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摘 要

在⼈⼯智能领域，常识性知识指的是⼀个由⼈类世界⽇常⽣活中的事实组成的集合，⽐如 ‘‘冰
是凉的” (属性关系)，‘‘咀嚼是吃饭的⼦动作之⼀”(⼦动作关系)，‘‘桌⼦和椅⼦常常摆在⼀起”(近邻关

系)，等等。常识性知识有关的研究⼀直是⼈⼯智能领域的热点之⼀，它可以向⼈⼯智能系统和各类

模型提供物理世界中丰富的背景知识，从⽽提升性能和效率。这类先验知识可以为很多下游任务提

供⽀持和改善的空间，⽐如⾃然语⾔处理 (NLP) 中的⽂本推理 (textual inference) 任务，和计算机视

觉 (CV) 中的物体检查 (object detection) 任务。主流研究中主要采⽤三元组 (triple) 的形式对常识性知

识进⾏表⽰，典型的例⼦就是 ConceptNet，⼀个起源于⿇省理⼯⼤学的当今最⼤的常识性知识库。

绝⼤部分的常识性知识库都是通过⼈类⼿⼯标注构造完成的，来⾃众包社区的⼒量是因素，这

导致常识性知识库通常很难迅速扩⼤。除此之外，标注者数量通常有限所以多样性不⾜，⼈⼒成本

也⼗分昂贵，这些因素导致了传统构建常识性知识库存在的问题和缺陷。因此，⼀个⾃动化构建常

识性知识库的⽅案会⾮常有益于这个领域乃⾄⼈⼯智能领域的发展。近邻关系 (LocatedNear) 是⼀种

描述两个物体在现实物理世界的空间中常常出现在⼀起的常识性关系，在 ConceptNet 中却只有 49
个三元组。笔者在这篇毕业论⽂的第⼀部分以这⼀常识关系为例，研究了如何从海量⽂本中抽取常

识性关系，从⽽实现扩增常识性数据库。笔者从句⼦级别的关系分类器⼊⼿，研究了如何通过提升

分类器的聚合分类器预测结果来提⾼常识关系抽取的效果。此外，本⽂还提出了两个⽤于测试常识

关系抽取的标准数据集：第⼀个是具有关系分类标准的 5000 句⼦，每个句⼦被标注是否这句话是否

描述了常识性关系；第⼆个数据集则是语料库级别的 500 个三元组，⽤来检测关系抽取模型的效果。

本⽂提出了若⼲⽅法来解决常识关系抽取任务，并且将这些⽅法与通⽤的关系抽取模型进⾏了⽐较。

假使我们已经拥有了⼀个相对⽐较完整的常识知识库，如何去表征它们依然是⼀个⾮常有挑战

性的任务。近些年来，知识图谱的嵌⼊式表达 (KGE) ⾮常流⾏，有很多模型被提出，典型的有基于

转移的 TransE 模型和基于语意匹配的 ANALOGY 模型。不过，这些模型⼤多都是为了普通的事实

型知识图谱提出的，⽐如 FreeBase 和 DBPedia，或者为了词典型数据库 WordNet。⽽常识知识图谱

有着⾃⼰本⾝的特点和困难，这些是普通的模型并没有关注过的。⽬前⼏乎没有专为常识知识图谱

(CSKG) 提出的表征模型。本论⽂第⼆部分主要围绕如何构造第⼀个 CSKGE 标准数据集⽽展开，并

通过实验⽐较了当前的主流 KGE 模型在这个数据集上的效果。作者还针对 CSKG 的特点提出了⼀

种新颖的 CSKGE 模型对常识知识图谱进⾏了表征，取得了超越主流模型的效果。

另外，不同⽂化之间发⽣的概念迁移也是⼀种⾮常重要的常识。针对概念的跨⽂化异同对扩展

常识性知识库是⾮常有帮助的⼀种信息，这种⽂化变差也是跨语⾔的⾃然语⾔理解中重要的⼀环，

尤其是当我们在处理社交媒体数据时。⽐如，不同⽂化的⼈们对同⼀命名实体可能会有着截然不同

的看法和观点；再如，理解另⼀个语⾔中的俚语、⽹络流⾏语需要能够理解跨语⾔、跨⽂化的语⾔

相似概念。这篇论⽂的第三部分主要围绕如何从社交⽹络中挖掘跨⽂化异同展开，提出了⼀个轻量
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级但⾼效率的模型，并且利⽤两个新颖的任务去测评：1) 挖掘社交媒体中的对于命名实体跨⽂化差

异；2) 翻译⽹络流⾏语、俚语。通过实验分析，本⽂提出的模型效果超过其他基准⽅法。它可以为

跨⽂化、跨语⾔的计算社会学研究提供基础的计算模型，也会使机器翻译模型受益。

关键词：常识知识图谱 知识图谱 知识图谱嵌⼊ 关系抽取 ⽂化差异 社交媒
体 机器翻译
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COMMONSENSE KNOWLEDGE GRAPH REPRESENTATION
AND CONSTRUCTION

ABSTRACT

Commonsense knowledge can be defined as a set of facts about our everyday world, such as ice is cold
(HasProperty), chewing is a sub-event of eating (HasSubevent), chair and table are typically found near
each other (LocatedNear), etc. Commonsense knowledge and related works have been one of the most
important areas in Artificial Intelligence, because a lot of artificial intelligent systems can benefit from
incorporating commonsense knowledge as background priors in their models. These kinds of commonsense
facts have been used in many downstream tasks, such as textual entailment in Natural Language Processing
(NLP) and object detection in Computer Vision (CV). The commonsense knowledge is often represented
as relation triples in Common-Sense Knowledge Graphs (CSKGs), such as ConceptNet, one of the largest
commonsense knowledge graphs available today.

Most commonsense knowledge bases are manually curated or crowd-sourced by community efforts
and thus do not scale well. Another problem is that such commonsense knowledge bases are typically
contributed by just a very limited number of people due to the cost of manual labor. Therefore, an automatic
method of extracting commonsense relationship from textual corpora or other data is an essential topic.
LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically
found near each other in real life, of which ConceptNet contains only 49 triples. In the first section of this
thesis, the author studies how to automatically extract such relationship through a sentence-level relation
classifier and aggregating the scores of entity pairs from a large corpus. Apart from that, we release two
benchmark datasets for evaluation and future research: 1）one containing 5,000 sentences annotated with
whether a mentioned entity pair has LocatedNear relation in the given sentence or not; 2）the other
containing 500 pairs of physical objects and whether they are commonly located nearby. We propose a
number of baseline methods for the tasks and compare the results with a state-of-the-art general-purpose
relation classifier.

Even when we have a relatively complete commonsense knowledge graph, the representation of CSKGs
is also a challenging task. Recently, Knowledge Graph Embedding (KGE) techniques are so trendy and
thus many models were proposed, from simple translational model like TransE to semantic-matching model
like ANALOGY. Nevertheless, these models are mostly designed for factual knowledge bases and lexical
databases such as FreeBase (FB15K) and WordNet (WN18) as well as DBPedia. CSKGs have a lot of specific
features that are significant different from above-mentioned graphs. To the best of our knowledge, there is
no existing dataset and model to investigate KGE for CSKGs, which we denote as CSKGE (Common-Sense
Knowledge Graph Embedding). The second section of this thesis proposes the very first dataset for CSKGE
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and investigate the characteristics as well as the performance of state-of-the-art KGE models on it. The author
also proposes a novel CSKGE model purposely designed for CSKGs.

