforcement learning cannot fully solve our settings.

2.3.2 Existing Multi-Objective Reinforcement Learning Algorithms

The existing multi-objective reinforcement learning (MORL) algorithms can be roughly divided into two main
categories: single-policy methods and multiple-policy methods[23, 24]. The majority of MORL algorithms
belong to single-policy methods, which target at finding the optimal policy under a known preference among
the objectives. These methods differ in forms of preference functions[25, 26]. When preferences are unknown,
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multiple-policy methods are invented to practically learn a set of policies for obtaining the approximate Pareto
frontier, especially the approximate CCS, when we only interested in linear preferences. The most common
method is to perform multiple runs of a single-policy method by varying the preferences[27-29]. Reusing the
previously learned policies and selecting next weights can improve its sample efficiency greatly. Besides, few
multiple-policy methods aim at learning a set of policies ΠL in parallel. Several value-based reinforcement
learning algorithms employ the extended Bellman equation which maintains the convex hull of the desecrate
Pareto frontier[30-32]. The time and space consumption of these methods will increase problematically as the
number of solution grows. Policy-based methods[33, 34] learn a manifold in the policy parameters space such
that its image in the objectives space is a continuous CCS approximation.

However, all algorithms discussed above cannot fully solve the MORL in a delayed linear preference
scenario, since the learned set of policies ΠL in convex hull methods is limited by size, and ΠL in manifold-
based methods is difficult for policy adaptation to a given ω in the execution phase. Multi-objective fitted
Q-iteration (MOFQI)[35, 36] encapsulates the preference ω in the input to the Q-function approximatior and
uses expanded historical trajectories to learn multiple policies, so that it is able to construct the preferred
optimal policy πω ≈ ΠL (ω) for any given ω. It provides a feasible approach to achieve goals of both learning
and execution phases in the unknown preferences scenarios, while its Q-function approximatior can be more
expressive by using deep neural networks, and the batch of trajectories could be more efficiently utilized.

2.4 Focuses

We state the focuses of our thesis as follows:
• Model-Free Learning. As we introduce in Section 2.1, we refer reinforcement learning as learning

process based on trial-and-error. The model, especially the transition kernel and the reward function
of the environment is unknown to an agent. Otherwise, the whole process is planning not learning.
In multi-objective settings, we still keep this distinction and focus on the model-free learning.

• Delayed Linear Preference Scenarios. In the multi-objective reinforcement learning, preferences
are keys to express the optimality concepts. Preferences can be given or not given at the beginning of
reinforcement learning. Preference can also have many types. In this thesis, we focus on one special
case called delayed linear preference scenario as stated in Section 2.2.

• Value-Based Multiple-Policy Methods. Different from the most existing multi-objective reinforce-
ment learning algorithms, we focus on value-based multiple-policy methods. We choose value-based
methods since it can support off-policy settings inherently and we have theoretical tools to develop
this kind of algorithms (see Chapter 3). We emphasize multi-policy methods because our goals are
fist finding all potentially optimal policies in the learning phase, and then selecting the one with the
greatest utility under a certain preference in the execution phase.

• Applications in Task-Oriented Dialogue Systems. We expected our proposed algorithms to have
the real impact in real life. The policy learning in task-oriented dialogue systems can be treated as
a multi-objective reinforcement learning in delayed linear preference scenario. We apply our deep
MORL algorithms to improve its on-line dialogue policy learning.
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Chapter 3 Value-Based Methods

This chapter is about a theoretical framework of value-based deep multi-objective reinforcement learning. Our
framework is inspired by Banach’s fixed point theorem, which guarantees the existence and uniqueness fixed
point of a contraction on a complete metric space. This theoretical framework provides a topological insight
into how previous successful deep Q-learning works in single-objective settings, which is introduced in Section
3.1. Equipped with this theoretical tool, we develop two novel value-base multi-objective reinforcement
learning algorithms in Section 3.2 and 3.3. Finally, in Section 3.4, we summarize pros and cons of these
value-based approaches.

3.1 Theoretical Framework for Value-Based Reinforcement Learning

In this section, we introduce a theoretical framework for analyzing and designing the value-based multi-
objective reinforcement learning algorithms. This framework is based on the famous Banach’s fixed-point
theorem, which guarantees the existence and uniqueness of fixed-point of a contraction on a complete metric
space. Therefore, generalize this theorem a bit, we can think all value functions of reinforcement learning are
in some metric space, and find the optimal value or policy is to find the fixed point of a certain contraction on
that space. Let us first have a quick pass to several fundamental mathematical concepts.

3.1.1 Banach’s Fixed-Point Theorem

As we are unable to display all technical details about the mathematical background in the thesis, we highly
recommend readers to refer to the blog [37], where more examples are created to illustrate math ideas.

Definition 3.1 (Metric Space). A metric space is an ordered pair (X, d) consists of an underlying set X and
a real-valued function d(x, y), called metric, defined for x, y ∈ X such that for any x, y, z ∈ X the following
conditions are satisfied:

1. non-negativity: d(x, y) ≥ 0;
2. identity of indiscernibles: d(x, y) = 0⇔ x = y;
3. symmetry: d(x, y) = d(y, x);
4. triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Think about the common Euclidean space, where the underlying set is R3, and its distance function
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 is a valid metric.

When we construct a metric space (X, d), it is common to expect our metric space has no point “missing"
from it. For example, the space Q of rational numbers, with the metric defined by the absolute value | · | of
numbers’ differences, is not complete. Just consider the rational sequence xn+1 =

xn
2 +

1
xn
, x1 = 1, whose

elements become arbitrarily close to each other as the sequence progresses, but it doesn’t converge to any
point in space Q. Therefore, the space Q is incomplete, since it obviously misses points.
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A sequence like that in our example is called Cauchy sequence. Formally, we define the Cauchy sequence
in and the completeness of a metric space (X, d) as follows:

Definition 3.2 (Cauchy Sequence). A sequence {xn} is said to be Cauchy sequence if for each ϵ > 0 there
exists an Nϵ such that d(xn, xm) < ϵ for any n,m ≥ Nϵ .

Definition 3.3 (Complete Metric Space). A metric space is said to be complete if each Cauchy sequence is
a convergent sequence in it.

The significance of complete metric space is hard to be overemphasized. In many application, it is easier
to show a given sequence is a Cauchy sequence than to show it is convergent. If the underlying metric space
is complete, to show a given sequence is a Cauchy sequence is sufficient for proving its convergence.

Based on the concept of completeness, we now introduce the contraction mapping, which is a key
concept in our value-based theoretical framework.

Definition 3.4 (Contraction). Let (X, d) be a metric space. We say that T is a contraction, if there is a real
number γ ∈ [0, 1) such that

d(T (x),T (x ′)) ≤ γd(x, x ′) (3–1)

for all points x, x ′ ∈ X , where γ is called a Lipschitz coefficient for the contraction T .

Theorem 3.1 (Banach’s Fixed-Point Theorem). Let (X, d) be a complete metric space and let T : X → X

be a contraction. Then there is one and only one fixed point x∗ ∈ X such that T (x∗) = x∗. Moreover, if x

is any point in X and T n(x) is inductively defined by T n(x) = T (T n−1(x)), then we have T n(x) → x∗ as
n → ∞.

Proof. Let us first prove every sequence {Tn(x)} convergent to a fixed point. Since the metric space (X, d) is
complete, we only need to prove every {Tn(x)} is a Cauchy sequence. By the triangle inequality and symmetry
of metric, for all x, y ∈ X ,

d(x, y) ≤ d(x,T (x)) + d(T (x),T (y)) + d(T (y), y)

≤ d(T (x), x) + γd(x, y) + d(T (y), y)

⇒ d(x, y) ≤ [d(T (x), x) + d(T (y), y)]/(1 − γ)

Consider two points T ℓ (x), T m(x) in the sequence. Their distance is bounded by

d(T ℓ (x),T m(x)) ≤ [d(T ℓ+1(x),T ℓ (x)) + d(T m+1(x),T m(x))]/(1 − γ)

≤ [γℓd(T (x), x) + γmd(T (x), x)]/(1 − γ)

=
γℓ + γm

1 − γ d(T (x), x)

Since γ ∈ [0, 1) the distance converges to zero as ℓ,m → ∞, we prove that {T n(x)} is a Cauchy sequence.
Because the space (X, d) is complete, {T n(x)} converges.
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We now show that x∗ = limm→∞ T m(x) is a fixed point, and it is unique. Since T is a contraction, by
definition it is continuous. Therefore,

T (x∗) = T ( lim
m→∞

T m(x)) = lim
m→∞

T (T m(x)) = lim
m→∞

T m(x) = x∗.

The uniqueness of x∗ can be proved by contradiction. Assume x∗ and y∗ are two distinct fixed points of T .
We then get the contradiction

0 < d(x∗, y∗) = d(T (x∗),T (y∗)) ≤ γd(x∗, y∗) < d(x∗, y∗).

Hence T has only one fixed point and {T n(x)} converges to it for any x ∈ X . □

3.1.2 General Value-Based Reinforcement Learning Framework

The above introduced Banach fixed-point theorem provides us with an iterative method for converging quickly
to any desired solution in the large solution space, by repeatedly applying a properly designed contraction.
For example, the foundation to standard value-based single-objective reinforcement learning is the use of
Bellman’s optimality equation[15]:

Q∗(s, a) = r (s, a) + γEs′∼P ( · |s,a) sup
a′∈A

Q∗(s′, a′), (3–2)

where γ ∈ [0, 1) is the discount factor and the optimal Q-value function Q∗(s, a) is the desired solution in the
space Q ⊆ RS×A consisting of all the bounded functions with ℓ∞-distance metric

d(Q,Q′) := sup
s∈S,a∈A

|Q(s, a) −Q′(s, a) |. (3–3)

Since the all the function in this space is bounded, we can prove that with this ℓ∞-distance metric, the space
(Q, d) is complete. Besides, according to the equation (3–2), we can design an Bellman optimality operator
T such that

(TQ)(s, a) := r (s, a) + γEs′∼P ( · |s,a) sup
a′∈A

Q(s′, a′), (3–4)

which can be shown as a contraction on (Q, d). Many popular value-based reinforcement algorithms, such
as deep Q-learning, can be seen as asynchronous iteration methods with approximately applied contraction.

We first verify that the Bellman optimality operator T indeed is a contraction on (Q, d).

Theorem 3.2 (Bellman Optimality Operator of is a Contraction). Let Q,Q′ be any two Q-value function in
the space (Q, d), the Lipschitz condition d(TQ,TQ′) holds.

Proof. Without the loss of generality, we assume supa∈A Q(s, a) ≥ supa∈A Q′(s, a) in some state s of interest.
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Expand the expression of d(TQ,TQ′) we have

d(TQ,TQ′)(s, a) = sup
s∈S,a∈A

|(TQ)(s, a) − (TQ′)(s, a) |

= sup
s∈S,a∈A

�����r (s, a) + γEs′∼P( · |s,a) sup
a′∈A

Q(s′, a′) − r (s, a) − γEs′∼P( · |s,a) sup
a′′∈A

Q′(s′, a′′)
�����

= γ · sup
s∈S,a∈A

�����Es′∼P( · |s,a)

[
sup
a′∈A

Q(s′, a′) − sup
a′′∈A

Q′(s′, a′′)
] �����

≤ γ · sup
s∈S,a∈A

Es′∼P( · |s,a)

[����� sup
a′∈A

Q(s′, a′) − sup
a′′∈A

Q′(s′, a′′)
�����
]

≤ γ · sup
s′∈S

����� sup
a′∈A

Q(s′, a′) − sup
a′′∈A

Q′(s′, a′′)
�����

Now according to our assumption, let a′ be the action maximizing the value of Q in some state s′ of interest,
then we derive

d(TQ,TQ′)(s, a) ≤ γ · sup
s′∈S

�����Q(s′, a′) − sup
a′′∈A

Q′(s′, a′′)
�����

= γ · sup
s′∈S

�����Q(s′, a′) −Q′(s′, a′) +Q′(s′, a′) − sup
a′′∈A

Q′(s′, a′′)
�����

≤ γ · sup
s′∈S
|Q(s′, a′) −Q′(s′, a′) |

≤ γ · sup
s′∈S,a′∈A

|Q(s′, a′) −Q′(s′, a′) | = γd(Q,Q′)

It completes our proof. □

It is easy to verify that the optimal value function Q∗ is a fixed point in (Q, d). Therefore, applying the
optimality operator iteratively many times on any initial Q-value function, we can find the unique optimal
one. Similarly, we can also define Bellman evaluation operator Tπ using the Bellman expectation equation
2–5, which is also a contraction.

Knowing that optimality operator is a contraction is a great step to understanding value-based algorithms.
But how could we use it to help us develop a doable algorithm? How is the classical deep Q-learning associated
with this fact? One biggest obstacle is that in deep Q-learning we use a minibatch to update previous Q-value
function approximated by neural networks (see Section 2.1.3), not update for all states and actions. Thus the
updated Q-value function is not a strict TQ, but only close to TQ on some state and action pairs. Is there
still a theoretical guarantee?

Fortunately, we can prove that even if the update each step is mini-batchified and approximated, an
iterative algorithm can still converge to a promising result, counting for some extra assumptions.

Definition 3.5 (Minibatch Iteration). Consider the Q-value function Q as a composition of {QS,A}S⊆S,A⊆A
such that in each iteration,

Qk+1
S,A (s, a) =


TQk

S,A(s, a), if s ∈ S and a ∈ A;

Qk
S,A(s, a), otherwise.
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Theorem 3.3 (Minibatch Convergence Theorem). Suppose each restricted Q-value function QS,A can be
update infinite times, and there is a sequence of nonempty subsets {Qk } ⊆ Q with Qk+1 ⊆ Qk , k = 0, 1, . . .
such that if {Qk } is any sequence with Qk ∈ Qk for all k ≥ 0, the {Qt } converges pointwisely to Q∗. Assume
further the following:

1. Convergence Condition: We have
∀Q ∈ Qk,TQ ∈ Qk+1 (3–5)

2. Box Condition: For all k,Qk is a Cartesian product of the form

Qk = ×s∈S,a∈AQk
{s }, {a } (3–6)

where Qk
S,A is a set of bounded real-valued functions on states S and actions A. Then for every Q0 ∈ Q0 the

sequence {Qk } generated by the minibatch iteration algorithm converges to Q∗[38].

Proof. To show that the algorithm converges is equivalent to show that the iterates from Qk will get in to
Qk+1 eventually, i.e., for each k ≥ 0, there is a time tk such that Qt ∈ Qk for all t ≥ tk . We can prove it by
mathematical induction.