Additionally, the phenomenon of concept drifting across different cultures is also a important type of
commonsense knowledge. Cross-cultural differences and similarities of concepts are helpful in extending
multilingual CSKGs. The culture shift in concept understanding is common in cross-lingual natural language
understanding, especially for research in social media. For instance, people of distinct cultures often hold
different opinions on a single named entity. Also, understanding slang terms across languages requires
knowledge of cross-cultural similarities. The third section of this thesis studies the problem of computing
such cross-cultural differences and similarities. This thesis presents a lightweight yet effective approach, and
evaluate it on two novel tasks: 1) mining cross-cultural differences of named entities and 2) finding similar
terms for slang across languages. Experimental results show that our framework substantially outperforms a
number of baseline methods on both tasks. The framework could be useful for machine translation applications
and research in computational social science.

KEY WORDS: commonsense knowledge, knowledge graph, commonsense knowledge graph,
knowledge graph embedding, relation extraction, cultural differences, social media, machine
translation
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Chapter 1 Introduction

Commonsense knowledge can be defined as a set of facts about our everyday world, such as ice is cold
(HasProperty), chewing is a sub-event of eating (HasSubevent), chair and table are typically found near
each other (LocatedNear), etc. Commonsense knowledge and related works have been one of the most
important areas in Artificial Intelligence, because a lot of artificial intelligent systems can benefit from
incorporating commonsense knowledge as background priors in their models. These kinds of commonsense
facts have been used in many downstream tasks, such as textual entailment in Natural Language Processing
(NLP) and object detection in Computer Vision (CV). The commonsense knowledge is often represented
as relation triples in Common-Sense Knowledge Graphs (CSKGs), such as ConceptNet, one of the largest
commonsense knowledge graphs available today.

1.1 Common-Sense Relation Extraction

Most commonsense knowledge bases are manually curated or crowd-sourced by community efforts and thus do
not scale well. Another problem is that such commonsense knowledge bases are typically contributed by just
a very limited number of people due to the cost of manual labor. Therefore, an automatic method of extracting
commonsense relationship from textual corpora or other data is an essential topic. LocatedNear relation is
a kind of commonsense knowledge describing two physical objects that are typically found near each other
in real life, of which ConceptNet contains only 49 triples. In the first section of this thesis, the author studies
how to automatically extract such relationship through a sentence-level relation classifier and aggregating the
scores of entity pairs from a large corpus. Apart from that, we release two benchmark datasets for evaluation
and future research: 1）one containing 5,000 sentences annotated with whether a mentioned entity pair has
LocatedNear relation in the given sentence or not; 2）the other containing 500 pairs of physical objects
and whether they are commonly located nearby. We propose a number of baseline methods for the tasks and
compare the results with a state-of-the-art general-purpose relation classifier.

Commonsense knowledge is an important ingredient in machine comprehension and inference. Artificial
intelligence systems can benefit from incorporating commonsense knowledge as background, such as ice is
cold (HasProperty), chewing is a sub-event of eating (HasSubevent), chair and table are typically found
near each other (LocatedNear), etc. These kinds of commonsense facts have been used in many downstream
tasks, such as textual entailment [1, 2] and visual recognition tasks [3].

The commonsense knowledge is often represented as relation triples in commonsense knowledge bases,
such as ConceptNet [4], one of the largest commonsense knowledge graphs available today. However, most
commonsense knowledge bases are manually curated or crowd-sourced by community efforts and thus do not
scale well. For example, ConceptNet contains only 49 LocatedNear relation triples. Another problem is
that such commonsense knowledge bases are typically contributed by just a very limited number of people due
to the cost of manual labor. Thus no meaningful statistical scores can be associated with the triples, making
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Figure 1–1 LocatedNear facts assist the detection of vague objects: if a set of knife, fork and plate is on the table, one may
believe there is a glass beside based on the commonsense, even though these objects are hardly visible due to low light.

rank-based computation difficult. For instance, although ConceptNet gives a confidence score (from 0 to
infinity) to each triple, most of the triples have the default score of 1, simply because the human contributor
did not or could not provide a score. If such commonsense knowledge is harnessed automatically from open-
domain text corpora, both of the above problems can be effectively addressed. Open information extraction
not only provides the much needed scale, but also valuable statistics that can turn into confidence scores.

This paper aims to automatically extract the commonsense LocatedNear relation between physical
objects from textual corpora. LocatedNear is defined as the relationship between two objects typically
found near each other in real life. 1 We focus on LocatedNear relation for these reasons:
• LocatedNear facts provide helpful prior knowledge to object detection tasks in complex image

scenes [5]. See Figure 1–1 for an example.
• This commonsense knowledge can benefit reasoning related to spatial facts and physical scenes in

reading comprehension, question answering, etc. [6]
• Existing knowledge bases have very few facts for this relation (ConceptNet 5.5 has only 49 triples of

LocatedNear relation).
(The guess can be based on commonsense knowledge learned from room settings scene description in articles
and texts.) Such prior knowledge helps with the object detection accuracy;

1. LocatedNearrelation is useful for object detection in complex image scenes. For example, in a
dimly lit room with a dining table and some chairs. One may guess that plates and other kitchenware

1Because some physical objects can be a location itself, this relation may include some instances of the atLocation relation, e.g., room and door.
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maybe present on the table. Such prior knowledge helps with the object detection accuracy.
2. LocatedNearrelation can also be useful for automated conversation systems where meaningful

context maybe added to the conversation.
3. LocatedNearrelation can benefit general reasoning in reading comprehension, question answering

and many other AI tasks.
4. Existing knowledge bases such as Concept Net has very limited facts for this relation.

Automatic extraction of relations from open text has a short but rich history. Attempts have been made to
extract isA, causal, correlation, and also open domain relations (e.g., ReVerb, Yago). LocatedNear relation
is unique and poses significant challenges for the following reasons: i) It involves physical (often visible)
objects whereas other popular relations involve general concepts or just natural language terms. ii) The
distribution of LocatedNear relation is not even across domains: it is more prevalent in literary work such
as stories and dramas which come with descriptive scenes rather than in news, science & technology related
articles or online user generated content. iii) Sentences in literature are often complex and nuanced, which
makes extraction particularly challenging. Consider the objects “bed” and “star” in the following sentence:
“Until at last all the promenaders had gone home to bed, and I was alone with the star.” Bed is not near the
star because it’s at another location. iv) Labeling such sentence is a non-trivial task, and obtaining a large
training set is difficult and expensive.

Since raw text of novels tend to contain many descriptions of scene in real life, we argue that it is feasible
to obtain unseen LocatedNear relations from raw novel text. We propose two novel tasks in extracting
LocatedNear relation from textual corpora. One is a sentence-level relation classification problem which
judges whether or not a sentence describes two objects (mentioned in the sentence) being physically close
by. The other task is to produce a ranked list of LocatedNear facts with the given classified results of large
number of sentences. We believe both two tasks can be used to automatically populate and complete existing
commonsense knowledge bases. Notice that two objects that are co-located in a couple of sentences may
not mean they have the LocatedNear relation as commonsense. Additionally, we create two benchmark
datasets for evaluating LocatedNear relation extraction systems on the two tasks: one is 5,000 sentences
each describing a scene of two physical objects and with a label indicating if the two objects are co-located
in the scene; the other consists of 500 pairs of objects with human-annotated scores indicating confidences
that a certain pair of objects are commonly located near in real life.1

1.2 Common-Sense Knowledge Graph Embedding

Even when we have a relatively complete commonsense knowledge graph, the representation of CSKGs
is also a challenging task. Recently, Knowledge Graph Embedding (KGE) techniques are so trendy and
thus many models were proposed, from simple translational model like TransE to semantic-matching model
like ANALOGY. Nevertheless, these models are mostly designed for factual knowledge bases and lexical
databases such as FreeBase (FB15K) and WordNet (WN18) as well as DBPedia. CSKGs have a lot of specific
features that are significant different from above-mentioned graphs. To the best of our knowledge, there is

1https://github.com/adapt-sjtu/commonsense-locatednear
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no existing dataset and model to investigate KGE for CSKGs, which we denote as CSKGE (Common-Sense
Knowledge Graph Embedding). The second section of this thesis proposes the very first dataset for CSKGE
and investigate the characteristics as well as the performance of state-of-the-art KGE models on it. The author
also proposes a novel CSKGE model purposely designed for CSKGs.

Knowledge graphs such as Freebase [7] and WordNet [8] play an important role in building various
artificial intelligence systems including question answering and personal assistant (Siri). These knowledge
graphs store facts with a large amount of triplets in the form of (h, r, t), where r is the directed relation
edge indicating the relationship between the left node h and the right node t. In this paper, we aim to learn
low-dimensional vector representations for nodes (entities) and edges (relations) in a knowledge graph, which
can be used to infer new facts.

Many successful methods have been proposed for knowledge graph representation learning in the past
few years. Representative approaches include the translation-based models [9–11] and the bilinear models [12,
13]. Such approaches can well capture structural properties of knowledge graphs but largely ignore the textual
information related with the nodes, which could be regarded as good supplementary feature for knowledge
graphs especially those entities with few facts.

Recently, some methods [14–16] has been proposed to address this issue, utilizing the textual descrip-
tions about nodes. However, the descriptions are different. For example, in FB15k, some nodes have
long descriptions (343 words) and some nodes have very short descriptions (shorter than 3 words) or no
descriptions[15]. Besides, some knowledge graphs may not have existing description about nodes to use.
For example, ConceptNet [17] is a type of knowledge graphs that consists of commonsense knowledge only,
which is also important in various artificial intelligence applications [18, 19] but not the main focus in
previous knowledge graph representation learning. Unlike WordNet and Freebase, each node in ConceptNet
is a textual phrase with an arbitrary number of words. And there is no existing description about such nodes.

On the other hand, the optimal combination of the structural and textual representations is not well studied
in many previous methods [14, 15, 20], in which the structural representation and textual representation are
aligned on separate loss function. A good representation of an entity should jointly encode both structure and
text information. [16]

In this paper, we utilize the textual information conveyed by the nodes as the supplementary features,
which allow the sharing of statistical strength between the words describing each node [21]. And we explore
several simple and general approaches to combine textual features from the nodes as well as the structural
information from the graph. Specifically, we consider two ways to capture the textual information that resides
within the node. We also consider two approaches to integrate textual and structural information for learning
node representations. Our experiments are conducted on three datasets. Two of them are public benchmark
datasets that are the subsets of WordNet and Freebase. The third one is a dataset created from ConceptNet
following similar procedure describe in [22]. Experimental results on the datasets show that our approach
outperform baseline approaches.
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#Nanjing says no to Nagoya# This small Japan, is really irritating. 
What is this? We Chinese people are tolerant of good and evil, 
and you? People do things, and the gods are watching. Japanese, 
be careful, and beware of thunder chop!       (via Bing Translation)

Figure 1–2 Two social media messages about Nagoya from different cultures in 2012

1.3 Mining Common-Sense Concept Drift across Cultures

Additionally, the phenomenon of concept drifting across different cultures is also a important type of common-
sense knowledge. Cross-cultural differences and similarities of concepts are helpful in extending multilingual
CSKGs. The culture shift in concept understanding is common in cross-lingual natural language understand-
ing, especially for research in social media. For instance, people of distinct cultures often hold different
opinions on a single named entity. Also, understanding slang terms across languages requires knowledge
of cross-cultural similarities. The third section of this thesis studies the problem of computing such cross-
cultural differences and similarities. This thesis presents a lightweight yet effective approach, and evaluate
it on two novel tasks: 1) mining cross-cultural differences of named entities and 2) finding similar terms for
slang across languages. Experimental results show that our framework substantially outperforms a number
of baseline methods on both tasks. The framework could be useful for machine translation applications and
research in computational social science.

Computing similarities between terms is one of the most fundamental computational tasks in natural
language understanding. Much work has been done in this area, most notably using the distributional
properties drawn from large monolingual textual corpora to train vector representations of words or other
linguistic units [23, 24]. However, computing cross-cultural similarities of terms between different cultures
is still an open research question, which is important in cross-lingual natural language understanding. In this
paper, we address cross-cultural research questions such as these:

1. Were there any cross-cultural differences between Nagoya (a city in Japan) for native English speakers
and名古屋 (Nagoya in Chinese) for Chinese people in 2012?

2. What English terms can be used to explain ‘‘浮云” (a Chinese slang term)?

These kinds of questions about cross-cultural differences and similarities are important in cross-cultural social
studies, multi-lingual sentiment analysis, culturally sensitive machine translation, and many other NLP tasks,
especially in social media. We propose two novel tasks in mining them from social media.

The first task is to mine cross-cultural differences in the perception of named entities (e.g., persons,
places and organizations). Back in 2012, in the case of “Nagoya”, many native English speakers posted their
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pleasant travel experiences in Nagoya on Twitter. However, Chinese people overwhelmingly greeted the city
with anger and condemnation on Weibo (a Chinese version of Twitter), because the city mayor denied the
truthfulness of the Nanjing Massacre. Figure 1–2 illustrates two example microblog messages about Nagoya
in Twitter and Weibo respectively.

The second task is to find similar terms for slang across cultures and languages. Social media is always
a rich soil where slang terms emerge in many cultures. For example, ‘‘浮云” literally means “floating
clouds”, but now almost equals to “nothingness” on the Chinese web. Our experiments show that well-known
online machine translators such as Google Translate are only able to translate such slang terms to their literal
meanings, even under clear contexts where slang meanings are much more appropriate.

Enabling intelligent agents to understand such cross-cultural knowledge can benefit their performances
in various cross-lingual language processing tasks. Both tasks share the same core problem, which is how to
compute cross-cultural differences (or similarities) between two terms from different cultures. A term
here can be either an ordinary word, an entity name, or a slang term. We focus on names and slang in this
paper for they convey more social and cultural connotations.

There are many works on cross-lingual word representation [25] to compute general cross-lingual
similarities [26]. Most existing models require bilingual supervision such as aligned parallel corpora,
bilingual lexicons, or comparable documents [27–29]. However, they do not purposely preserve social
or cultural characteristics of named entities or slang terms, and the required parallel corpora are rare and
expensive.

In this paper, we propose a lightweight yet effective approach to project two incompatible monolingual
word vector spaces into a single bilingual word vector space, known as social vector space (SocVec). A key
element of SocVec is the idea of “bilingual social lexicon”, which contains bilingual mappings of selected
words reflecting psychological processes, which we believe are central to capturing the socio-linguistic
characteristics. Our contribution in this paper is three-fold:

1. We present an effective approach (SocVec) to mine cross-cultural similarities and differences of
terms, which could benefit research in machine translation, cross-cultural social media analysis, and
other cross-lingual research in natural language processing and computational social science.

2. We propose two novel and important tasks in cross-cultural social studies and social media analysis.
Experimental results on our annotated datasets show that the proposed method outperforms many
strong baseline methods.

3. We release a prototype tool for the proposed approach, two datasets on the above tasks, and several
resources, which could potentially benefit future research in cross-cultural social studies and social
media analysis.
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Chapter 2 Automatic Extraction of Commonsense LocatedNear
Knowledge

2.1 Sentence-level LocatedNear Relation Classification

Problem Statement Given a sentence s mentioning a pair of physical objects <ei, ej>, we call <s, ei, ej> an
instance. For each instance, the problem is to determine whether ei and ej are located near each other in
the physical scene described in the sentence s. For example, suppose ei is “dog", ej is “cat”, and s = “The
King puts his dog and cat on the table.”. As it is true that the two objects are located near in this sentence, a
successful classification model is expected to label this instance as True. However, if s2 = “My dog is older
than her cat.”, then the label of the instance <s2, ei, ej> is False, because s2 just talks about a comparison
in age. In the following subsections, we present two different kinds of baseline methods for this binary
classification task: feature-based methods and LSTM-based neural architectures.