When k = 0, the statement is true since Q0 ∈ Q0. Assuming the statement is true for a given k, we will
show there is a time tk+1 with the required properties. For each s ∈ S, a ∈ A, let set Ls,a = {t : st = s, at = a}
record the time a minibatch update happens on the state s and action a. Let t(s, a) be the first element in
Ls,a such that t(s, a) ≥ tk . Then by the convergence condition, we have TQt (s,a) ∈ Qk+1 for all s ∈ S and
a ∈ A. In the view of the box condition, it implies Qt+1(s, a) ∈ Qk+1

s,a for all t ≥ t(s, a) for any s ∈ S and
a ∈ A. Therefore, let tk+1 = maxs,a t(s, a) + 1, using the box condition, we have Qt ∈ Qk+1 for all t ≤ tk+1.
By mathematical induction, the statement holds, and Qk will shrink in to Qk+1 eventually. Hence, we have
proved {Qt } converges to Q∗ finally. □

The above theorem indicates that minibatch update with experience reply will not affect the convergence
of iteratively applying optimality operator T . This gives the flexibility to design value-based algorithm’s
updating scheme. Besides, even though we use deep Q-network to approximate the Q-value function and
update it by using gradient descent, this will not impair the magical function of optimality operator too much.
If after n-round neural network updates, we always have sups∈S,a∈A |Qt+n − TQt | ≤ ϵ , where n is an arbitrary
bounded integer, by applying the triangle inequality we assert that the final error d(Q f inal,Q∗) ≤ ϵ/(1 − γ)

is bounded. And by now we have put the whole deep Q-learning into a general theoretical framework.
In a high-level overview, this framework for value-based reinforcement learning consists of five elements:
• Value Space X: A common choice of X is the space of value functions in RS or the space of Q-value

functions inRS×A . There are many other choices such as the space of ordered pair of (V,Q) (Example
2.6.2 in book [39] ), or the space of multi-dimensional value functions as we will show in the following
sections.

• Value Metric d: It defines the “distance" between two points in the value space. Besides the basic
four requirements, the metric d should ensure a complete metric space (X, d) to validate the Banach’s
fixed-point theorem. A compatible selection of value metric will make our analysis much easier.
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• Evaluation Operator Tπ : We have constructed a recursive expression of a certain value point in the
value space associated with some policy, e.g., the Bellman expectation equation, to depict the value
of a policy vπ as a fixed point we desire. Carefully verify that the contraction property holds for Tπ .

• Optimality Operator T : Write down recursive expression of the optimal point in the value space,
e.g., the Bellman optimality equation. Note that when the metric d is the supremum of the absolute
value of the difference, and Tπ is a contraction, we can prove the contraction property of T is always
automatically satisfied.

• Updating Scheme: It is the most tricky part. For those small-scale problems, the minibatch iteration
works well. However, to make our reinforcement learning algorithm practical and scalable, we have
to consider much more factors. For example: How do we approximate the value and policies? If
it is an online algorithm, how do we trade off exploration and exploitation? All these details will
significantly influence the performance of our algorithm on real-world tasks.

To sum up, we propose five essential components for analyzing and designing general value-base
reinforcement learning algorithms: (1) value space, (2) value metric, (3) evaluation operator, (4) optimality
operator, and (5) updating scheme. In fact, there is some work [40] developing distributional reinforcement
learning almost under this framework. We will discuss how to design these five elements of our framework
to develop multi-objective reinforcement learning algorithms in the next two sections.

3.2 Value-Based Deep MORL Algorithm: Naive Version

A straightforward extension of the value-based reinforcement learning algorithm for the multi-objective tasks
in the delayed linear preference scenario is to consider a new value space Q ⊆ RS×A×Ω complete in ℓ∞ value
metric.

d(Q,Q′) := sup
s∈S,a∈A

ω∈Ω

|Q(s, a,ω) −Q′(s, a,ω) |, (3–7)

where Ω is the parameter space of linear preference functions, and Q(s, a,ω) stands for the real utility of
preforming some trajectories after taking the action a at initial state s to satisfy the preference fω (·) = ⟨ω, ·⟩.

We refer this kind of Q-value functions utility-based multi-objective value functions. What are the
evaluation operator and the optimality operator for this value space design? How should we approximate this
utility-based Q-value function and update it?

3.2.1 Multi-Objective Bellman Optimality Operator

In this section, we give the evaluation operator and the optimality operator under the space (Q, d) stated above.
The evaluation operator is a simple extension of that of single-objective reinforcement learning. Given a
policy π, the evaluation operator is defined by

(TπQ)(s, a,ω) := ω⊺r(s, a) + γEτ∼(P,π)Q(s′, a′,ω) (3–8)
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We can image it as a “parallel" version of single-objective Bellman expectation equation for different impor-
tances weights. It is a contraction simply because it is a contraction for every fixed ω.

As for the optimality operator, for the convenience of future analysis, we hope to define an optimality
filter H by (HQ)(s,ω) := supa′∈A Q(s, a′,ω). It can also be regarded as a parallel version of the simple
maximization operation in the classical Q-learning. And then the optimality operator T is defined in terms
of the optimal filter:

(TQ)(s, a,ω) := ω⊺r(s, a) + γEs′∼P ( · |s,a) (HQ)(s′,ω). (3–9)

Theorem 3.4 (Fixed Point of Naive Optimality Operator for MORL). Use definitions above. Let Q∗ ∈ Q be
the preferred optimal value function in the value space, such that

Q∗(s, a,ω) = sup
π∈Π
Eτ∼(P,π) |s0=s,a0=a


∞∑
t=0

γtω⊺r(st, at )
 , (3–10)

then Q∗ = TQ∗ holds.

Proof. Our proof starts with substituting the definition of Q∗ into TQ∗.

TQ∗(s, a,ω) = ω⊺r(s, a) + γEs′∼P ( · |s,a) (HQ)(s′,ω)

= ω⊺r(s, a) + γEs′∼P ( · |s,a) sup
a′∈A

Q∗(s′, a′, ω)

= ω⊺r(s, a) + γ sup
π

E τ∼(P,π)
s0∼P ( · |s,a)


∞∑
t=0

γtω⊺r(st, at )


The last step is because the expectation over s′ does not affect the supremum over a′, and the supremum over
a′ is absorbed by the supremum over π. Then by the definition of Q∗ again, we have

TQ∗(s, a,ω) = sup
π∈Π
Eτ∼(P,π) |s0=s,a0=a[

∞∑
t=0

γtωTr (st, at )] = Q∗(s, a,ω).

This completes the proof. The preferred optimal value function is a fixed point of the proposed optimality
operator. □

Theorem 3.4 tells us the preferred optimal value function is a fixed-point in the value space. If we can
show that this T is a contraction, than iteratively applying T can lead us to the desired solutions for all ω.

Theorem 3.5 (Naive Optimal Operator is a Contraction). Let Q,Q′ be any two Q-value functions in the value
space Q as defined above, the Lipschitz condition d(TQ,TQ′) ≤ γd(Q,Q′) holds, where γ ∈ [0, 1) is the
discount factor of the underlying MOMDPM.

Proof. Similar to the proof of Theorem 3.2, without the loss of generality, we assume supa∈A Q(s, a,ω) ≥
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supa∈A Q′(s, a,ω) for some state s and ω of interest. Expand the expression of d(TQ,TQ′) we have

d(TQ,TQ′)(s, a) = sup
s∈S,a∈A

ω∈Ω

|(TQ)(s, a) − (TQ′)(s, a) |

= sup
s∈S,a∈A

ω∈Ω

��ω⊺r(s, a) + γEs′∼P( · |s,a) (HQ)(s′,ω) − ω⊺r(s, a) − γEs′∼P( · |s,a) (HQ′)(s′,ω)��
= γ · sup

s∈S,a∈A
ω∈Ω

�����Es′∼P( · |s,a)

[
sup
a′∈A

Q(s′, a′,ω) − sup
a′′∈A

Q′(s′, a′′,ω)
] �����

≤ γ · sup
s∈S,a∈A

ω∈Ω

Es′∼P( · |s,a)

[����� sup
a′∈A

Q(s′, a′,ω) − sup
a′′∈A

Q′(s′, a′′,ω)
�����
]

≤ γ · sup
s′∈S,ω∈Ω

����� sup
a′∈A

Q(s′, a′) − sup
a′′∈A

Q′(s′, a′′)
�����

Now according to our assumption, let a′ be the action maximizing the value of Q for some state s′ and
preference ω of interest, then we derive

d(TQ,TQ′)(s, a) ≤ γ · sup
s′∈S,ω∈Ω

�����Q(s′, a′,ω) − sup
a′′∈A

Q′(s′, a′′,ω)
�����

= γ · sup
s′∈S,ω∈Ω

�����Q(s′, a′,ω) −Q′(s′, a′,ω) +Q′(s′, a′,ω) − sup
a′′∈A

Q′(s′, a′′,ω)
�����

≤ γ · sup
s′∈S,ω∈Ω

|Q(s′, a′,ω) −Q′(s′, a′,ω) |

≤ γ · sup
s′∈S,a′∈A

ω∈Ω

|Q(s′, a′,ω) −Q′(s′, a′,ω) | = γd(Q,Q′)

This ends our proof. T is a contraction. □

Corollary 3.6. As a direct consequence of Theorems 3.1, 3.4, and 3.5, applying the optimality T iterative
on any initial Q-value function derives the preferred optimal Q-value function Q∗ for any preference ω.

3.2.2 Updating Scheme: Hindsight Experience Replay

Deep neural networks empower us to approximate any bounded functions in Q ⊆ RS×A×Ω. Like deep
Q-learning[17], we employ a neural network function approximator with parameters θ to estimate the utility-
based multi-objective Q-value function, as defined above. We refer to this neural network as a utility-based
multi-objective Q-network. A utility-based multi-objective Q-network can be trained by minimizing a series
of loss function

Lk (θ) = Es,a,ω
[
(yk −Q(s, a,ω; θ))2

]
, (3–11)

which changes at each iteration k, where yk = Es′
[
ω⊺r(s, a) + γ(HQ)(s′, a′,ω; θk )

]
is the target of iteration

k. The target is fixed during optimizing the loss function. And the parameters of the utility-based multi-
objective Q-network are updated by θk+1 ← θk − η, where

η ∝ ∇θ=θk Lk (θ) = −Es,a,s′
[(
ω⊺r + γ(HQ)(s′, a′,ω; θk ) −Q(s, a,ω; θk )

) ∇θ=θk Q(s, a,ω; θ)
]
. (3–12)
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Algorithm 3–1 Naive Deep MORL with Hindsight Experience Replay
Given
• a preference sampling distribution Dω,
• minibatch sizes for transitions Nτ and for preference Nω.
• a utility-based multi-objective Q-network Q parameterized by θ.
Initialize Q with random parameters.
Initialize replay buffer Dtau.

1: for episode = 1, . . . ,M do
2: Sample a linear preference ω ∼ Dω.
3: for t = 0, . . . , N do
4: Sample an action at using behavioral policy for trading off exploration and exploitation, i.e.

at =


random action in A, with probability ϵ ;

maxa∈A Q(st, a,ω; θ), with probability 1 − ϵ .

5: Execute the action at and observe new state st+1.
6: Store transition (st, at, rt, st+1) in Dtau.
7: if update then
8: Sample random minibatch of transitions (s j, a j, rj, s j+1) from Dτ .
9: Sample Nω preferences {ω1,ω2, . . . ,ωNω

} ∼ Dω.

10: Compute targets (TQ)i j =

ω⊺i rj . for terminal s j+1;

ω⊺i rj + γmaxa∈A Q(s j, a,ωi; θ), for non-terminal s j+1.

11: Update Qθ by descending its stochastic gradient according to equation 3–12:

∇θL(θ) = − 1
NτNω

∑
i∈[Nω ], j∈[Nτ ]

[(
(TQ)i j −Q(s j, a j,ωi; θ)

)
∇θQ(s j, a j,ωi; θ)

]
.

12: end if
13: end for
14: end for
15: return the utility-based Q-net Qθ

Similar to the classical deep Q-learning, we use a experience replay buffer Dτ = {(sit, a
i
t, r

i
t, s

i
t+1)}t,i to

store each step of sampled trajectories. When updating, we sample a minibatch of transition records from
this replay buffer. Theorems 3.3 and 3.5 guarantees the convergence of this minibatch updating, with an extra
assumption that we can update as equation 3–12 for each ω ∈ Ω infinite times. How can we ensure this?

Paper [41] presents a technique for training a reinforcement learning to serve multiple goals. For each
episode, the agent performs following a policy according to a randomly sampled goals. When updating, the
agent uses the past trajectory update for multiple other goals in parallel. They refer this method as hindsight
experience replay. Though there are huge differences between our settings and theirs, we use a similar method
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to update utility-based multi-objective Q-network here.
In the learning phase of the delayed linear preference scenario, for each training episode, the MORL

agent randomly sample a preference ω from a certain distribution Dω. When updating the utility-based
multi-objective Q-network according to equation 3–12, for each sampled transition record (sit, a

i
t, r

i
t, s

i
t+1)

from replay buffer Dτ , we associate it with Nω preferences {ω1,ω2, . . . ,ωNω
} sampled from Dω. The

update is apply to an expended batch of size minibatch_size × Nω. Notice that the preferences sampled
for sampling trajectories only influence the agent’s actions but not the environment dynamics. Therefore we
can replay each trajectory with an arbitrary preference. Besides, our utility-based multi-objective Q-network
can be replaced with any model similar to that in single-objective off-policy RL algorithms like DDPG[42],
NAF[43] or SDQN[44]. Actually, in the experiment, we also use other deep reinforcement learning techniques
such as double Q-learning[45] with a target network and prioritized experience replay[46], which stabilize and
speed up our algorithms a lot. We present the skeleton of our naive deep MORL as algorithm 3–1.

3.2.3 Problems and Limitations of the Naive Version Algorithm

Algorithm 3–1 is an approach better than existing methods[29, 35, 36] for delayed linear preference scenarios
of deep multi-objective reinforcement learning for two reasons. First, it is a single-model multiple-policy
method. It maintains real utility for each linear preference ω using one neural network and updates them
in parallel. In the execution phase, it can directly respond with the optimal policy according to a user input
preference ω without extra search. Second, this method is compatible with many advanced techniques for
single-objective deep reinforcement learning, such as double[45] or duel[47] Q-learning, prioritized experience
replay[46], and other actor-critic methods[11].

However, in spite of this merits of our naive attempt, there are some limitations of this method. The major
problems of our naive deep MORL algorithm are two-fold: first, the prediction of utility-based multi-objective
Q-network is uninformative for the analysis phase; second, sample inefficiency.

In the naive deep MORL algorithm, the value space is a utility space. The agent learns a mapping
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Figure 3–1 Two limitations of naive deep MORL algorithm.(a.) Several predicted utilities are not enough to recover the Pareto
optimal solutions, unless we have known the whole utility frontier. (b.) At some stage, the naive algorithm finds the optimal

solutions while they are not aligned with preference. It still requires many iterations for the value-preference alignment.
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between different preferences to different real utilities during the learning phase. In the analysis phase, a user
can ask the agent for the optimal utility for a certain preference, to evaluate whether she should command
the agent with that preference in the execution phase. However, since utility is a scalar indicates the length
of projection of optimal solution along the preference direction, we cannot use this information to know
what is the specific solution this preference will result in. All the possibilities along the vertical line of the
utility projection, called pseudo solutions, are indistinguishable. The user needs to know the whole utility
control frontier, or let agent sample trajectories in a simulated environment to known the real corresponding
multi-objective solutions. This would be very costly.

Furthermore, the naive deep MORL algorithm is sample inefficient. As illustrated in Figure 3–1 (b.), at
some stage of the learning process, the naive deep MORL algorithm finds the optimal solution D, F in some
state s, while stored in maxa Q(s, a,ω2) and maxa Q(s, a,ω1), respectively. These optimal solutions are not
aligned with preferences. However, in the future iterations, the naive algorithm cannot use the information
of maxa Q(s, a,ω1) (which finds F) to update the optimal solution aligned with ω2. It also can not use the
information of maxa Q(s, a,ω2) (which finds D) to update the optimal solution aligned with ω1, even when
they are sampled in the same batch, because of the updating rule. To improve the utility under the preference
ω1, it still needs to search along this direction, meeting with non-optimal L, then D, even it has seen solution
D before under other preferences. This problem cannot be solved even if we come up with a wiser updating
scheme. That is because we only maintain the optimal utility for each ω, while to help the agent align an ω

to a found solution requires the memory of that multi-objective solution.

3.3 Value-Based Deep MORL Algorithm: Envelope Version

The naive deep MORL algorithm is capable of solving delayed linear preference scenarios of multi-objective
reinforcement learning. However, two limitations of that algorithm restrict its applicability and performance
in practice. Aiming at solving two problems stated in Section 3.2.3, we design a new algorithm called envelope
deep MORL algorithm. Following the value-based theoretical framework introduced in Section 3.1, our key
idea to upgrade the naive algorithm is to consider a different value space, where every Q-value function is
a mapping to multi-objective solutions, not utilities, and therefore maintains the necessary information for
prediction in the analysis phase. Furthermore, we enhance the optimality filter to use that information to
boost up the alignment in the learning phase.

For the envelope version algorithm, we consider a new value space Q ⊆ (Ω → Rm)S×A , containing all
bounded functions Q(s, a, ω) returning the estimates of preferred expected total rewards under preference ω,
which are m-dimensional vectors. Besides, we employ a value metric d defined by

d(Q,Q′) := sup
s∈S,a∈A

ω∈Ω

|ω⊺ (Q(s, a,ω) −Q′(s, a,ω)) |. (3–13)

Notice that this metric is a pseudo-metric, since the identity of indiscernibles in definition 3.1 does not hold
for it. It is easy to show that metric space (Q, d) is complete.

We refer the Q-value functions in this Q multi-objective value functions. Similar to the naive one, we
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design an evaluation operator and an optimality operator for this envelope version algorithm. As for the
updating scheme, we also use hindsight experience replay in this case, but with a homotopy optimization
trick.

3.3.1 Multi-Objective Bellman Optimality Operator

In this section, we give the evaluation operator and the optimality operator in the envelope version value space
(Q, d) as stated above. The evaluation operator now is even simpler than that of the naive version. Give a
policy π, the evaluation operator is defined by

(TπQ)(s, a,ω) := r(s, a) + γEτ∼(P,π)Q(s′, a′,ω) (3–14)

Since now the multi-objective Q-value function is also in a vector form, this evaluation operator is almost the
same to that of the single-objective reinforcement learning. It can be easily verified as a contraction.

As for the envelope version of optimality operator, we employ a stronger optimality filterH , defined by
(HQ)(s,ω) := argQ supa′∈A,ω′∈Ωω

⊺Q(s, a,ω′), where the argQ takes the multi-objective value correspond-
ing to the supremum. This filter is solving the convex envelope of the current solution frontier, therefore we
name this algorithm as “envelope" version. We can write the optimality operator T in terms of the optimal
filter:

(TQ)(s, a,ω) := r(s, a) + γEs′∼P ( · |s,a) (HQ)(s′,ω). (3–15)

Theorem 3.7 (Fixed Point of Evelope Optimality Operator for MORL). Use above definitions in the envelope
version value space. Let Q∗ ∈ Q be the preferred optimal value function in the value space, such that

Q∗(s, a,ω) = argQ sup
π∈Π

ω⊺Eτ∼(P,π) |s0=s,a0=a


∞∑
t=0

γtr(st, at )
 , (3–16)

where the argQ takes the multi-objective value corresponding to the supremum, then Q∗ = TQ∗ holds.

Proof. First, we observe that d(Q∗,TQ∗) = sups∈S,a∈A
ω∈Ω

|ω⊺ (Q∗(s, a,ω) − TQ∗(s, a,ω)) | = 0 ⇔
ω⊺TQ∗(s, a,ω) = ω⊺Q∗(s, a,ω) for all s, a,ω. Then, by substituting the definition of Q∗ into TQ∗,

ω⊺TQ∗(s, a,ω) = ω⊺r(s, a) + γ · ω⊺Es′∼P ( · |s,a) (HQ)(s′,ω)

= ω⊺r(s, a) + γ · ω⊺Es′∼P ( · |s,a) argQ sup
a′∈A,ω′∈Ω

ω⊺Q(s, a′,ω′)

= ω⊺r(s, a) + γ sup
π

E τ∼(P,π)
s0∼P ( · |s,a)


∞∑
t=0

γtω⊺r(st, at )


The last step is because the elimination of ω⊺ and argQ, and the expectation over s′ does not affect the
supremum over a′, and the supremum over a′ is absorbed by the supremum over π. Then by the definition of
Q∗ again, we have

ω⊺TQ∗(s, a,ω) = sup
π∈Π
Eτ∼(P,π) |s0=s,a0=a[

∞∑
t=0

γtωTr (st, at )] = ω⊺Q∗(s, a,ω).

By our observation stated at the beginning, d(Q∗,TQ∗) = 0. The preferred optimal value function is a fixed
point of the proposed envelope version optimality operator. □
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Theorem 3.7 tells us the preferred optimal value function is one of the fixed-points of envelope optimality
operator T in the value space. And we still need to show that this T is a contraction.

Theorem 3.8 (Envelope Optimal Operator is a Contraction). Let Q,Q′ be any two multi-objective Q-value
functions in the envelope value space Q as defined above, the Lipschitz condition d(TQ,TQ′) ≤ γd(Q,Q′)

holds, where γ ∈ [0, 1) is the discount factor of the underlying MOMDPM.

Proof. Similar to the proof of Theorem 3.2, without the loss of generality, we assume supa∈A,ω′∈Ωω
⊺Q(s, a,ω′) ≥

supa∈A,ω′∈Ωω
⊺Q′(s, a,ω′) for some state s and ω of interest. Expand the expression of d(TQ,TQ′) we

have

d(TQ,TQ′)(s, a) = sup
s∈S,a∈A

ω∈Ω

|ω⊺ ((TQ)(s, a) − (TQ′)(s, a)) |

= sup
s∈S,a∈A

ω∈Ω

��γ · ω⊺Es′∼P( · |s,a) (HQ)(s′,ω) − γ · ω⊺Es′∼P( · |s,a) (HQ′)(s′,ω)��
≤ γ · sup

s′∈S,ω∈Ω

�����ω⊺
[
argQ sup

a′∈A,ω′∈Ω
ω⊺Q(s′, a′,ω′) − argQ sup

a′′∈A,ω′′∈Ω
ω⊺Q′(s′, a′′,ω′′)

] �����
≤ γ · sup

s′∈S,ω∈Ω

����� sup
a′∈A,ω′∈Ω

ω⊺Q(s′, a′,ω′) − sup
a′′∈A,ω′′∈Ω

ω⊺Q′(s′, a′′,ω′′)
�����

Now according to our assumption, let a′ and ω′ be the action and preference chosen to maximize the value
of ω⊺Q for some state s′ and preference ω of interest, then we derive

d(TQ,TQ′)(s, a) ≤ γ · sup
s′∈S,ω∈Ω

�����ω⊺Q(s′, a′,ω′) − sup
a′′∈A,ω′′∈Ω

ω⊺Q′(s′, a′′,ω′′)
�����

= γ · sup
s′∈S,ω∈Ω

|ω⊺Q(s′, a′,ω′) − ω⊺Q′(s′, a′,ω′)

+ω⊺Q′(s′, a′,ω′) − sup
a′′∈A,ω′′∈Ω

ω⊺Q′(s′, a′′,ω′′) |

≤ γ · sup
s′∈S,ω∈Ω

|ω⊺Q(s′, a′,ω′) − ω⊺Q′(s′, a′,ω′) |

≤ γ · sup
s′∈S,a′∈A

ω∈Ω

|ω⊺Q(s′, a′,ω′) − ω⊺Q′(s′, a′,ω′) | = γd(Q,Q′)

This completes our proof that T is a contraction. □

Remember that in our design, envelope version value distance d is a pseudo-metric. In a pseudo-metric
space iteratively applying contraction may not shrink to the desired fixed point. To assert the convergence
effectiveness of our design for optimality operator, we need to investigate a generalized Banach’s Fixed-Point
Theorem in the pseudo-metric space.

3.3.2 Generalized Banach’s Fixed-Point Theorem

Theorem 3.9 (Generalized Banach Fixed-Point Theorem). Given that T is a contraction mapping with
Lipschitz coefficient γ on the complete pseudo-metric space ⟨Q, d⟩, and Q∗ is defined as that in Theorem 3.7,
it is always true that limn→∞ d(T nQ,Q∗) = 0 for any Q ∈ Q.
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Proof. By the symmetry and triangle inequality of pseudo-metric, for any Q,Q′ ∈ Q,

d(Q,Q′) ≤ d(Q,TQ) + d(TQ,TQ′) + d(TQ′,Q′)

≤ d(Q,TQ) + γd(Q,Q′) + d(TQ′,Q′)

⇒ d(Q,Q′) ≤ [d(TQ,Q) + d(TQ′,Q′)]/(1 − γ)

Consider two points T ℓQ,T mQ in the sequence {T nQ}. Their distance is bounded by

d(T ℓQ,T mQ) ≤ [d(T ℓ+1Q,T ℓQ) + d(T m+1Q,T mQ)]/(1 − γ)

≤ [γℓd(TQ,Q) + γmd(TQ,Q)]/(1 − γ)

≤ γℓ + γm

(1 − γ)
d(TQ,Q)

since γ ∈ [0, 1) the distance d(T ℓQ,T mQ) converge to 0 as ℓ,m → ∞, proving that {T nQ} is a Cauchy
sequence. Because ⟨Q, d⟩ is a complete pseudo-metric space, limn→∞ d(T nQ,Q⋄) = 0 for some Q⋄ ∈ Q.
Therefore,

d(TQ⋄,Q⋄) = lim
n→∞

d(T n+1Q,Q⋄) = lim
n→∞

d(T nQ,Q⋄) = 0

We claim that Q⋄ and Q∗ must lie in the same equivalent class partitioned by relation d(·, ·) = 0. Suppose
d(Q⋄,Q∗) , 0, then we can get a contradiction

d(Q⋄,Q∗) = d(Q⋄,TQ⋄) + d(TQ⋄,TQ∗) + d(TQ∗,Q∗)

≤ 0 + γd(Q⋄,Q∗) + 0

< d(Q⋄,Q∗)

This proves our claim. Therefore, limn→∞ d(T nQ,Q∗) = 0 for any Q ∈ Q. □

In other words, Theorem 3.9 guarantees that iteratively applying optimal operator T on any multi-
objective Q-value function, the algorithm will terminate with a function Q⋄ which is equivalent to Q∗ under
the measurement of pseudo-metric d. Actually, these Q⋄’s are as good as Q∗, since they all have the same
utilities for each ω, and only differ in the real value when the utility corresponds a recess in the utility control
frontier (see Figure 3–1 for example).

3.3.3 Updating Scheme: Homotopy Optimization

We use deep neural networks to approximate bounded functions in Q ⊆ (Ω → Rm)S×A with parameters θ.
We refer to this neural network as a multi-objective Q-network. To drag Q close to TQ at each update step,
the multi-objective Q-network can be trained by minimizing a series of loss functions

LAk (θ) = Es,a,ω
[
∥yk −Q(s, a,ω; θ)∥22

]
, (3–17)

which changes at each iteration k, where yk = Es′
[
r(s, a) + γ(HQ)(s′, a′,ω; θk )

]
is the target of iteration k.

The target is fixed during optimizing this loss function. And the parameters of the utility-based multi-objective
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Q-network are updated by θk+1 ← θk − η, where

η ∝ ∇θ=θk Lk (θ) = −Es,a,s′
[(
r + γ(HQ)(s′, a′,ω; θk ) −Q(s, a,ω; θk )

)⊺ ∇θ=θkQ(s, a,ω; θ)
]
. (3–18)

Minimizing the loss function LA is trying to drag the vectorQ close to TQ. This ensures the correctness
of our algorithm, to predict a Q as the real solution, while this means the square error is hard to be optimized
in practice. To address this problem, we use a sequence of auxiliary loss function LB to directly optimized
the value metric d, which is defined by

LBk (θ) = Es,a,ω[|ω⊺yk − ω⊺Q(s, a,ω; θ) |] (3–19)

Our final loss function sequence Lk (θ) = (1− λk ) · LAk (θ) + λk · LBk (θ), where λk is a weight to trade off
between losses LAk and LBk . We increase the value of λk from 0 to 1, to shift our loss function from LA to LB.
This method called homotopy optimization[48] is effective since for each update step, it uses the optimization
result from the previous step as the initial guess. In the envelope deep MORL algorithm, LA first ensure the
prediction of Q is close to any real expected total reward, though it is hard to be optimal. And then LB can
provide an auxiliary force to pull the current guess along the direction with better utility. Figure 3–2 illustrate
an explanation for this homotopy optimization.
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Figure 3–2 An explanation for homotopy optimization method used in the envelope deep MORL algorithm. The MSE loss LA

is hard for optimization since there are many local minima over its landscape. Although the value metric loss LB has fewer
local minima, it is also hard for optimization since there are many vectors Q minimizing value metric d. The landscape of LB

is too flat. The homotopy path connecting LA and LB provides better opportunities to find the global optimal parameters θ∗

Similar to the naive deep MORL algorithm, we use a experience replay buffer Dτ = {(sit, a
i
t, r

i
t, s

i
t+1)}t,i

to store each step of sampled trajectories. When updating, we sample a minibatch of transition records from
this replay buffer. Theorems 3.3 and 3.5 guarantees the convergence of this minibatch updating, with an extra
assumption that we can update as equation 3–18 for each ω ∈ Ω infinite times. We use hindsight experience
replay (HER) to ensure this. As introduced in Section 3.2.2, in the learning phase of the delayed linear
preference scenario, the MORL agent randomly sample a preferenceω from a certain distributionDω for each
training episode. When updating the multi-objective Q-network according to equation 3–18, for each sampled
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transition record (sit, a
i
t, r

i
t, s

i
t+1) from replay bufferDτ , we associate it with Nω preferences {ω1,ω2, . . . ,ωNω

}
sampled from Dω. The update is apply to an expended batch of size minibatch_size × Nω. Notice that
we will apply our optimality filter on this expended batch. Therefore the cost of solving the convex envelope
is acceptable. Our multi-objective Q-network can also be replaced with other models similar to those in
single-objective off-policy RL algorithms. In the experiment, we also use some popular deep reinforcement
learning techniques to stabilize and speed up our algorithms. The skeleton of our envelope deep MORL is
shown as algorithm 3–2.