2.1.1 Feature-based Methods

Our first baseline method is an SVM classifier based on following features commonly used in many relation
extraction models [30]:
• Bag of Words (BW): the set of words that ever appeared in the sentence.
• Bag of Path Words (BPW): the set of words that appeared on the shortest dependency path between

objects ei and ej in the dependency tree of the sentence s, plus the words in the two subtrees rooted
at ei and ej in the tree.
• Bag of Adverbs and Prepositions (BAP): the existence of adverbs and prepositions in the sentence as

binary features.
• Global Features (GF): the length of the sentence, the number of nouns, verbs, adverbs, adjectives,

determiners, prepositions and punctuations in the whole sentence.
• Shortest Dependency Path features (SDP): the same features as with GF but in dependency parse trees

of the sentence and the shortest path between ei and ej , respectively.
• Semantic Similarity features (SS): the cosine similarities between the pre-trained GloVe word embed-

dings [23] of the two object words.
We evaluate linear and RBF kernels with different parameter settings, and find the RBF kernel with {C =
100, γ = 10−3} performs the best overall.

2.1.2 LSTM-based Neural Architectures

We observe that the existence of LocatedNear relation in an instance <s,e1,e2> depends on two major
information sources: one is from the semantic and syntactical features of sentence s and the other is from the
object pair <e1,e2>. By this intuition, we design our LSTM-based model with two parts, shown in lower part
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Figure 2–1 Framework with a LSTM-based classifier

Table 2–1 Examples of four types of tokens during sentence normalization. (#s stands for subjects and #o
for objects)

Level Examples
Objects E1, E2

Lemma open, lead, into, ...
Dependency Role open#s, open#o, into#o, ...
POS Tag DT, PR, CC, JJ, ...

of Figure 2–1. The left part is for encoding the syntactical and semantic information of the sentence s, while
the right part is encoding the semantic similarity between the pre-trained word embeddings of e1 and e2.

Solely relying on the original word sequence of a sentence s has two problems: (i) the irrelevant words
in the sentence can introduce noise into the model; (ii) the large vocabulary of original sentences induce too
many parameters, which may cause over-fitting. For example, given two sentences “The king led the dog into
his nice garden.” and “A criminal led the dog into a poor garden.”. The object pair is <dog, garden> in both
sentences. The two words “lead” and “into” are essential for determining whether the object pair is located
near, but they are not attached with due importance. Also, the semantic differences between irrelevant words,
such as “king” and “criminal”, “beautiful” and “poor”, are not useful to the co-location relation between the
“dog” and “garden”, and thus tend to act as noise.

To address the above issues, we propose a normalized sentence representation method merging the three
most important and relevant kinds of information about each instance: lemmatized forms, POS (Part-of-
Speech) tags and dependency roles. We first replace the two nouns in the object pair as “E1” and “E2”, and
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keep the lemmatized form of the original words for all the verbs, adverbs and prepositions, which are highly
relevant to describing physical scenes. Then, we replace the subjects and direct objects of the verbs and
prepositions (nsubj, dobj for verbs and case for prepositions in dependency parse trees) with special
tokens indicating their dependency roles. For the remaining words, we simply use their POS tags to replace
the originals. The four kinds of tokens are illustrated in Table 2–1. Figure 2–1 shows a real example of our
normalized sentence representation, where the object pair of interest is <dog, garden>.

Table 2–2 Sentence Normalization Example
The king opened the door and led the dog into his nice garden.
DT open#s open DT open#o CC lead DT E1 into PR JJ E2.

Apart from the normalized tokens of the original sequence, to capture more structural information, we
also encode the distances from each token to E1 and E2 respectively. Such position embeddings (position/dis-
tance features) are proposed by [31] with the intuition that information needed to determine the relation
between two target nouns normally comes from the words which are close to the target nouns.

We adopt this feature because it can help LSTM keep track of the position of E1 and E2, better
knowing where the two object words are. Then, we leverage LSTM to encode the whole sequence of the
tokens of normalized representation plus position embedding. In the meantime, two pretrained GloVe word
embeddings [23] of the original two physical object words are fed into a hidden dense layer.

Finally, we concatenate both outputs and then use sigmoid activation function to obtain the final
prediction. We choose to use the popular binary cross-entropy as our loss function, and RMSProp as the
optimizer. We apply a dropout rate [32] of 0.5 in the LSTM and embedding layer to prevent overfitting.

2.2 LocatedNear Relation Extraction

The upper part of Figure 2–1 shows the overall workflow of our automatic framework to mine LocatedNear
relations from raw text. We first construct a vocabulary of physical objects and generate all candidate
instances. For each sentence in the corpus, if a pair of physical objects ei and ej appear as nouns in a
sentence s, then we apply our sentence-level relation classifier on this instance. The relation classifier yields
a probabilistic score s indicating the confidence of the instance in the existence of LocatedNear relation.
Finally, all scores of the instances from the corpus are grouped by the object pairs and aggregated, where each
object pair is associated with a final score. These mined physical pairs with scores can easily be integrated
into existing commonsense knowledge base.

More specifically, for each object pair <ei, ej>, we find all the m sentences in our corpus mentioning both
objects. We classify the m instances with the sentence-level relation classifier and obtain confidence scores
for each instance, then feed them into a heuristic scoring function f to obtain the final aggregated score for
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the given object pair. We propose the following 5 choices of f considering accumulation and threshold:

f0 = m (2–1)

f1 =
m∑
k=1

conf(sk, ei, ej) (2–2)

f2 =
1
m

m∑
k=1

conf(sk, ei, ej) (2–3)

f3 =
m∑
k=1

1{conf(sk,ei,e j )>0.5} (2–4)

f4 =
1
m

m∑
k=1

1{conf(sk,ei,e j )>0.5} (2–5)

2.3 Datasets

Our proposed vocabulary of single-word physical objects is constructed by the intersection of all ConceptNet
concepts and all entities that belong to “physical object” class in Wikidata. We manually filter out some
words that have the meaning of an abstract concept, which results in 1,169 physical objects in total.

Afterwards, we utilize a cleaned subset of the Project Gutenberg corpus [33], which contains 3,036
English books written by 142 authors. An assumption here is that sentences in fictions are more likely to
describe real life scenes. We sample and investigate the density of LocatedNear relations in Gutenberg
with other widely used corpora, namely Wikipedia, used by Mintz, Bills, Snow, et al. (2009) and New York
Times corpus [35]. In the English Wikipedia dump, out of all sentences which mentions at least two physical
objects, 32.4% turn out to be positive. In the New York Times corpus, the percentage of positive sentences is
only 25.1%. In contrast, that percentage in the Gutenberg corpus is 55.1%, much higher than the other two
corpora, making it a good choice for LocatedNear relation extraction.

From this corpus, we identify 15,193 pairs that co-occur in more than 10 sentences. Among these pairs,
we randomly select 500 object pairs and 10 sentences with respect to each pair for annotators to label their
commonsense LocatedNear. Each instance is labeled by at least three annotators who are college students
and proficient with English. The final truth labels are decided by majority voting. The Cohen’s Kappa among
the three annotators is 0.711 which suggests substantial agreement [36]. This dataset will be used to train
and test models for relation classification. We compare the statistics of our LocatedNear sentence dataset
with a few datasets on other well known relations in Table 2–3.

This dataset has almost double the size of those most popular relations in the SemEval task [37], and
the sentences in our data set tend to be longer. We randomly choose 4,000 instances as the training set and
1,000 as the test set for evaluating the sentence-level relation classification task.