3.4 Summary

In this chapter, we propose a theoretical framework for developing and analysis value-based reinforcement
learning. This framework is inspired by the Banach’s fixed point theorem, which says a contraction in a
complete metric space has a unique fixed point. In this framework, five essential components are involved
for designing general value-base reinforcement learning algorithms: (1) value space, (2) value metric, (3)
evaluation operator, (4) optimality operator, and (5) updating scheme. With the help of this theoretical
tool, we develop two value-based algorithms for the delayed linear preferences scenario of multi-objective
reinforcement learning.

The first algorithm is called naive deep MORL algorithm, which is a straightforward extension of the
value-based reinforcement learning algorithm. It maintains the utility estimation for all state, action, and
preferences, and update them in parallel by using hindsight experience replay algorithm. This algorithm is
easy to implement, and is compatible with many advanced reinforcement learning techniques. However, two
limitations, the uninformative prediction and sample inefficiency, restrict the applicability and performance
of our naive algorithm.

The second envelope deep MORL algorithm solves above two limitations of the naive algorithm by
directly maintaining the multi-objective solutions, and solving a convex envelope of the explored value
frontier each update step. This modification incurs a theoretical issue about the convergence analysis of our
envelope algorithm, which requires us to generalize the Banach’s theorem to pseudo-metric space. Besides,
when updating, we optimize a weighted average of two loss functions. The balance weight for the loss
will change over time, referred to as a homotopy optimization method. Although the envelope deep MORL
algorithm is more complex to implement, and will cost more time for each update step, it is more sample-
efficient during the learning phase and can provide with more informative prediction during the analysis
phase.
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Algorithm 3–2 Envelope Deep MORL with HER and Homotopy Optimization
Given
• a preference sampling distribution Dω,
• minibatch sizes for transitions Nτ and for preference Nω.
• a multi-objective Q-network Q parameterized by θ.
• a path pλ for the balance weight λ increasing from 0 to 1.
Initialize Q with random parameters.
Initialize replay buffer Dtau.
Initialize λ = 0.

1: for episode = 1, . . . ,M do
2: Sample a linear preference ω ∼ Dω.
3: for t = 0, . . . , N do
4: Sample an action at using behavioral policy for trading off exploration and exploitation, i.e.

at =


random action in A, with probability ϵ ;

maxa∈A ω⊺Q(st, a,ω; θ), with probability 1 − ϵ .

5: Execute the action at and observe new state st+1.
6: Store transition (st, at, rt, st+1) in Dtau.
7: if update then
8: Sample random minibatch of transitions (s j, a j, rj, s j+1) from Dτ .
9: Sample Nω preferences W = {ω1,ω2, . . . ,ωNω

} ∼ Dω.

10: Compute (TQ)i j =

rj . for terminal s j+1;

rj + γ argQ maxa∈A,ω′∈W ω⊺i Q(s j, a,ω′; θ), for non-terminal s j+1.

11: Update Qθ by descending its stochastic gradient according to equations 3–17 and 3–19:

∇θL(θ) = (1 − λ) · ∇θLA(θ) + λ · ∇θLB(θ).

12: Increase λ along the path pλ.
13: end if
14: end for
15: end for
16: return the multi-objective Q-net Qθ
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Chapter 4 Evaluation

In this chapter, we evaluate the performance of our proposed value-based approaches in two environments:
Deep Sea Treasure (DST)[23], a benchmark environment for multi-objective reinforcement learning; Fruit
Tree Navigation (FTN), which contains dozens of high-dimensional optimal solutions. We also provide Muti-
Objective Lunar Lander (MOLL) environment for continuous control. These environments involve various
possibly competing objectives to be optimized, while the preference in terms of the importance weight of
each objective is unknown during the learning phase. The technical implementation details are discussed in
Sections 4.2 and 4.3. Our source code is available at https://github.com/runzheyang/morl.

Recall that in section 2.2.3 we state our goals of solving delayed linear preference scenarios of multi-
objective reinforcement learning as two-fold tasks: first, to efficiently learn representations for all linear
optimal policies in the learning phase, i.e. to solve the multi-objective optimization and maintain potentially
optimal policies; second, to efficiently select an optimal policy from learned representations corresponding to
a specified preference in the execution phase, i.e. to align preferences with policies. In parallel to these goals,
our purposes of synthetic experiments are to investigate the following questions: (1) Can both deep MORL
algorithms efficiently find all the optimal solutions during the learning phase? (2) Does the Q-network learned
by the envelope version of MORL algorithm has better adaptation ability than that of the naive algorithm
in the execution phase? For better evaluate and compare the performance of our algorithms in above two
dimensions, we propose two quantitative evaluation metric serving for this two purposes in section 4.1.

4.1 Quantitative Evaluation Metrics

In this section, we propose two quantitative evaluation metrics for multi-objective reinforcement learning.
The first metric is coverage ratio, to evaluate an algorithm’s ability to find optimal policies during the
learning phase. The second metric is adaptation quality, which assesses the alignment between preferences
and optimal policies in the execution phase.

4.1.1 Coverage Ratio

The coverage ratio is a measure of an agent’s ability to find all the potential optimal solutions in the convex
coverage set of Pareto frontier.

In an MOMDP, let FΠL ⊆ Rm be the set of solutions found by the agent (via sampled trajectories),
FQ ⊆ Rm be the set of agent’s guessed solutions (via predictions from Q-network), and CCS denote the convex
coverage set. We define F ∩ϵ CCS := {x ∈ F | ∃y ∈ CCS s.t. ∥x − y∥1/∥y∥1 ≤ ϵ } as an intersection with the
tolerance of a relative error of ϵ . The coverage ratio in is defined by an F1 score

CRF1(F ) = 2 · precision · recall
precision + recall

, (4–1)
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Figure 4–1 Quantitative evaluation metrics for multi-objective reinforcement learning. (a.) Coverage ratio measures an agent’s
ability to find all the potential optimal solutions in the convex coverage set of Pareto frontier. (b.) Adaptation quality measures

an agent’s ability of policy adaptation to real-time specified preferences.

where the precision = |F ∩ϵ CCS|/|F |, indicating the fraction of optimal solutions among the retrieved
solutions, and the recall = |F ∩ϵ CCS|/|CCS|, indicating the fraction of optimal instances that have been
retrieved over the total amount of optimal solutions. The F1 score is their harmonic mean. In our evaluation
of all the three synthetic tasks, we set ϵ = 0.00 for FΠL and ϵ = 0.20 for FQ. Figure 4–1 (a.) illustrates an
example of the computation of coverage ratio.

4.1.2 Adaptation Quality

To investigate an agent’s ability of policy adaptation to real-time specified preferences, we introduce the
metric of adaptation quality by comparing the optimal and retrieved control frontiers.

The optimal control frontier of the problem is defined by a function Copt : Ω → R with ω 7→
maxr̂∈CCSω

⊺r̂. Similarly, Cπω = ω⊺r̂πω is the control frontier an agent can achieve (via sample trajec-
tories), and CQ is the control frontier guessed by an agent (via predictions from Q-network). The adaptation
quality is defined by

AQ(C) =
1

1 + α · errDω

, (4–2)

where the errDω
= Eω∼Dω

[|C(ω) − Copt(ω) |/Copt(ω)] is the expected relative error, and α is a scaling
coefficient to amplify the discrepancy. In all experiment domains, we use Gaussian distributions which are
restricted to be positive part and ℓ1-normalized as ourDω and set α = 10.0. Figure 4–1 (b.) shows examples
of optimal control frontier, retrieved control frontier, and the control discrepancy.

4.2 Synthetic Environments

In this section, we introduce three synthetic environments for evaluating and comparing deep multi-objective
reinforcement learning algorithms in delayed linear preference scenarios. The reason we use synthetic
environments is that in these cases we have access to the ground truth. The calculation of coverage ratio
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and adaptation quality requires the knowledge of optimal CCS and optimal control frontier, while in a real
application it is hard to acquire.

4.2.1 Deep Sea Treasure

Our first experiment domain is a grid-world navigation problem, Deep Sea Treasure. This episodic problem
was first explicitly created to highlight the limitations of linear scalarization[23]. However, in this thesis, we use
this environment as a delayed linear preference scenario. We ensure the Pareto frontier of this environment
is convex, therefore the Pareto frontier itself is the CCS.

In DST, an agent controls a submarine searching for treasures in a 10 × 11-grid world. The state st
consists of the agent’s current coordinates (x, y). The grid world contains 10 treasures with different values.
Their values increase in as the distance from the starting point s0 = (0, 0) increase. An agent’s action spaces
are formed by navigation in four directions. The first dimension indicates a time penalty, which is −1 on all
turns. The second dimension is the treasure value which is 0 except when the agent moves into a treasure
location. We depicted the map in Figure 4–2 (a.).
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23.7
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lty
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Figure 4–2 Deep Sea Treasure (DST): (a.) An agent controls a submarine searching for treasures in a 10 × 11-grid world. The
state st consists of the agent’s current coordinates (x, y). An agent’s action spaces is navigation in four directions. The reward
received by the agent is a 2-dimensional vector, (time penalty, treasure value). (b.) The DST Pareto frontier’s convex coverage

set is itself. The retrieved solutions by an MORL algorithm is also illustrated in this figure.

In the learning phase, the relative importance weight between the time penalty and the treasure value is
unknown. The agent needs to learn and maintain all possible optimal policies which lead the shortest path
to the desired treasure value with the highest utility. While in the execution phase, we hope the agent can
control the submarine towards the treasure with the highest utility under a certain given preference.

4.2.2 Fruit Tree Navigation

Our second experiment domain, Fruit Tree Navigation, is a synthetic full binary tree of depth d with randomly
assigned vectorial reward r ∈ R6 on its leaf nodes, which encodes the amounts of six different components
of nutrition of the fruits on the tree: {Protein, Carbs, Fats, Vitamins, Minerals, Water}. The goal of our
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multi-objective reinforcement learning agent is to find a path from the root to a leaf node associating with a
desired combination of nutrition. The preferred optimal leaf node has the best utility under a certain given
preference.

Figure 4–3 shows an instance of the fruit tree navigation task when d = 6, in which every non-leaf node
is associated with zero reward and every fruit is a potential optimal solution in the convex cover set of the
Pareto frontier. To construct this, we sample r(i) = (v(i)

+ + v
(i)
− )/∥v(i) ∥2, where v(i) ∼ N6(0, I), for each fruit

i on a leaf node. The optimal multiple-policy model for this tree structured MOMDP should contain all the
paths from the root to different desired fruits. In experiments, we also test on d = 5 and d = 7 cases.

In such a simple multi-objective environment, an optimal policy can be easily learned if we know the
preference function fω (·) = ⟨ω, ·⟩ for scalarization. However, here we are interested in evaluating whether a
multiple-policy neural network, trained with deep MORL algorithms, can find and maintain all the potential
optimal policies (i.e., paths to every leaf node) when the preference function is unknown, and adapt to the
optimal policy when a specific preference is given for execution.

Actions = {L, R}
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Figure 4–3 Fruit Tree Navigation (FTN): An agent travels from the root node to one of the leaf node to pick a fruit according
to a post-assigned preference ω on the components of nutrition, treated as different objectives. The observation of an agent is

its current coordinates (row, col), and its valid actions are moving to the left or the right child node.

4.2.3 Multi-Objective Lunar Lander

The third synthetic environment, Multi-Objective Lunar Lander, is designed for continuous control, where
the action space is a continuous space. We create this environment by modifying the single-objective Lunar
Lander environment (https://github.com/dennisfrancis/LunarLander-v2).

In multi-objective lunar lander task, an agent controls a spacecraft to land on the mountain on the moon.
There are three fixed landing pads on that mountain, of different height. The spacecraft has to land on one
of these landing pads with low speed, otherwise it will be crashed. Landing outside landing pad is possible.
Fuel is infinite, so an agent can learn to fly and then land on its first attempt. The state is an 8-dimensional
vector:
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• The first two entries s1, s2 represent the aircraft’s coordinates (x, y).
• The horizontal speed and the vertical speed are s3, s4 respectively;
• Here s4 is the angle of the aircraft, and s5 is its angular speed;
• s6, s7 indicates whether the left leg / right leg makes contact with the ground.

The action space contains three operations, firing the main engine, firing left-side engine, and firing right-side
engine. These actions can be discrete, or a continuous real value indicates the fuel consumption speed. The
reward for moving from the top of the screen to landing pads consists of three objectives: fuel consumption,
landing speed, and height, and has a same crashing penalty in each dimension. Figure 4–4 shows several
screenshots of this environment.

Figure 4–4 Screenshots of a video about the multi-objective reinforcement learning environment “Multi-Objective Lunar
Lander". The task involves three objectives {fuel consumption, landing speed, height}. And this benchmark environment

has two modes, compatible with discrete and continuous action space, respectively.

In the learning phase, the agent does not have any preference for those three objectives. It explores and
learns how to land the spacecraft on one of the landing pads, with low speed, and low fuel consumption.
However, in the execution phase, the agent is required to perform under a given specific preference, such as
height is the first priority since in the valley the spacecraft cannot make a scientific observation. Then the
agent has to control the spacecraft to move to the highest landing pad on the left, which increases the difficulty
of landing task.

This environment is much more complex than previous two environments. In practice we need to employ
an actor-critic algorithm rather than directly using the deep MORL algorithms based on deep Q-network.
We do not evaluate our prototype algorithms on this environment, while we provide this environment for
future research. Furthermore, our proposed deep MORL algorithms are compatible with those actor-critic
methods[11] and energy-based methods[49], therefore this environment is suitable for all of these possible
combinations.

4.3 Experiments: Naive Version versus Envelope Version

In this section, we evaluate and compare our proposed two deep MORL algorithms in above mentioned
synthetic environments with two quantitative evaluation metrics. Our experimental settings are as follows.

Architectures of the Multi-objective Q-Network We implement the (utility-based) Multi-objective Q-
networks (MQNs) by 4 fully connected hidden layers with {16, 32, 64, 32} × (dim(S) + m) hidden unites
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respectively. The multi-objective Q-networks are similar to Deep Q-Networks (DQNs)[3], but differs on
inputs. An input of the multi-objective Q-network is a concatenation of state representation and parameters
of a linear preference function. The output layer of the naive MORL algorithm is of size |A|, and that
of envelope version is of size m × |A|. Here dim(S) is the dimensionality of the state space, |A| is the
cardinality of the action set, and m is the number of objectives.

Training with Prioritized Double Q-Learning When training the with our MORL algorithm, we
employ techniques of prioritized experience reply[46] and double Q-learning[45] to speed up the train-
ing process and to yield more accurate value estimates. Double Q-Learning introduces a target net-
work Qtarget to replace the estimate of TQ(s, a,ω), yt (ω) = ω⊺r + γQtarget(s′, a,ω) with ydouble

t (ω) =

ω⊺r + γQtarget(s′, arg maxa Q(s′, a,ω),ω) for naive version of algorithm, and similarly we replace yt (ω) =

ω⊺r + γω⊺Qtarget(s′, a,ω) with ydouble
t (ω) = ω⊺r + γω⊺Qtarget(s′, arg maxa ω

⊺Q(s′, a,ω),ω) for envelope
version of MORL algorithm. We update the target network by coping from Q-network every 100 steps.

The priority of sampling transition τi = (s, a, r, s′) is pnaive
i = |ydouble(ω) − Q(s, a,ω) | for the naive

version of MORL algorithm, and similarly penvelope
i = |ydouble(ω) − ω⊺Q(s, a,ω) | for the envelope version

of algorithm, where ω is sampled from the distribution Dω. When updating the network, a trajectory is
sampled by τi ∼ P(i) = pi/

∑
i pi. The replay memory size is 4000 and the batch size is 32. For the deep

tree navigation task, we train each model for total 5000 episodes, and update it by Adam optimizer every step
after at least a batch experiences are stored in reply buffer, with a learning rate lr = 0.001.

4.3.1 Effectiveness

Both our proposed algorithms are effective for delayed linear preference scenario. In the deep sea treasure
environment, we train the agent for 2000 episodes. The training process of the naive deep MORL algorithm
in the deep sea treasure environment are shown in Figure 4–5. As it illustrates, the multi-objective agent first

re
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Utility            
Q action-left
Q action-down

Figure 4–5 The training process of the naive deep MORL algorithm in the deep sea treasure environment. The agent learns
moving down can only obtain very low utility under preference (len = 0.2, val = 0.8), while the predicted utility of moving

up keep increasing during the whole learning process. The discount factor of this task is γ = 0.99.
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a. b.

Figure 4–6 The solutions and control frontier found by a naive deep MORL algorithm in the deep sea treasure task. (a.) The
real CCS and the retrieved solutions of naive deep MORL algorithm. The naive version algorithm already can efficiently learn
all the potentially optimal solutions in this task. (b.) The real control frontier, retrieved control frontier in the execution phase,

and the predicted control frontier in the analysis phase.

Figure 4–7 Demo of DST. We set there different preferences in the execution phase of deep sea treasure task. The agent can
respond to our preferences with corresponding optimal policies.

learns moving down can only obtain very low utility under preference (len = 0.2, val = 0.8) quickly, while
the predicted utility of moving up keep increasing during the learning process.

After training in the learning phase, our deep MORL algorithms find all the potential optimal solutions
and their corresponding policies. Figure 4–6 (a.) presents the real CCS and the retrieved solutions of the naive
deep MORL algorithm. The naive algorithm already can find all the whole CCS. Figure 4–6 (b.) illustrates
the real control frontier (the blue curve), retrieved control frontier (the green curve) of the naive deep MORL
agent, and its predicted control frontier (the orange line). The retrieved control frontier is almost overlapped
with the real control frontier, which indicates that the alignment between preferences and optimal policies is
perfectly well. The agent can respond any given preference with the policy resulting in best utility.

Figure 4–7 shows a demo of playing deep sea treasure with our multi-objective reinforcement learning
agent. We set different preferences in the execution phase of deep sea treasure task. The agent can respond
to our preferences with corresponding optimal policies to find the desired treasure by minimal steps.

The classical deep sea treasure task shows the effectiveness of our deep multi-objective reinforcement
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learning algorithms, while it is too easy for the agent to find all the good policies. It only contains 10
potentially optimal solutions in the real CCS, therefore simple naive algorithm can efficiently solve this
problem. In the next section, we compare the naive version and envelope version algorithms in the slightly
more difficult fruit tree navigation task.

4.3.2 Sample Efficiency

In this section, we compare the sample efficiency of the naive version and envelope version deep MORL
algorithms in the Fruit Tree Navigation (FTN) task as introduced in Section 4.2.2, where the depth of the tree
is d = 6. For evaluating their coverage ratio (CR), as defined in Section 4.1.1, we trained on 5000 episodes
and tested on 2000 episodes. For evaluating their adaptation quality, as defined in Section 4.1.2, we tested on
5000 episodes. The basic setup of the experiments is stated above. For the envelope deep MORL algorithm,
we set the homotopy path controlled by λ to be a path where λ increase exponentially from 0.0 to 1.0.

Our approach to compare the sample efficiency of these two algorithms, is to fix the number of training
episodes, which is equivalent to the number of interactions in this environment, and varies the number of
sampled preferences Nω for updating models in both algorithms. We increase Nω from 1 to 128. When
Nω = 1, both algorithms only update under single preference each time, therefore runs fast while it makes
wasteful use of interactions. When Nω = 128, both algorithm needs to update for 128 sampled preferences
in a batch. In this case the algorithms run slowly, while can make better use of interactions.

Table 4–1 compares their coverage ratio (precision, recall, f1 score). Each entry in the table is an average
of 5 experiments (train and test). Due to the property of FTN task that every solution is potentially optimal,
the CR precision is always 1 for both naive and envelope algorithm. While for the recall, which indicates the
ability to find unseen optimal solutions in the learning phase, the envelope deep MORL algorithm is better
than the naive version for all numbers of sampled preferences, and has relatively lower variances. Therefore
the same to F1 scores. As Nω increases, the CR value increases for both naive version and envelope version
algorithms, which verifies aa better use of historical interactions for both algorithm when Nω is larger. As

CR Precision CR Recall CR F1
Nω Naive Envelope Naive Envelope Naive Envelope
1 1 ± 0 1 ± 0 0.4562 ± 0.058 0.8626 ± 0.084 0.625 ± 0.057 0.924 ± 0.051
4 1 ± 0 1 ± 0 0.6254 ± 0.097 0.972 ± 0.007 0.7654 ± 0.077 0.9856 ± 0.004
8 1 ± 0 1 ± 0 0.753 ± 0.101 0.9624 ± 0.014 0.856 ± 0.067 0.9808 ± 0.007
16 1 ± 0 1 ± 0 0.8188 ± 0.096 0.9904 ± 0.009 0.8976 ± 0.062 0.9952 ± 0.004
32 1 ± 0 1 ± 0 0.85 ± 0.061 0.975 ± 0.041 0.914 ± 0.044 0.987 ± 0.021
64 1 ± 0 1 ± 0 0.8968 ± 0.036 0.9812 ± 0.013 0.9452 ± 0.02 0.9904 ± 0.007
128 1 ± 0 1 ± 0 0.8626 ± 0.042 0.9906 ± 0.021 0.9258 ± 0.024 0.9952 ± 0.011

Table 4–1 Sample Efficiency - Coverage Ratio (CR) comparison of the naive deep MORL algorithm and the envelope deep
MORL algorithm tested on fruit tree navigation task, where the tree depth d = 6. Trained on 5000 episode.
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here the initial performance for the envelope version algorithm is good enough, it suddenly surpasses 0.98 of
CR F1 score when it can sample more than one preference each update.

Execution AQ Prediction AQ
Nω Naive Envelope Naive Envelope
1 0.7037 ± 0.012 0.759 ± 0.066 0.6474 ± 0.054 0.6915 ± 0.105
4 0.7701 ± 0.026 0.9101 ± 0.006 0.7216 ± 0.034 0.7853 ± 0.049
8 0.8205 ± 0.023 0.9261 ± 0.015 0.7714 ± 0.02 0.7675 ± 0.033
16 0.8255 ± 0.044 0.9306 ± 0.007 0.8097 ± 0.016 0.8417 ± 0.007
32 0.8597 ± 0.035 0.9402 ± 0.011 0.7989 ± 0.032 0.8513 ± 0.01
64 0.877 ± 0.031 0.9506 ± 0.001 0.7778 ± 0.032 0.8497 ± 0.018
128 0.8705 ± 0.03 0.9536 ± 0.002 0.8081 ± 0.04 0.868 ± 0.025

Table 4–2 Sample Efficiency - Adaptation Quality (AQ) comparison of the naive deep MORL algorithm and the envelope
deep MORL algorithm tested on fruit tree navigation task, where the tree depth d = 6. α = 10. Trained on 5000 episode.

Table 4–2 compares their adaptation quality in both execution phase and analysis phase. Each entry
in the table is an average of 5 experiments (train and test). For all numbers of sampled preferences, the
envelope deep MORL algorithm has better execution AQ than the naive algorithm, in spite of better CR of the
envelope version, it also indicates the envelope version algorithm has better alignment between preferences
and policies. As Nω increases, the values of execution AQ and prediction AQ of both algorithms keep
increase. Notice that even though when Nω = 1 the execution AQ of the naive version and the envelope
version differs only around 0.5, when Nω increase to 4, the envelope version algorithm better utilizes the
sampled preferences to improve the execution AQ to above 0.9. This agrees with our theoretical analysis that
our envelope deep MORL algorithm has better sample efficiency than the naive version.

4.3.3 Robustness on Size of the Frontier

CR Recall CR F1 CR F1 (Prediction)
Nω Naive Envelope Naive Envelope Naive Envelope
1 0.8814 ± 0.041 0.9436 ± 0.051 0.9364 ± 0.023 0.9706 ± 0.027 / 0.1768 ± 0.066
4 0.969 ± 0.031 1 ± 0 0.984 ± 0.016 1 ± 0 / 0.559 ± 0.067
8 0.9938 ± 0.014 1 ± 0 0.9968 ± 0.007 1 ± 0 / 0.6424 ± 0.031
16 1 ± 0 1 ± 0 1 ± 0 1 ± 0 / 0.7338 ± 0.018
32 1 ± 0 1 ± 0 0.9968 ± 0.007 1 ± 0 / 0.769 ± 0.018
64 0.9938 ± 0.014 1 ± 0 0.9968 ± 0.007 1 ± 0 / 0.8012 ± 0.025
128 1 ± 0 1 ± 0 1 ± 0 1 ± 0 / 0.827 ± 0.015

Table 4–3 Sample Efficiency - Coverage Ratio (CR) comparison of the naive deep MORL algorithm and the envelope deep
MORL algorithm tested on fruit tree navigation task, where the tree depth d = 5. Trained on 5000 episode.
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We also investigate how the size of optimality frontiers will affect the performance of our algorithms.
We train our deep MORL algorithms on two new FTN environments with d = 5 and d = 7 respectively. One
is smaller than the previous environment, which contains only 32 optimal solutions, the other is larger than
the previous environment, containing 128 solutions on the CCS. We fix the number of episode for training as
5000, and test 2000 episode to obtain coverage ratio, and test 5000 episode for policy adaptation quality.

Table 4–3 shows the results of coverage ratio evaluation in the environment of tree depth d = 5. As it
shows, both naive and envelope algorithms work well in that environment. the CR F1 scores are very close
to 1. The envelope version algorithm is more stable than the naive version deep MORL algorithm. Besides,
the envelope deep MORL algorithm can predict multi-objective solutions, while the naive algorithm cannot.
The prediction ability will also be improved as Nω increases.

CR Recall CR F1 CR F1 (Prediction)
Nω Naive Envelope Naive Envelope Naive Envelope
1 0.2312 ± 0.029 0.4674 ± 0.068 0.3748 ± 0.038 0.6348 ± 0.063 / 0.03 ± 0.022
4 0.3452 ± 0.057 0.5234 ± 0.074 0.5112 ± 0.063 0.6846 ± 0.067 / 0.067 ± 0.031
8 0.3688 ± 0.042 0.6032 ± 0.05 0.5376 ± 0.046 0.7516 ± 0.039 / 0.1436 ± 0.022
16 0.4358 ± 0.065 0.5798 ± 0.052 0.6052 ± 0.061 0.7328 ± 0.043 / 0.1406 ± 0.008
32 0.3954 ± 0.06 0.65 ± 0.067 0.5646 ± 0.061 0.7862 ± 0.049 / 0.1596 ± 0.031
64 0.447 ± 0.045 0.597 ± 0.109 0.6168 ± 0.043 0.743 ± 0.086 / 0.2006 ± 0.046
128 0.4624 ± 0.063 0.6876 ± 0.053 0.6308 ± 0.058 0.8138 ± 0.038 / 0.1902 ± 0.009

Table 4–4 Sample Efficiency - Coverage Ratio (CR) comparison of the naive deep MORL algorithm and the envelope deep
MORL algorithm tested on fruit tree navigation task, where the tree depth d = 7. Trained on 5000 episode.

Table 4–4 shows the results of coverage ratio evaluation in the larger environment of tree depth d = 7.
As it indicates, both naive and envelope algorithms work badly in that environment within only 5000 episodes
for training. However, even in this case, the envelope version algorithm performance than the naive version
deep MORL algorithm in the learning phase Besides, the envelope deep MORL algorithm can predict multi-
objective solutions, while the naive algorithm cannot. The prediction ability will also be improved as Nω

increases in this case, which means our method is robust in the learning phase on the size of CCS.

As for the adaptation quality, Table 4–5 shows the results of execution AQ and prediction AQ evaluation
in the environment of tree depth d = 5. As it shows, the envelope deep MORL algorithm in this simple
environment can reach above 0.9 execution AQ by sampling few preferences each update. It verifies the better
sample efficiency of the envelope version algorithm. Furthermore, though the prediction AQ of these two
algorithms in this simple task is compatible, while the envelope version algorithm can make more steady
predictions when Nω goes large.