2.3.1 Commonsense LocatedNear object pairs

We randomly sampled 500 pairs of objects by the number of sentences they appear in. This tends to give us
pairs which are more popular.
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Table 2–3 Comparison between our LocatedNear dataset and the most popular relations from SemEval
2010 Task 8 dataset for relation classification

Data set Frequency Percentage Words per entry Chars per word

LocatedNear 2,754 55.1 18.6 4.51
Not LocatedNear 2,246 44.9 19.1 4.32

Cause-Effect 1,331 12.4 17.3 4.71
Component-Whole 1,253 11.7 17.9 4.12
Others 1,864 17.4 17.8 4.34

For the second task, we further ask the annotators to label whether each pair of objects are likely to
locate near each other in the real world. Majority votes determine the final truth labels. The inter-annotator
agreement here is 0.703 (substantial agreement).

2.4 Evaluation

Table 2–4 Performance of baselines on co-location classification task with ablation. (Acc.=Accuracy,
P=Precision, R=Recall, “-” means without certain feature)

Random Majority SVM SVM(-BW) SVM(-BPW) SVM(-BAP) SVM(-GF)
Acc. 0.500 0.551 0.584 0.577 0.556 0.563 0.605

P 0.551 0.551 0.606 0.579 0.567 0.573 0.616
R 0.500 1.000 0.702 0.675 0.681 0.811 0.751
F1 0.524 0.710 0.650 0.623 0.619 0.672 0.677

SVM(-SDP) SVM(-SS) DRNN LSTM+Word LSTM+POS LSTM+Norm
Acc. 0.579 0.584 0.635 0.637 0.641 0.653

P 0.597 0.605 0.658 0.635 0.650 0.654
R 0.728 0.708 0.702 0.800 0.751 0.784
F1 0.656 0.652 0.679 0.708 0.697 0.713

In this section, we first present our evaluation of our proposed methods and the state-of-the-art general
relation classification model on the first task. Then, we evaluate the quality of the new LocatedNear triples
we extracted.

2.4.1 Sentence-level LocatedNear Relation Classification

We evaluate the proposed methods against the state-of-the-art general domain relation classification model
(DRNN) [38]. The results are shown in Table 2–4. For feature-based SVM, we do feature ablation on each
of the 6 feature types. For LSTM-based model, we experiment on variants of input sequence of original
sentence: “LSTM+Word” uses the original words as the input tokens; “LSTM+POS” uses only POS tags
as the input tokens; “LSTM+Norm” uses the tokens of sequence after sentence normalization. Besides, we
add two naive baselines: “Random” baseline method classifies the instances into two classes with equal
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Table 2–5 Ranking results of scoring functions.
f MAP P@50 P@100 P@200 P@300

f0 0.42 0.40 0.44 0.42 0.38
f1 0.58 0.70 0.60 0.53 0.44
f2 0.48 0.56 0.52 0.49 0.42
f3 0.59 0.68 0.63 0.55 0.44
f4 0.56 0.40 0.48 0.50 0.42

probability. “Majority” baseline method considers all the instances to be positive.
From the results, we find that the SVM model without the Global Features performs best, which indicates

that bag-of-word features benefit more in shortest dependency paths than on the whole sentence. Also, we
notice that DRNN performs best (0.658) on precision but not significantly higher than LSTM+Norm (0.654).
The experiment shows that LSTM+Word enjoys the highest recall score, while LSTM+Norm is the best one in
terms of the overall performance. One reason is that the normalization representation reduces the vocabulary
of input sequences, while also preserving important syntactical and semantic information. Another reason is
that the LocatedNear relation are described in sentences decorated with prepositions/adverbs. These words
are usually descendants of the object word in the dependency tree, outside of the shortest dependency paths.
Thus, DRNN cannot capture the information from the words belonging to the descendants of the two object
words in the tree, but this information is well captured by LSTM+Norm.

2.4.2 LocatedNear Relation Extraction

Once we have obtained the probability score for each instance using LSTM+Norm, we can extract Located-
Near relation using the scoring function f . We compare the performance of 5 different heuristic choices of
f , by quantitative results. We rank 500 commonsense LocatedNear object pairs described in Section 2.2.
Table 2–5 shows the ranking results using Mean Average Precision (MAP) and Precision at K as the metrics.
Accumulative scores ( f1 and f3) generally do better. Thus, we choose f = f3 with a MAP score of 0.59 as
the scoring function.

Table 2–6 Top object pairs returned by best performing scoring function f3
(door, room) (boy, girl) (cup, tea)
(ship, sea) (house, garden) (arm, leg)

(fire, wood) (house, fire) (horse, saddle)
(fire, smoke) (door, hall) (door, street)
(book, table) (fruit, tree) (table, chair)

Qualitatively, we show 15 object pairs with some of the highest f3 scores in Table 2–6. Setting a
threshold of 40.0 for f3, which is the minimum non-zero f3 score for all true object pairs in the LocatedNear
object pairs data set (500 pairs), we obtain a total of 2,067 LocatedNear relations, with a precision of 68%
by human inspection.
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2.5 Related Work

Classifying relations between entities in a certain sentence plays a key role in NLP applications and thus
has been a hot research topic recently. Feature-based methods [37] and neural network techniques [39,
40] are most common. Xu, Mou, Li, et al. (2015) introduce multi-channel SDP-based LSTM model to
classify relations incorporating several different kinds of information of a sentence, which performed best on
SemEval-2010 Task 8 and is one of our baseline methods.

The most related work to ours is the extraction of visual commonsense knowledge by Yatskar, Ordonez,
Farhadi (2016). This work learns the textual representation of seven types of fine-grained visual relations
using textual caption for the image in MS-COCO dataset [41], such as “touches”, “above” and “disconnected
from” by jointly modeling the relative position of the 80 kinds of objects in 300,000 images and the textual
caption for the image in MS-COCO dataset[41][41]. The authors generalized their extracted knowledge using
WordNet. Their resource are not scalable for its expensive human labor, and we propose a framework to
use large text which is scalable and involves more real world description. Another important related work is
from Li, Taheri, Tu, et al. (2016), which enriches several popular relations in ConceptNet with little textual
information from real large corpora. However, LocatedNear relation was not studied in this work, while
this relation is extremely scarce in ConceptNet and has its own distinctiveness.

2.6 Conclusion

In this paper, we present a novel study on enriching LocatedNear relationship from textual corpora. Based on
our two newly-collected benchmark datasets, we propose several methods to solve the sentence-level relation
classification problem. We show that existing methods do not work as well on this task and discovered
that LSTM-based model does not have significant edge over simpler feature-based model. Whereas, our
multi-level sentence normalization turns out to be useful.

Future directions include: 1) better leveraging distant supervision to reduce human efforts, 2) incorpo-
rating knowledge graph embedding techniques, 3) applying the LocatedNear knowledge into downstream
applications in computer vision and natural language processing.
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Chapter 3 Text-Enhanced Common-Sense Knowledge Graph
Representation Learning

3.1 Approaches

There are several works using textual information to help KG representation learning. The neural tensor
network (NTN) model [21] represents each relation with a bilinear operator and represents each node by
averaging the word vectors in the node, allowing the sharing of textual information located in similar nodes.
DistMult [12] is a simplified bilinear model, where each relation is represented as a diagonal matrix and
each node is represented as either a single vector or an average of word vectors. [20] proposes a joint
method by aligning entity with entity name and its WikiPedia anchor, which contains knowledge embedding
model, word embedding model and corresponding alignment model as the joint part. [14] extends this
model by aligning entity to the corresponding entity description. Xie(2016) employ a CNN to encode
the entity description as textual representation of entity, and jointly learn knowledge graph embedding
by considering separate energy functions based on structure-based representation and description-based
representation. These methods separate the objective functions into two energy functions of structure-based
and textual-based representations. To utilize both representations, they need further estimate an optimum
weight coefficients to combine them together in the specific tasks.