Table 4–6 presents the results of execution AQ and prediction AQ evaluation in the environment of tree
depth d = 5. As it shows, the both naive and envelope deep MORL algorithms work not so well in the
environment within 5000 episodes for training. However, the envelope version algorithm is constantly better
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than the naive version algorithm in this hard task. Moreover, as Nω increases, the execution AQ and the
prediction AQ of both algorithms increase. And the envelope version algorithm gains a better improvement
when Nω increases from 1 to 4 because of its better sample efficiency. These results strongly support the
robustness of our algorithms.

Execution AQ Prediction AQ
Nω Naive Envelope Naive Envelope
1 0.7943 ± 0.039 0.8578 ± 0.036 0.7153 ± 0.079 0.6254 ± 0.041
4 0.8836 ± 0.01 0.9041 ± 0.005 0.8195 ± 0.021 0.7843 ± 0.055
8 0.8975 ± 0.003 0.9099 ± 0.001 0.8427 ± 0.022 0.7952 ± 0.023
16 0.9047 ± 0.003 0.9109 ± 0.001 0.8698 ± 0.01 0.8488 ± 0.032
32 0.9054 ± 0.003 0.9113 ± 0.001 0.8647 ± 0.014 0.8847 ± 0.006
64 0.9096 ± 0.003 0.9119 ± 0 0.8761 ± 0.024 0.8731 ± 0.008
128 0.9071 ± 0.004 0.9121 ± 0 0.8535 ± 0.033 0.8809 ± 0.026

Table 4–5 Sample Efficiency - Adaptation Quality (AQ) comparison of the naive deep MORL algorithm and the envelope
deep MORL algorithm tested on fruit tree navigation task, where the tree depth d = 5. α = 10. Trained on 5000 episode.

Execution AQ Prediction AQ
Nω Naive Envelope Naive Envelope
1 0.624 ± 0.012 0.6646 ± 0.025 0.5847 ± 0.061 0.60 ± 0.029
4 0.6704 ± 0.006 0.730 ± 0.018 0.6969 ± 0.057 0.6544 ± 0.066
8 0.6763 ± 0.022 0.7237 ± 0.018 0.6837 ± 0.097 0.7437 ± 0.04
16 0.6867 ± 0.025 0.7473 ± 0.023 0.6532 ± 0.029 0.7936 ± 0.015
32 0.6828 ± 0.022 0.7204 ± 0.05 0.6829 ± 0.037 0.7997 ± 0.017
64 0.671 ± 0.06 0.7429 ± 0.015 0.7284 ± 0.03 0.8112 ± 0.018
128 0.6916 ± 0.015 0.7586 ± 0.024 0.6719 ± 0.076 0.8199 ± 0.008

Table 4–6 Sample Efficiency - Adaptation Quality (AQ) comparison of the naive deep MORL algorithm and the envelope
deep MORL algorithm tested on fruit tree navigation task, where the tree depth d = 7. α = 10. Trained on 5000 episode.

4.3.4 High-Dimensional Visualization

The multi-objective reinforcement learning problem involves high-dimensional rewards. To visualize the
results obtained by our naive and envelope deep MORL algorithms would be very interesting. In this section,
we show several visualization examples. This example could provide us insights into the characters of our
proposed deep multi-objective reinforcement learning algorithms.

Figure 4–8 illustrates the comparison of CCS and control frontier of deep MORL algorithms. Both
figure (a.) and (b.) are measured on a fruit tree navigation task with the depth of 6 which contains total 64
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Figure 4–8 Comparison of CCS and control frontiers of deep MORL algorithms. Both figure (a.) and (b.) are measured on a
fruit tree navigation task with the depth of 6 which contains total 64 solutions in the real CCS. The left figure is visualizing the
real CCS and retrieved CCS of naive and envelope MORL algorithms using t-SNE[50]. The right figure presents the slices of
optimal control frontier and the control frontier of naive and envelope MORL algorithms along the Mineral-Waters plane.
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Figure 4–9 Comparison of predicted CCS and control frontiers of deep MORL algorithms. Both figure (a.) and (b.) are
measured on a fruit tree navigation task with depth of 6 which contains total 64 solutions in the real CCS. The figure (a.)

visualizing the real CCS and predicted CCS of envelope MORL algorithms using t-SNE[50]. The figure (b.) presents the slices
of optimal control frontier and the predicted control frontier of naive and envelope MORL algorithms along the

Protein-Carbs plane.

solutions in the real CCS. The left figure is visualizing the real CCS and retrieved CCS of naive and envelope
MORL algorithms using t-SNE[50]. From this figure we can see that the envelope version algorithm (dots in
green) covers almost every optimal solutions in the real CCS than the naive algorithm (dots in pink). The right
figure presents the slices of optimal control frontier and the control frontier of naive and envelope MORL
algorithms along the Mineral-Waters plane. The envelope version algorithm retrieves almost the whole
real control frontier, while the naive version algorithm has larger control discrepancies. However, there is a
small discrepancy between the real control frontier and the one retrieved by envelope version algorithm at the
indentation of the frontier. This indicates an alignment issue between the preferences and optimal policies.
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Figure 4–9 illustrates the comparison of predicted CCS and predicted control frontiers of deep MORL
algorithms. Both figure (a.) and (b.) are measured on a fruit tree navigation task with the depth of 6 which
contains total 64 solutions in the real CCS. The left figure visualizing the real CCS and predicted CCS of
envelope MORL algorithms using t-SNE[50]. This figure would help us in the analysis phase in the delayed
linear preference scenario. The right figure presents the slices of optimal control frontier and the predicted
control frontier of naive and envelope MORL algorithms along the Protein-Carbs plane. The prediction of
the envelope version algorithm is much better than that of the naive version algorithm.

4.4 Summary

In this chapter, we evaluate the performance of our proposed two value-based deep MORL algorithms 3–1
and 3–2. First, we propose two quantitative evaluation metrics, coverage ratio (CR) and adaptation quality
(AQ) in Section 4.1. The coverage ratio is a measure of an agent’s ability to find all the potentially optimal
solutions in the convex coverage set of the Pareto frontier in the learning phase, which can be defined as an F1
score. The adaptation quality measures an agent’s ability of policy adaption to real-time specified preference
in the execution phase, which is defined based on the control frontier and control error.

To test our algorithms, we designed three synthetic multi-objective reinforcement learning environments.
The reason we use synthetic environments is that in these cases the ground truth of Pareto frontier and control
frontier is known. Our first domain is a grid-world problem, deep sea treasure (DST), which is a classical
benchmark environment for MORL. The second domain is called fruit tree navigation (FTN), which contains
dozens of high-dimensional optimal solutions. Our third environment, multi-objective lunar lander (MOLL)
environment, is designed for continuous control and more complex deep Q-learning models.

The experiments on DST gives an appetite to show the effectiveness of our proposed algorithms. Both
algorithms can work very well on this simple task in both learning phase and execution phase. To compare
the sample efficiency of our algorithms, we test them on the FTN environment. Our results consistently show
that the envelope version algorithm has better CR and AQ than the naive version algorithm after training on
the same number of episodes. Besides, as the number of sampled preference each update increases, both
algorithms get improvement, and the improvement for the envelope version algorithm is more than that of the
naive version. These results are robust on the size of the frontiers. We also visualize our results with several
dimension reduction methods.
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Chapter 5 Applications in Task-Oriented Dialogue Policy Learning

Following the thorough theoretical and experimental analysis about deep multi-objective reinforcement learn-
ing algorithms, this chapter provides practical applications of our proposed algorithms in task-oriented dia-
logue policy learning. We start with a brief introduction to task-oriented spoken dialogue systems (SDS) in
Section 5.1. The task-oriented dialogue systems consist of many components severing for different function-
alities, among which the dialogue manager (DM) plays a key role in controlling the interaction with users.
This module decides a dialogue system how to respond to user’ requests according to a dialogue policy.
Designing robust dialogue policies is very time-consuming and expensive.

Section 5.2 discuss the current trends to learn a dialogue policy from interactions by using deep
reinforcement learning techniques. Traditional reward design is a weighted average of different objectives.
How to balance these objectives is rarely considered. To address this critical problem, we reconsider dialogue
policy learning as a delayed linear preference scenario of multi-objective reinforcement learning.

We apply our proposed naive and envelop deep MORL algorithms in the online dialogue learning
process, and compare to traditional single-objective methods. Our method can provide the more robust
performance to users with different preferences. The experiment settings and results are presented in Section
5.3.

5.1 Task-Oriented Dialogue Systems

The field of task-oriented spoken dialogue systems (Task-Oriented SDS) has developed rapidly in the aca-
demic[51-54] and industry[55-57] over the past two decades. Speech-driven interfaces are becoming a common
part of daily life through applications such as in-car navigation systems, smart home dictation or telephone-
based information services. Task-oriented spoken dialogue systems are no doubt a killer app for artificial
intelligence. From the perspective of technology, a task-oriented spoken dialogue system has following three
important features comparing to a common chatbot or an information retrieval system.

• It is required to satisfy user goals. The task-oriented dialogue system serves the cause of satisfying
user’s information needs in a certain domain (or relative domains). For example, a task-oriented
dialogue system can help users make a restaurant reservation, or answer a weather information query,
or give direction information when driving.

• It is required to maintain multi-round interactions. Our daily conversational interactions are multi-
round processes. A single utterance may lead to ambiguity, and the goal of the task-oriented dialogue
may be revealed only after multiple rounds. This requires task-oriented dialogue systems to maintain
the context and the user information.

• It is required to deal with uncertainty. There are two sources of uncertainty for a conversation,
recognition and understanding. A good task-oriented dialogue system should be robust on errors
from speech recognition and language understanding.

– 48 of 72 –



Deep Multi-Objective Reinforcement Learning and Its Application in Task-Oriented Dialogue Systems

Speech 
Recognition

Speech 
Synthesis

Dialogue State  
Tracking (DST)

Policy Model 
(parameters θ)

Dialogue Manager

Human  
User

Language 
Understanding

Text 
Generation

wt
<latexit sha1_base64="nYjOhbxvpYSG6rmQcDzaZbf/A94="></latexit><latexit sha1_base64="nYjOhbxvpYSG6rmQcDzaZbf/A94="></latexit><latexit sha1_base64="nYjOhbxvpYSG6rmQcDzaZbf/A94="></latexit><latexit sha1_base64="nYjOhbxvpYSG6rmQcDzaZbf/A94="></latexit>

gt
<latexit sha1_base64="bDNoaBoh+ClGOBSQFYHOQpP8Bto="></latexit><latexit sha1_base64="bDNoaBoh+ClGOBSQFYHOQpP8Bto="></latexit><latexit sha1_base64="bDNoaBoh+ClGOBSQFYHOQpP8Bto="></latexit><latexit sha1_base64="bDNoaBoh+ClGOBSQFYHOQpP8Bto="></latexit>

Figure 5–1 The general framework of a task-oriented dialogue system

The general framework of a task-oriented dialogue system is visualized in Figure 5–1. On the input
understanding side, the speech recognition module receives the acoustic signal emitted by the human user,
maps it to the most k likely sequence of words wt and their confidence scores. The text output of the speech
recognition module is then semantically decoded by a speech understanding module to a structural dialogue
act, ut . The dialogue acts are usually formed by acttype − slot − value, where acttype is the type of
intent of the utterance action, which can be “inform()", “confirm()", or “request()", etc. slot is the semantic
object mentioned in the utterance, like “restaurant", “phone number", “price", etc. value is the concrete
reference of the semantic slot, such as “restaurant=pizzahut", “phone number=233", and “price=$1". For
example, “inform(route=61a)" is a dialogue act to inform the system that the user is talking about bus route
61a. On the output generation side, the text generation module translates the high-level representation of the
system’s dialogue acts at into a sequence of words gt . And the speech is synthesized using a text-to-speech
module to respond to the human user.

The mission of the dialogue manager (DM) at the central part of a task-oriented dialogue system is to
control the flow of a conversation, tackle the uncertainty arising from speech recognition and understanding
errors, and perform forward satisfying user goal. The dialogue manager can be divided into two parts, dialogue
state tracker and dialogue policy model. The dialogue state tracker is designed to interpret probability
distribution of user dialogue act ut , resolves contextual references, and updates the dialogue state st . A
dialogue state is a structural representation of the user goal, current semantics, and the dialogue history.Based
on the state st , an appropriate system response at is then rendered following the system’s dialogue policy
which defines the system’s conversational behavior. In the next section, we will introduce the current trends
of constructing dialogue policy module, and explain why a multi-objective reinforcement learning setting is
beneficial to the dialogue policy learning.

5.2 Dialogue Policy Learning

Generally, approaches to constructing a policy module can be divided into two categories: rule-based and
statistical. Rule-based policies are usually hand-crafted by domain experts which means they are inconvenient
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and difficult to be optimized[58, 59]. In recent mainstream statistical studies, partially observable Markov
decision process (POMDP) framework has been applied to model dialogue management with unobservable
states, where policy training can be formulated as a reinforcement learning problem, which enables the policy
to be optimized automatically[6, 60].

As a standard single reinforcement learning formulation, the goal of the policy model is to interact with a
human user by choosing actions in each turn to maximize future rewards. We define the dialogue state shared
by dialogue state tracker in the t-th turn as state st . The action taken by policy model under current policy
πθ with parameters θ in the t-th turn as at , and at ∼ π(·|st ). The stochastic transition kernel is unknown
but determined by human users or user simulators. In an ideal dialogue environment, once the policy model
emits an action at , the human user will give an explicit feedback, like a normal response or a feedback of
whether the dialogue is successful, which will be converted to a reward signal rt delivering to the policy
model immediately, and then the policy model will transit to next state st . The reward signal is an average of
values of two objectives, brevity and success, which can be expressed as

rt = 0.5 · rturnt + 0.5 · rsucct (5–1)

where rturnt is the turn penalty reward and rsucct is the dialogue success reward. Typically, rturnt is fixed for
each turn as a negative constant Rturn, while r succ

t equals a positive constant Rsucc only when the dialogue
terminates and receives a successful user feedback otherwise it equals zero. Many reinforcement learning
algorithm can be therefore apply to dialogue policy learning, such as deep Q-learning[3].

Though RL-based approaches have the potential to improve themselves as they interact more with
human users and achieve better performance than rule-based approaches, they are rarely used in real-world
applications, especially in on-line scenarios, mainly because of two reasons. The first reason is that the
on-line training process is usually unsustainable, and the second reason is that the fixed scalarized reward
cannot best fit all users’ preferences.

5.2.1 Companion Teaching

This section aims at introducing several new approaches to solve unsustainable and unaffordable on-line
dialogue policy learning problem. The main causes of this problem are two-fold:

• Safety issue: the initial policy trained from scratch may lead to terrible user experience at the early
training period, thus fail to attract sufficient users for more dialogues to do further policy training.

• Efficiency issue: if the progress of policy learning is not so efficient, it will exhaust users’ patience
before the policy reaches a desirable performance level.

Prior works have mainly focused on improving efficiency, such as Gaussian Processes RL[61], deep RL[62],
etc. For deep RL approaches, recent researches on the student-teacher RL framework have shown prominent
acceleration to policy learning process[63-65]. In such framework, the teacher agent instructs the student agent
by providing suggestions on what actions should be taken next[66].

For the safety issue, paper [67] first proposes a human-in-the-loop framework. Several teaching strategies
are devised to answer “how" the human teacher guide the learning process. However, these strategies simply
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Figure 5–2 Companion teaching framework for on-line dialogue policy learning

exhaust all the budget continuously from the beginning, which is wasteful and causes a heavy workload of
the human teacher. An affordable dialogue policy learning with human teaching should require a lighter
workload and economically utilize teaching budget. Followed that work, a complete Companion Teaching
framework[68] is proposed to include “when" to teach in concern. As depicted in Figure 5–2, at each turn, the
input module receives speech input from the human user, then produces possible utterances ut of the speech
in text. After that, the dialogue state tracker extracts the dialogue state st from possible utterances. This
dialogue state will be shared with policy model and human teacher if needed. When the final response at ,
has been determined, the output module will translate this dialogue act to the natural language and reply to
the human user. The success signal will be fed back by the user or the human teacher as an important part of
system reward, at the end of each session. The human teacher can take the initiative or be activated by student-
initiated heuristic to give the dialogue guidance with strategies corresponding to different configurations of
switches in the illustration. The combination of strategy and heuristic is called teaching scheme.

The teacher can choose among three teaching strategies corresponding to different configurations of
switches in a wiring diagram as Figure 5–2 shows: The left switch is a Single-Pole, Double-Throw (SPDT)
switch, which controls whether the answer is made by the system (connected to 1) or given by the teacher
as an example (connected to 2). The right switch is a simple on-off switch, which represents whether there
is an extra reward signal from the teacher (ON) or not (OFF). The strategy related to the right switch is
called teaching via Critic Advice (CA), also known as turn-level reward shaping[69, 70]. When the switch
at position 3 is turned on, the teacher will give the policy model extra turn-level reward to distinguish the
student’s actions between good and bad actions. Besides, the left switch corresponds to teaching via Example
Action (EA), which means the teacher gives example action for the student to take according to the student’s
state. The other strategy is proposed by[67], which take the advantages of both EA and CA, named teaching
via Example Action with Predicted Critique (EAPC). With this strategy, the human teacher gives example
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actions; meanwhile, a weak action predictor is trained using this teaching information to provide the extra
reward even in teacher’s absence.

In addition to teaching from the beginning, many other teaching heuristics are explored in this work,
such State Importance based Teaching heuristic (SIT), State Uncertainty based Teaching heuristic (SUT),
and Failure Prognosis based Teaching heuristic (FPT) using multi-task deep Q-networks. Experiments
showed that different teaching schemes have different effects on safety and efficiency dimension. And these
teaching schemes also require different workload of the teacher. Among 18 compared teaching schemes,
FPT-based heuristics combined with EAPC strategy achieved promising performance on RI and HT, and
required relatively slight workload. This result indicates a proper teaching scheme under the companion
teaching framework is able to guarantee a sustainable and affordable on-line dialogue policy learning process.
The paper [71] discusses a more economic approach for companion teaching, in which the human teachers
are replaced by rule-based systems.

5.2.2 Multi-Objective Rewards

Companion teaching provides us with a safe and efficient on-line dialogue learning process. However,
as we set the fixed scalarized reward for the dialogue learning, the obtained optimal policy cannot fit all
users’ preference, and sometimes is out of our expectation. For example, different users may have different
preferences to the brevity and the success of conversation with dialogue. Some users interact with the task-
oriented dialogue system often when they are driving cars. They hope the dialogue system can provide them
a concise response in few turns, rather than a long conversation with very precise information.

Adaptation to user preferences and balancing these objectives is rarely considered. Finding a good
balance between multiple potentially competing objectives is usually domain-specific and not straightforward.
For example, in the case when the objectives are brevity and success, if the relative importance weight for
success is too high, the resulting policy is insensitive to potentially annoying actions such as “repeat()"
provided that the dialogue is eventually successful. Conversely, if the relative importance weight for success
is too small, the learning algorithm may annoy users by offering inappropriate solutions before fully knowing
the user’s requirements. Paper [72] proposes a structured method, which is equivalent to our naive method
but without hindsight experience replay, for finding the optimal weights for a multi-objective reward function.

The idea to transform the dialogue learning process to a delayed preference scenario multi-objective
reinforcement learning is straightforward. With the same definitions of states and actions introduced in
Section 5.2, we change the form of reward single to a vector from:

rt =
[
rturnt rsucct

]⊺
(5–2)

where rturnt is the turn penalty for the brevity objective and rsucct is the task success reward for the success
objective. Typically, rturnt is fixed for each turn as a negative constant Rturn, while r succ

t equals a positive
constant Rsucc only when the dialogue terminates and receives a successful user feedback otherwise it equals
zero.
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In the learning phase, the linear preferenceω to this two objectives are unknown, while the computational
resources are abundant. The task-oriented dialogue system needs to learn all the possible optimal policies with
sampled ω’s (achieved by user simulators or collected interactions with real users). While in the execution
phase, learning is unaffordable because of the limitation of resources. The task-oriented dialogue system
needs to respond the user with a specified user preference. User’s utility increase is aligned with the system’s
utility increase ω⊺rt .

Comparing with single-objective reinforcement learning methods, where the relative importance weights
of the system is always fixed in both learning and execution phases. The system may not learn the optimal
responses under certain preferences, or execute following a policy mismatched user’s preference therefore the
user’s utility is low. In the next section, we apply our two proposed deep MORL algorithms to the dialogue
policy learning, and compare to traditional single-objective methods.

5.3 Experiments

The goal of our experiments in this section is to investigate the applicability of our proposed deep MORL
algorithms in task-oriented dialogue policy learning. We are supposed to answer, first, how will the multi-
objective reinforcement learning affect the efficiency of training process? Second, what is the optimality
frontier for the brevity and success objectives in a dialogue application? Third, how are the policy adaptation
abilities of our proposed deep MORL algorithms. Only by investigating all these questions, and comparing
MORL algorithms to traditional single-objective methods, we can conclude the benefits we may gain from
applying our proposed deep multi-objective reinforcement learning algorithms to the task-oriented dialogue
system domain.

5.3.1 Experimental Settings

The multi-objective reinforcement learning algorithm for task-oriented dialogue policy learning is applied to
a restaurant lookup hotline to provide information restaurants in Cambridge. There are 3 search constraints,
9 informational items that the user can request, and 110 database entities. The reward Rturn is −1 for each
turn, and Rsucc = 20. The maximal length of dialogue is 25.

We use the statistical spoken dialogue toolkit PyDial[73] to generate dialogue simulations, where an
agenda-base user simulator[74] with an error model to simulate the recognition and understanding errors
arisen in the real system due to in the speech noise and ambiguity. All the single-objective and multi-
objective reinforcement learning are trained for 3,000 sessions with 15% simulated error rate. We evaluate
learned policies on 5,000 sessions with randomly assigned user preferences. The preference distribution Dω

is same as the one we used in previous deep sea treasure experiment (see Section 4.3.1), which is a nearly
uniform distribution.

For the single-objective reinforcement learning algorithms, we set three groups of ω as {(0.5, 0.5),

(0.2, 0.8), (0.8, 0.2)}. For the envelope deep MORL algorithms, the homotopy path is a monotonically
increasing track where λ increases from 0.0 to 1.0 exponentially. The number of sampled preferences Nω
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is 32 for both naive and envelope deep MORL algorithms. The exploration policy used for training these
reinforcement learning algorithms is ϵ-greedy, where ϵ = 0.5 initially and then decays to zero linearly during
the training process. For all the single-objective and multi-objective algorithms, we employ the same deep
Q-network architecture, which comprises 3 fully connected hidden layers with {16, 32, 32} × (dim(S) + m)

hidden units. The minibatch size is 64 for all. An Adam optimizer is used for updating the parameters of all
these algorithms, with an initial learning rate rl = 0.001.

5.3.2 Results and Analyses

Evaluation on Training Processes We first investigate the training process of the single-objective and
multi-objective method for dialogue policy learning. Figure 5–3 shows the training curves of moving average
success rate of single-objective and multi-objective reinforcement learning algorithms for the dialogue policy
learning. Each data point is the average over 500 most recent dialogues and three trails. As shown in this
figure, the single-objective reinforcement learning methods with different weights of success achieve higher
success rates faster than two multi-objective methods. This is because the single-objective methods only
need to take care of one fixed preference and always update their parameters for that preference. While the
multi-objective method needs to update for all preferences in the learning phase, and can only update for few
sampled preference each step. However, in a long-term, the multi-objective methods can achieve competitive
success rates to the single-objective method. Especially when we assume we have abundant computational
resources in the learning phase, and off-policy learning is always available, this problem will not restrict the
applicability of multi-objective reinforcement methods.

Figure 5–3 Training curves of moving average success rate of single-objective and multi-objective reinforcement learning
algorithms for the dialogue policy learning. Each data point is the average over 500 most recent dialogues and three trails.

Figure 5–4 shows the training curves of moving average dialogue length of single-objective and multi-
objective reinforcement learning algorithms for the dialogue policy learning. Each data point is the average
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Figure 5–4 Training curves of moving average dialogue length of single-objective and multi-objective reinforcement learning
algorithms for the dialogue policy learning. Each data point is the average over 500 most recent dialogues and three trails.

over 500 most recent dialogues and three trails. As the number of learned sessions increases, the dialogue
length of each policy the decreases, which indicates the brevity of the conversation for each policy gets better.
The single-objective reinforcement learning methods with different weights of success achieve lower dialogue
length faster than two multi-objective methods. However, the multi-objective method can achieve the close
level eventually.

Evaluation on Different Objectives The Pareto frontier of the dialogue policy learning consists of only one
solution ideally, since the cumulative reward [−2, 20] dominates all the other solutions. However, in the real
world is almost impossible to build such a policy to satisfy any user’s goal within a two-turn interaction. This

Figure 5–5 Control frontiers of the task-oriented dialogue policy learning. The ideal control frontier is generated by an ideal
policy always achieving the ideal optimal reward [-2,20] (make any dialogue successful in two turns). Comparing to it, we

draw the execution control frontiers retrieved by naive and envelope deep MORL algorithms, respectively.
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Single-(0.5,0.5) Single-(0.2,0.8) Single-(0.8,0.2) Naive Envelope
Success Rate 88.18 ± 0.90 85.30 ± 0.98 87.62 ± 0.91 86.38 ± 0.95 89.52 ± 0.85

# Turns 8.93 ± 0.13 9.40 ± 0.16 7.42 ± 0.10 8.08 ± 0.12 8.08 ± 0.12
User Utility 2.13 ± 0.23 1.84 ± 0.23 2.53 ± 0.22 2.38 ± 0.22 2.65 ± 0.22

AQ (α = 0.1) 0.660 0.279 0.728 0.614 0.814

Table 5–1 The average success rate, number of turns, user utility, and adaptation quality (AQ) (see Section 4.1.2) of policies
obtained by single-objective and multi-objective reinforcement learning algorithms after 3,000 training dialogues. We

evaluate them on 5,000 dialogues with near-uniformly randomly sampled preference.

ideal solution can be used as the ground truth for evaluating our different MORL algorithms. Since there is
only one solution in the CCS, the measurement of coverage ratio is meaningless, while the evaluation related
to the control frontier will be still meaningful. Figure 5–5 shows the control frontiers of the task-oriented
dialogue policy learning. The ideal control frontier is generated by an ideal policy always achieving the ideal
optimal reward [−2, 20] (make any dialogue successful in two turns). Comparing to it, we draw the execution
control frontiers retrieved by naive and envelope deep MORL algorithms, respectively. Notice that the control
frontiers of these two deep MORL algorithm have many tracks of boundaries. This is because in the dialogue
task the initial states are different for different sessions. Some initial states are easier, therefore the system
can achieve better utility, while some are harder, the retrieved solution is far worse than the ideal solution.
The envelope version algorithm’s frontier has thinker outer boundaries than that of the naive version, which
indicates the envelope version algorithm behaves better for more initial states. This can also be revealed by
our quantitative evaluation metric.

Table 5–1 is the quantitative evaluation results for different dialogue policy learning methods. We
evaluate the average success rate, the average dialogue length, the average user utility, and the adaptation
quality (AQ) of policies obtained by single-objective and multi-objective reinforcement learning algorithms
after 3,000 training dialogues. The evaluation is performed on 5,000 dialogues with near-uniformly randomly
sampled preference. Our results are as follows: First, the envelope version MORL algorithm achieves best
success rate in average, and the single-objective method with 0.5 weight of success achieves a competitive
success rate. The single-objective method with 0.8 success weight has worst performance on success rate
eventually. This is might because lack of turn level reward guidance directly optimize for success is very
difficult for the single-objective RL learner. Second, the single-objective method with 0.2 success weight
(emphasizing the brevity more) achieves the shortest dialogue length. While our two deep MORL algorithms
also perform well for the average brevity, and are much better than other two single-objective settings. Third,
as for the average user utility, the envelope deep MORL is better than others. The naive deep MORL achieves
only an average level of the single-objective results (better than the ones with 0.5, 0.8 success weights, but
worse than the one 0.2 with success weight). One possible explanation for this result is that the naive deep
MORL requires more sessions for training, while 3,000 dialogues are not enough. This explanation can
be supported by our analyses of training processes. Finally, we use the ideal control frontier to compute
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the adaptation quality (AQ) with α = 0.1 (see its definition in Section 4.1.2) for all learned policies, and
the envelope version MORL algorithm reaches the highest score. This supports our statement that MORL
algorithm can better adapt to different user preferences. The AQ score of naive version algorithm is close
to those of well-trained single-objective methods, and is much better than the one with 0.8 success weight.
Applying MORL algorithm can help us avoid choosing improper relative importance weights for training.