[16] firstly integrate the representations of structure and text into a unified representation through a
static gating strategy based on the textual description of nodes. The intuition is similar. In this paper, we
explore several simpler integration methods with fewer parameters based on the textual information conveyed
by the nodes. And we obtain better results.

In this section, we briefly discuss TransE, which will be used as our baseline. Next we present our
model.

TranE

For each triplet (h, r, t) in a given knowledge graph, TransE defines the following dissimilarity score function:

s(h, r, t) = | |h + r − t| |

where h, t, r ∈ Rd are d-dimensional vector representations for the left node h, the right node t, and relation r

respectively. TransE regards r as a translation operator between h and t, such that h+ r ≈ t. It aims to assign
lower scores to valid triplets over invalid ones.

Our Model

In our approach, we learn to represent each concept node with a low-dimensional vector representation that
captures both node-level textual information as well as the structural information from the knowledge graph.
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We consider two simple mechanisms for combining such two types of information, namely linear
combination and concatenation.

3.1.0.0.1 Linear Combination: In this approach, we define the node representations as:

h′ = hgraph + λhtext,

t′ = tgraph + λttext,

where hgraph, tgraph ∈ Rd are vector representations that capture structural information from the knowledge
graph, λ is a hyper-parameter, and htext, ttext ∈ Rd are vectors that capture the textual information conveyed by
the left concept node h and right concept node t respectively. We define the textual feature vector for each
node as the composition of vectors of the sequence of words that appear in each node:

htext = f (w(1)
h
, . . . ,w( |h |)

h
)

ttext = f (w(1)t , . . . ,w( |t |)t )

where w(k)
h

and w(k)t are the representations for words at position k of the textual descriptions of the left
concept node h with the length (i.e., number of words) of |h| and right concept node t with the length of |t |
respectively. We consider two possible composition functions for f : 1) word vector averaging (AVG) and 2)
using a long short-term memory recurrent neural network (LSTM).

3.1.0.0.2 Concatenation: The node representations with the concatenation approach are defined as:

h′ = g(W[hgraph; htext] + b)
t′ = g(W[tgraph; ttext] + b)

where [ · ; · ] is the concatenation operation that concatenates two vectors, g is a non-linear activation function,
W is a parameter matrix and b is the bias vector.

Objective Function

We still use a single vector r ∈ Rd to represent the relation r . The score function is defined as:

s(h, r, t) = | |h′ + r − t′ | |22

We train our model such that it assigns lower scores to valid triplets and higher scores to invalid ones.
We aim to achieve this by minimizing the following margin-based ranking loss:

L = ∑
(h,r,t)∈S

∑
(ĥ,r, t̂)∈Ŝ
[s(h, r, t) + γ − s(ĥ, r, t̂)]+

where [x]+ = max(0, x), and γ is the margin. The set S consists of all valid triplets in the training set, and Ŝ

is the set of invalid triplets generated by sampling from the following set:

{(ĥ, r, t)| ĥ ∈ C, (ĥ, r, t) < S}
∪ {(h, r, t̂)|t̂ ∈ C, (h, r, t̂) < S}

where C is the set of concept nodes from the existing commonsense knowledge graph.
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Table 3–1 Dataset statistics
#Dataset #Relation #Nodes #Train #Dev #Test
FB15k 1345 14951 483142 50000 59071
WN18 18 40493 141442 5000 5000
CN22 22 17,216 86,991 10,861 10,899

Table 3–2 Evaluation results on link prediction on FB15k and WN18

Method
FB15K WN18

Mean Rank Hits@10 Mean Rank Hits@10
Raw Filter Raw Filter Raw Filter Raw Filter

TransE [9] 210 119 48.5 66.1 263 251 75.4 89.2
TransH [10] 212 87 45.7 64.4 318 303 75.4 86.7
DistMult [12] - - - 57.7 - - 94.2
DESP [14] 167 39 51.7 77.3 - - - -
DKRL [15] 181 91 49.6 67.4 - - - -
TEKE [45] 233 79 43.5 67.6 240 127 80.0 93.8
SSP [46] 163 82 57.2 79.0 168 156 81.2 93.2
Jointly [16] 167 77 52.9 75.5 117 95 79.5 91.6
JointE+SATT [47] - - - 79.3 - - - -
Our Model (concat, AVG) 199 57 47.8 70.9 131 116 75.2 87.4
Our Model (linear, AVG) 202 52 50.8 80.9 105 91 79.6 93.8

3.2 Experiments

3.2.1 Dataset

We use two public datasets: WN18 [22] and FB15K [9]. We also created another evaluation dataset created
based on the latest ConceptNet [42]1. Following a similar rule used for constructing WN18 [22], we filter
out relation types appearing in less than 1,000 triplets as well as concepts appearing in less than 10 triplets.
Finally we obtain a sub-graph of ConceptNet consisting of 17,216 nodes and 22 relation types, which we
name as CN22 and release at #URL#. We randomly split 80% of CN22 for training, 10% for development
and 10% for evaluation. Table 3–1 shows the statistics of the resulting datasets.

3.2.2 Implementation Details

We use AdaGrad [43] as the optimization method with the initial learning rate set as 0.1. We empirically set
the margin γ to 1, the dimension d to 200 for node and relation representations. The Glove 200-dimensional
word vectors trained on Wikipedia 2014 and Gigaword 5 [44]2 are used in this work for generating the
textual representations of nodes.3 We set the maximum number of training iterations as 1,000 and use the
development set to determine when to stop training. We also tune λ with development set (optimal λ = 1),
and use tanh as the non-linear activation function.

1https://github.com/commonsense/conceptnet5
2https://nlp.stanford.edu/projects/glove/
3In fact, we can also learn domain or corpus specific word vectors, which we leave as a future work.
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Table 3–3 Evaluation results on link prediction on CN22

Method
Mean Rank Hits@10(%)

Head Tail Head Tail
Raw Filter Raw Filter Raw Filter Raw Filter

TransE 2109 2087 1535 1529 8.4 12.5 14.2 18.0
DistMult 3679 3659 3109 3094 5.2 7.6 9.4 11.8
DistMult (AVG) 1983 1963 1914 1908 8.4 13.4 9.4 14.6
DistMult (LSTM) 1568 1550 1248 1211 6.9 7.4 11.8 12.5
Our Model (concat, AVG) 1135 1115 794 787 11.9 15.6 18.5 21.4
Our Model (concat, LSTM) 1320 1299 914 908 10.7 13.5 16.1 19.2
Our Model (linear, AVG) 955 935 658 651 13.2 17.5 19.9 23.3
Our Model (linear, LSTM) 1005 984 704 697 12.2 15.5 18.5 21.8

3.2.3 Link Prediction Task

This task aims to answer queries of the following types: (?, r, t) or (h, r, ?). In other words, it tries to predict a
missing node of a triplet such as predicting the left concept node h given (r, t) or predicting the right concept
node t given (h, r). To do so, for each test query, following [9], we replace the missing node by each possible
concept node that appeared in the existing knowledge graph to measure the score of the constructed triplet:
s(h, r, t). We next sort these scores, based on which we return the rank of the desired node. We report such
rank information under “Raw”. As sometimes there may be multiple nodes that satisfy the same test query,
when examining the rank of a specific node, we could also remove all the other nodes that also satisfy the
query when calculating the rank. Such results are reported under “Filter". Following previous approaches [9,
10], we consider two standard metrics for reporting the rank information: the average rank of the expected
node (Mean Rank), and the proportion of test triplets that appear within the top-10 list (Hits@10). A lower
Mean Rank or a higher Hits@10 score indicates a better performance.

3.2.4 Results

Considering two combination methods and two composition methods, there are four proposed models to
explore. The link prediction results on FB15k and WN18 are shown in Table 3–2. We compare our methods
against basic translation models as well as various variants considering textual information about nodes.
Besides, we compare against DistMult, which also consider the textual information conveyed by the nodes.
For our models, we can observe that models with word vectors averaging (AVG) method perform better than
those with LSTM. We believe one possible reason is that the lengths of words in the nodes are relatively short
in our CN22 dataset, with the maximum length being only 6. While LSTM may be more suitable for capturing
long distance information in text, AVG as a simple method might be sufficient for this dataset. Perhaps due to
a similar reason, we can also observe that the simple linear combination method performs better than the more
sophisticated concatenation method. Overall, our model with a linear combination approach for integrating
both textual and structural features, where the textual features are constructed with word vector averaging
obtains the best performance.

Table 3–3 shows the evaluation results on CN22. As we cannot obtain external textual corpus about
nodes, we just comapre against basic TransE and DistMult. As highlighted in [12], the difference between
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DistMult and TransE is the choice of the composition operation of two node vectors. DistMult uses a
multiplication operation while TransE uses an additive operation. ConceptNet is a smaller and sparser
knowledge graph compared to WordNet and Freebase. It can be observed that TransE, which regards
relations as linear translation operators, seems to be more suitable than DistMult for learning representations
for such a knowledge graph. When textual information in the nodes is incorporated into the representation
learning process of DistMult model, a better performance can be obtained. Such results show the importance
of textual information for learning such a knowledge graph. Our models that capture both textual information
in the nodes and the structural information from the graph generally perform better than TransE and DistMult
models.

3.3 Conclusion

In this work, we explore several simple and general models for text-enhanced knowledge graph representation
learning. Through experiments, we observe that our models which combine textual features conveyed by
the nodes and structural features from graph together perform well compared to other models. We also
empirically found that the simple approach that makes use of word vector averaging to construct textual
representations while using a linear combination approach to integrate both textual and structural information
can yield better results as compared to existing baseline approaches.
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Chapter 4 Multi-channel BiLSTM-CRF Model for Recognizing Novel
Entity in Social Media

Named entity recognition (NER) is one of the first and most important steps in Information Extraction
pipelines. Generally, it is to identify mentions of entities (persons, locations, organizations, etc.) within
unstructured text. However, the diverse and noisy nature of user-generated content as well as the emerging
entities with novel surface forms make NER in social media messages more challenging.

The first challenge brought by user-generated content is its unique characteristics: short, noisy and
informal. For instance, tweets are typically short since the number of characters is restricted to 140 and
people indeed tend to pose short messages even in social media without such restrictions, such as YouTube
comments and Reddit. 1 Hence, the contextual information in a sentence is very limited. Apart from that, the
use of colloquial language makes it more difficult for existing NER approaches to be reused, which mainly
focus on a general domain and formal text [48, 49].

Another challenge of NER in noisy text is the fact that there are large amounts of emerging named
entities and rare surface forms among the user-generated text, which tend to be tougher to detect [50] and
recall thus is a significant problem [49]. By way of example, the surface form “kktny”, in the tweet “so..
kktny in 30 mins?”, actually refers to a new TV series called “Kourtney and Kim Take New York”, which even
human experts found hard to recognize. Additionally, it is quite often that netizens mention entities using
rare morphs as surface forms. For example, “black mamba”, the name for a venomous snake, is actually a
morph that Kobe Bryant created for himself for his aggressiveness in playing basketball games [51]. Such
morphs and rare surface forms are also very difficult to detect and classify.

The goal of this paper is to present our system participating in the Novel and Emerging Named Entity
Recognition shared task at the EMNLP 2017 Workshop on Noisy User-generated Text (W-NUT 2017), which
aims for NER in such noisy user-generated text. We investigate a multi-channel BiLSTM-CRF neural network
model in our participating system, which is described in Section 4.2. The details of our implementation are
in presented in Section 4.3, where we also present some conclusion from our experiments.

4.1 Problem Definition

The NER is a classic sequence labeling problem, in which we are given a sentence, in the form of a sequence
of tokens w = (w1,w2, ...,wn), and we are required to output a sequence of token labels y = (y1, y2, ..., yn).
In this specific task, we use the standard BIO2 annotation, and each named entity chunk are classified into 6
categories, namely Person, Location (including GPE, facility), Corporation, Consumer good (tangible goods,
or well-defined services), Creative work (song, movie, book, and so on) and Group (subsuming music band,
sports team, and non-corporate organizations).

1The average length of the sentences in this shared task is about 20 tokens per sentence.
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4.2 Approach

In this section, we will first introduce the overview of our proposed model and then present each part of the
model in detail.

4.2.1 Overview

Figure 4–1 shows the overall structure of our proposed model, instead of solely using the original pretrained
word embeddings as the final word representations, we construct a comprehensive word representation for
each word in the input sentence. This comprehensive word representations contain the character-level sub-
word information, the original pretrained word embeddings and multiple syntactical features. Then, we feed
them into a Bidirectional LSTM layer, and thus we have a hidden state for each word. The hidden states are
considered as the feature vectors of the words by the final CRF layer, from which we can decode the final
predicted tag sequence for the input sentence.

Comprehensive
Word 

Representations 

So     ..    kktny in  30    mins ?

Bidirectional-LSTM Layer

CRF Layer
BiLSTM-CRF

Sequence 
Labeling

O B-CWO O O O OOutput NER 
Labels

Figure 4–1 Overview of our approach.

4.2.2 Comprehensive Word Representations

In this subsection, we present our proposed comprehensive word representations. We first build character-
level word representations from the embeddings of every character in each word using a bidirectional LSTM.
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Then we further incorporate the final word representation with the embedding of the syntactical information
of each token, such as the part-of-speech tag, the dependency role, the word position in the sentence and the
head position. Finally, we combine the original word embeddings with the above two parts to obtain the final
comprehensive word representations.

4.2.2.1 Character-level Word Representations

In noisy user-generated text analysis, sub-word (character-level) information is much more important than
that in normal text analysis for two main reasons: 1) People are more likely to use novel abbreviations and
morphs to mention entities, which are often out of vocabulary and only occur a few times. Thus, solely
using the original word-level word embedding as features to represent words is not adequate to capture the
characteristics of such mentions. 2) Another reason why we have to pay more attention to character-level
word representation for noisy text is that it is can capture the orthographic or morphological information of
both formal words and Internet slang.

There are two main network structures to make use of character embeddings: one is CNN [52] and
the other is BiLSTM[53]. BiLSTM turns to be better in our experiment on development dataset. Thus, we
follow Lample et al. (2016) to build a BiLSTM network to encode the characters in each token as Figure 4–2
shows. We finally concatenate the forward embedding and backward embedding to the final character-level
word representation.

GoogleG o o g l e

L L L L L L

R R R R RR

Lookup 
Table

Syntactic 
Tags

Character-level Word Representation Word-level Word 
Representation

Syntactical Word 
Representation

Comprehensive Word Representation

Figure 4–2 Illustration of comprehensive word representations.

4.2.2.2 Syntactical Word Representations

We argue that the syntactical information, such as POS tags and dependency roles, should also be explicitly
considered as contextual features of each token in the sentence.
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TweetNLP and TweeboParser [54, 55] are two popular software to generate such syntactical tags for
each token given a tweet. Given the nature of the noisy tweet text, a new set of POS tags and dependency
trees are used in the tool, called Tweebank [56]. See Table 4–1 for an example POS tagging. Since a tweet
often contains more than one utterance, the output of TweeboParser will often be a multi-rooted graph over
the tweet.

Word position embedding are included as well as it is widely used in other similar tasks, like relation
classification [57]. Also, head position embeddings are taken into account while calculating these embedding
vectors to further enrich the dependency information. It tries to exclude these tokens from the parse tree,
resulting a head index of -1.