Evaluation on Policy’s Adaptation Ability We have already known that the deep MORL algorithms can
help us train better policy overall without carefully choosing relative importance weights. How do they
make it? The answers lie in their policy adaptation ability to different user preferences in the execution
phase. Figure 5–6 is the MORL success-weight curves after 3,000 training dialogues. We evaluate policies
on 5,000 dialogues with near-uniformly randomly sampled preference. For each curve, each data point is
a moving average of closest around 500 dialogues in the interval of around ± 0.05 weight of success over
three trained policies. As shown in this figure, the success rates of the MORL algorithms increase as the
user’s weight of success increases, while the success rates of the single-objective algorithms do not change.
This means that our MORL methods can adapt to the user’s preference, while the single-objective methods
cannot. Furthermore, our envelope deep MORL algorithm outperforms other algorithms on the success rate
when the success objective is relatively more important to the user.

Figure 5–6 The MORL success-weight curves after 3,000 training dialogues. We evaluate policies on 5,000 dialogues with
near-uniformly randomly sampled preference. For each curve, each data point is a moving average of closest around 500

dialogues in the interval of around ± 0.05 weight of success over three trained policies.

Figure 5–7 shows similar results for the brevity objective. Although the single-objective method with
fixed preference (0.8, 0.2) achieves the shortest dialogue length under all user preferences, two MORL
algorithms also achieve a close level. The other single-objective baselines are not so good at brevity due to
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Figure 5–7 The MORL success-weight curves after 3,000 training dialogues. We evaluate policies on 5,000 dialogues with
near-uniformly randomly sampled preference. For each curve, each data point is a moving average of closest 500 dialogues in

the interval of around ± 0.05 weight of success over three trained policies.

Figure 5–8 The MORL utility-weight curves after 3,000 training dialogues. We evaluate policies on 5,000 dialogues with
near-uniformly randomly sampled preference. For each curve, each data point is a moving average of closest 500 dialogues in

the interval of around ± 0.05 weight of success over three trained policies.

their training on fixed preferences emphasizing more on the success objective. Moreover, when the user’s
weight of success is close to 1, which means the length of the dialogue is not important, our MORL algorithms
can sacrifice a bit brevity to ensure the success rate is above 90%. As shown in Figure 5–8, which illustrates
utility-weight curves, we find the envelope deep MORL algorithm is almost always better than other methods
in terms of utility, and the naive version keeps a good level of utility under almost all user preferences.
Single-objective methods are good only when the user’s weight of success is close to their fixed preferences
while training.
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5.4 Summary

In this chapter we discuss the applications of proposed deep multi-objective reinforcement learning algorithms
in task-oriented dialogue systems. In Section 5.1 we briefly introduce the task-oriented spoken dialogue
system (SDS). A task-oriented dialogue system is a modular system with many components, among which
the dialogue manager plays the central role to control the flow of dialogue. The dialogue manager, consisting
of dialogue state tracker and dialogue policy model, interacts with the user on the intention level. We also
introduce the structure of dialogue states and the dialogue acts in this section.

Generally speaking, approaches of constructing a policy module can be divided into two categories:
rule-based and statistical. We focus on the application in the mainstream statistical dialogue policy learning
because of its evolvability. The dialogue learning can be formulated as a Markov decision process and solved
by reinforcement learning. We introduce this part in Section 5.2. Although RL-based approaches have the
potential to improve themselves, they are rarely used in real-world applications, mainly because first the
on-line training process is usually unsustainable, and second the fixed scalarized reward cannot best fit all
users’ preferences. For addressing the first problem, we introduce a companion teaching framework which
takes human in the learning loop. For solving the second problem, we propose a new vectorial reward design
to balance and express different importance weights of the brevity objective and success objective for dialogue
policy learning.

Our experiments verify the applicability and potential benefits of our previously proposed deep multi-
objective reinforcement learning (MORL) algorithms in dialogue policy learning. Though it may take more
sessions to train a MORL algorithm in the learning phase, our envelope deep MORL algorithm outperforms
all the single-objective reinforcement learning algorithms on average success rate and user utility, and has a
short average dialogue length close to that of the single-objective one emphasizing the brevity objective very
much. Deep MORL algorithm can learn good policies without carefully specifying the relative importance
weights for brevity and success objectives. But for a single-objective method, if we fix improper weights for
training, the performance of the resulting policy will be bad. Moreover, the policies learned by deep MORL
algorithm can better adapt to user preferences during the execution phase. For example, when the weight of
brevity is low and the weight of success is high, the envelope deep MORL algorithm can sacrifices the brevity
a bit to ensure the dialogue success rate above 90%. A task-oriented dialogue system using deep MORL
algorithm will be more favored by users in practice.
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Chapter 6 Conclusion

In this thesis, our goal is to answer the following question: “Can we design efficient and practical multi-
objective reinforcement learning algorithms in the delayed linear preference scenario, for acquiring all
potentially optimal policies in the learning phase, and adapting optimally to any real-time specified preference
in the execution phase?" To answer this question affirmatively, we have discussed a theoretical framework and
two proposed algorithms for multi-objective reinforcement learning. We have also discussed the quantitative
evaluation in several synthetic environments and one real application in task-oriented dialogue policy learning.
In this final chapter, we first reiterate our contributions and discuss their implications for the fields of multi-
objective reinforcement learning and dialogue policy learning in Section 6.1. In Section 6.2, we critically
review our own work and outline several possibilities for future research.

6.1 Contributions

In this section, we summarize our contributions. Our contributions can be divided into three categories: theory
contributions, evaluation contributions, and application contributions. We start with our contributions to
multi-objective reinforcement learning theory, then go into the contributions to evaluating MORL algorithm
with quantitative measurements and synthetic environments, end with our contributions to apply proposed
MORL algorithms to task-oriented dialogue policy learning. For our contributions, we briefly discuss the
implications that we think may be advantageous for future research in these research directions.

Theory Contributions

On the theoretical side, we first formulate a general triphasic scenario called delayed linear preference
scenario, which characterizes most realistic situations for multi-objective reinforcement learning. In this
scenario, we only consider linear preferences parameterized by the relative importance weights of objectives.
The delayed linear preferences scenario begins with a learning phase, where the agent is free to access the
historical trajectory records or interacts with the simulated environment to learn about the rewards, while the
preference is unknown. The aim of the agent in this phase is to find all linear optimal policies. Then in an
analysis phase, the user can analyze the trade-off between multiple objectives of the task for determining a
suitable preference using the information learned by the agent. The last phase of the delayed linear preference
scenario is the execution phase. In this phase, a specific linear preference function will be given to the agent,
while learning is no longer allowed. The agent needs to respond with an optimal policy achieving the best
utility to the given preference. The delayed linear preference scenario is worth studying as a standard scenario
for future research in multi-objective reinforcement learning.

We then propose a theoretical framework for developing and analysis value-based reinforcement learning
algorithms. This framework is inspired by the Banach’s fixed point theorem. Five essential components are
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involved in this framework for designing value-base reinforcement learning algorithms: (1) value space,
(2) value metric, (3) evaluation operator, (4) optimality operator, and (5) updating scheme. The optimality
operator is a contraction in the value space, therefore iteratively applying it we can derive a fixed point in
that value space, which is the optimal value function. Many existing value-based reinforcement learning
algorithms can be explained under this theoretical framework. We use the framework to help us develop
value-based algorithms for the delayed linear preference scenario.

The first algorithm is called naive deep MORL algorithm, which is a straightforward extension of the
value-based single-objective reinforcement learning algorithm. It maintains the utility estimation for all
state-action pairs and for all relative importance weights. The updating scheme for this algorithm uses the
deep neural network to approximate the Q-value function, and hindsight experience replay technique for
parallel updating parameters. This algorithm is easy to implement, and is compatible with many advanced
reinforcement learning methods. However, as indicated by our analysis, the uninformative prediction and
sample inefficiency restrict the applicability the performance of this algorithm.

To address two limitations of the naive version algorithm, we design the envelope deep MORL algorithm
by directly maintaining the multi-objective solutions, and solving a convex envelope of the explored value
frontier each update step. This modification requires us to generalize the Banach’s theorem to pseudo-metric
space to proof its convergence. Besides, when updating with hindsight experience reply, we use homotopy
method to optimize the weighted average of two loss functions. Although the envelope deep MORL increase
the hardness of implementation, and will cost more time for each update step, it is more sample-efficient
during the learning phase and can provide with more informative prediction during the analysis phase.

Our proposed two algorithms are novel in the field of multi-objective reinforcement learning. They can
be regarded as multiple-policy methods, while having notable differences with existing methods. First, they
can not only learn a set of policies for obtaining the approximate optimality frontier, but also adapt learned
policy to user preferences in the execution phase. Comparing with the previous manifold-based methods,
our methods can better solve the delayed linear preference scenario. Second, by using deep neural networks
and hindsight experience replay, our methods use a single neural network to maintain all possible optimal
policies, and utilize the batch of trajectories more efficiently, while prior methods require to store multiple
models and update those models in different iterations. We hope our two proposed deep MORL algorithms
can provide a new paradigm and inspiration for future MORL algorithms research.

Evaluation Contributions

In addition to the theoretical contributions, we make contributions to evaluating the performance of deep multi-
objective reinforcement learning in the delayed linear preferences scenario, by proposing two quantitative
evaluation metrics and creating several synthetic environments.

Our first evaluation metric is the coverage ratio (CR), to measure a MORL agent’s ability to find all the
potentially optimal solutions in the convex coverage set of the Pareto frontier in the learning phase, which can
be defined as an F1 score. The second evaluation metric is the adaptation quality (AQ), to measure agent’s
ability to adapt its policy to real-time specified preferences in the execution phase, which is defined based on
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the control frontier and control error. These two metrics are technically sound, and would be useful to future
MORL algorithms research, especially for the ones focusing on delayed linear preference scenarios.

Three synthetic multi-objective reinforcement learning environments are created to test our deep MORL
algorithms. The reason we user synthetic environments is that in these cases the ground truth of Pareto
frontier and control frontier is known. Our first environment is a grid-world navigation problem, deep sea
treasure, which is a classical benchmark environment for MORL. The second environment is called fruit tree
navigation (FTN), which contains dozens of high-dimensional optimal solutions. Our third environment,
multi-objective lunar lander (MOLL) environment, is designed for continuous control and more complex
deep Q-learning model. There are few available multi-objective reinforcement learning environments in
the community. We make our code open source to provide researchers in MORL community with several
standard environments for testing their algorithms in the future.

We compared proposed two deep MORL algorithm in two synthetic environments. The experiments on
DST environment shows the effectiveness of our proposed algorithms. Both algorithms can work very well on
this simple task in both learning phase and execution phase. By testing two proposed algorithms on the FTN
environment, our results consistently show that the envelope version algorithm has better CR and AQ than the
naive version algorithm after training on the same number of episodes. Besides, as the number of sampled
preference each update increases, both algorithms get improvement, and the improvement for the envelope
version algorithm is more than that of the naive version. These results are robust on the size of the frontiers
and align with our theoretical analysis that the envelope version algorithm has better sample efficiency. We
also visualize our results with several dimension reduction methods. Our visualization methods can also be
used in the future research to gain insights into MORL algorithms.

Application Contributions

Finally, our contributions on the application side are demonstrated by an example of the task-oriented spoken
dialogue system. A task-oriented dialogue system is a modular system with many components, among which
the dialogue manager plays the central role to control the flow of dialogue. Approach to construct a policy
model in the dialogue manager can be divided into two categories: rule-based and statistical. We focus on
the application in the mainstream statistical dialogue policy learning, which is often formulated as a Markov
decision process and solved by reinforcement learning. So far, RL-based approaches are rarely used in
real-world applications. One reason is that the fixed scalarized reward balancing multiple objectives, such
as brevity and success, limits the performance of dialogue policy learning algorithms. The obtained policy
cannot best fit all users’ preferences and is sometimes out of our expectation. For example, some users
interact with the system often when they are driving cars. These users may hope the system can provide them
a concise response in few turns, rather than a long conversation with very precise information.

Adaption to user preferences and balancing multiple objectives is rarely considered. In our thesis, we
consider the dialogue learning process as a delayed linear preference scenario of multi-objective reinforcement
learning. The rewards in this setting are vectors describing dialogue length penalty for the brevity objective
and task success reward for the success objective. Our proposed deep MORL algorithm can learn almost all
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optimal policies during a learning phase, and adapt to user preference without extra learning when the system
is deployed online.

Our experiments confirm the applicability and show potential advantages of our proposed deep MORL
algorithms in dialogue policy learning. Though it may take more sessions for training, our envelope deep
MORL algorithm outperforms all the single-objective reinforcement learning algorithms on average success
rate and user utility, and has a short average dialogue length close to that of the single-objective one
emphasizing the brevity objective very much. In other words, our deep MORL algorithms can learn good
policies without carefully specifying the relative importance weights for brevity and success objectives.
Moreover, the policies learned by deep MORL algorithm can better adapt to user preferences during the
execution phase. For example, when the weight of brevity is low and the weight of success is high, the
envelope deep MORL algorithm can sacrifices the brevity a bit to ensure the dialogue success rate above
90%. This kind of task-oriented dialogue system using our deep MORL algorithm will be more favored by
users in real application scenarios.

6.2 Discussion and Future Work

In this section, we critically review the work in this thesis, and identify possibilities for future work.
First, all the discussions about multi-objective reinforcement learning in this thesis aim at solving the

delayed linear preferences scenarios. The optimality concept in this scenario is the convex coverage set of
the Pareto frontier. However, the Pareto frontier is unnecessarily to be convex. And in many cases, we are
interested in the non-convex solutions. How we extend our algorithms to general delayed preference scenarios
would be an interesting research problem.

Second, our proposed two deep MORL algorithms are compatible with many advanced reinforcement
learning techniques. However, in this thesis we only explored their combinations with double Q-learning
and prioritized experience replay. These algorithms therefore cannot apply to domains with continuous
control. Though these two methods are value-based, many state-of-the-art reinforcement learning algorithms
mix value-based and policy-based methods can also be embedded into them, such as the deterministic deep
policy gradient (DDPG) and the asynchronous advantage actor-critic (A3C). Empowered by these methods,
we can run our algorithms in more domains, such as ones requiring continuous control. Our proposed
multi-objective lunar lander environment is a good testbed. Embed these advanced algorithms into our deep
MORL algorithms is a potential future direction.

Third, in our task-oriented dialogue systems application, the vectorized reward only considers brevity
objective and success objective. However, there are many other objectives should be considered for a good
conversation, such as “coherence" of the logic of context, “clearness" of the provided information, and the
“humor" if users expect the dialogue system to be funny. Moreover, there are also some long-term objectives
for the dialogue policy learning, like the safety and efficiency of the learning process itself. How to evaluate
and incorporate these objectives into multi-objective dialogue policy learning is a challenging research topic.
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