After calculating all 4 types of embedding vectors (POS tags, dependency roles, word positions, head
positions) for every tokens, we concatenate them to form a syntactical word representation.

Table 4–1 Example of POS tagging for tweets.
Token so .. kktny in 30 mins ?
POS R , N P $ N ,
Position 1 2 3 4 5 6 7
Head 0 -1 0 3 6 4 -1

4.2.2.3 Combination with Word-level Word Representations

After obtaining the above two additional word representations, we combine them with the original word-level
word representations, which are just traditional word embeddings.

To sum up, our comprehensive word representations are the concatenation of three parts: 1) character-
level word representations, 2) syntactical word representation and 3) original pretrained word embeddings.

4.2.3 BiLSTM Layer

LSTM based networks are proven to be effective in sequence labeling problem for they have access to both
past and the future contexts. Whereas, hidden states in unidirectional LSTMs only takes information from the
past, which may be adequate to classify the sentiment is a shortcoming for labeling each token. Bidirectional
LSTMs enable the hidden states to capture both historical and future context information and then to label a
token.

Mathematically, the input of this BiLSTM layer is a sequence of comprehensive word representations
(vectors) for the tokens of the input sentence, denoted as (x1, x2, ..., xn). The output of this BiLSTM layer is a
sequence of the hidden states for each input word vectors, denoted as (h1, h2, ..., hn). Each final hidden state
is the concatenation of the forward

←−hi and backward
−→hi hidden states. We know that

←−hi = lstm(xi,
←−−hi−1) ,

−→hi = lstm(xi,
−−→hi+1)
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hi =
[←−hi ;

−→hi

]
4.2.4 CRF Layer

It is almost always beneficial to consider the correlations between the current label and neighboring labels
since there are many syntactical constrains in natural language sentences. For example, I-PERSON will never
follow a B-GROUP. If we simply feed the above mentioned hidden states independently to a Softmax layer
to predict the labels, then such constrains will not be more likely to be broken. Linear-chain Conditional
Random Field is the most popular way to control the structure prediction and its basic idea is to use a series
of potential function to approximate the conditional probability of the output label sequence given the input
word sequence.

Formally, we take the above sequence of hidden states h = (h1, h2, ..., hn) as our input to the CRF layer,
and its output is our final prediction label sequence y = (y1, y2, ..., yn), where yi is in the set of all possible
labels. We denoteY(h) as the set of all possible label sequences. Then we derive the conditional probability
of the output sequence given the input hidden state sequence is

p(y|h; W, b) =
∏n

i=1 exp(WT
yi−1,yi

h + byi−1,yi )∑
y′∈Y(h)

∏n
i=1 exp(WT

y′
i−1,y

′
i
h + by′

i−1,y
′
i
)

, where W and b are the two weight matrices and the subscription indicates that we extract the weight vector
for the given label pair (yi−1, yi).

To train the CRF layer, we use the classic maximum conditional likelihood estimation to train our model.
The final log-likelihood with respect to the weight matrices is

L(W, b) =
∑
(hi,yi)

log p(yi |hi; W, b)

Finally, we adopt the Viterbi algorithm for training the CRF layer and the decoding the optimal output
sequence y∗.

4.3 Experiments

In this section, we discuss the implementation details of our system such as hyper parameter tuning and the
initialization of our model parameters. 1

1The detailed description of the evaluation metric and the dataset are shown in http://noisy-text.github.io/2017/
emerging-rare-entities.html
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4.3.1 Parameter Initialization

For word-level word representation (i.e. the lookup table), we utilize the pretrained word embeddings1 from
GloVe[44]. For all out-of-vocabulary words, we assign their embeddings by randomly sampling from range[
−
√

3
dim,+

√
3

dim

]
, where dim is the dimension of word embeddings, suggested by He et al.(2015). The random

initialization of character embeddings are in the same way. We randomly initialize the weight matrices W and

b with uniform samples from
[
−
√

6
r+c
,+

√
6

r+c

]
, r and c are the number of the rows and columns, following

Glorot and Bengio(2010). The weight matrices in LSTM are initialized in the same work while all LSTM
hidden states are initialized to be zero except for the bias for the forget gate is initialized to be 1.0 , following
Jozefowicz et al.(2015).

4.3.2 Hyper Parameter Tuning

We tuned the dimension of word-level embeddings from {50, 100, 200}, character embeddings from {10, 25,
50}, character BiLSTM hidden states (i.e. the character level word representation) from {20, 50, 100}. We
finally choose the bold ones. The dimension of part-of-speech tags, dependecny roles, word positions and
head positions are all 5.

As for learning method, we compare the traditional SGD and Adam [61]. We found that Adam performs
always better than SGD, and we tune the learning rate form {1e-2,1e-3,1e-4}.

4.3.3 Results

To evaluate the effectiveness of each feature in our model, we do the feature ablation experiments and the
results are shown in Table 4–2.

Table 4–2 Feature Ablation
Features F1 (entity) F1 (surface form)

Word 37.16 34.15
Char(LSTM)+Word 38.24 37.21

POS+Char(LSTM)+Word 40.01 37.57
Syntactical+Char(CNN)+Word 40.12 37.52

Syntactical+Char(LSTM)+Word 40.42 37.62

In comparison with other participants, the results are shown in Table 4–3.

Table 4–3 Result comparison
Team F1 (entity) F1 (surface form)

Drexel-CCI 26.30 25.26
MIC-CIS 37.06 34.25
FLYTXT 38.35 36.31
Arcada 39.98 37.77
Ours 40.42 37.62

SpinningBytes 40.78 39.33
UH-RiTUAL 41.86 40.24

1http://nlp.stanford.edu/data/glove.twitter.27B.zip
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4.4 Conclusion

In this paper, we present a novel multi-channel BiLSTM-CRF model for emerging named entity recognition
in social media messages. We find that BiLST-CRF architecture with our proposed comprehensive word
representations built from multiple information are effective to overcome the noisy and short nature of social
media messages.
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Chapter 5 Mining Cross-Cultural Differences and Similarities in
Social Media

5.1 The SocVec Framework

In this section, we first discuss the intuition behind our model, the concept of “social words” and our notations.
Then, we present the overall workflow of our approach. We finally describe the SocVec framework in detail.

5.1.1 Problem Statement

We choose (English, Chinese) to be the target language pair throughout this paper for the salient cross-
cultural differences between the east and the west1. Given an English term W and a Chinese term U, the
core research question is how to compute a similarity score, ccsim(W,U), to represent the cross-cultural
similarities between them.

We cannot directly calculate the similarity between the monolingual word vectors of W and U, because
they are trained separately and the semantics of dimension are not aligned. Thus, the challenge is to devise
a way to compute similarities across two different vector spaces while retaining their respective cultural
characteristics.

A very intuitive solution is to firstly translate the Chinese term U to its English counterpart U ′ through
a Chinese-English bilingual lexicon, and then regard ccsim(W,U) as the (cosine) similarity between W and
U ′ with their monolingual word embeddings. However, this solution is not promising in some common cases
for three reasons:

1. if U is an OOV (Out of Vocabulary) term, e.g., a novel slang term, then there is probably no translation
U ′ in bilingual lexicons.

2. if W and U are names referring to the same named entity, then we have U ′ = W . Therefore,
ccsim(W,U) is just the similarity between W and itself, and we cannot capture any cross-cultural
differences with this method.

3. this approach does not explicitly preserve the cultural and social contexts of the terms.
To overcome the above problems, our intuition is to project both English and Chinese word vectors into

a single third space, known as SocVec, and the projection is supposed to purposely carry cultural features of
terms.

5.1.2 Social Words and Our Notations

Some research in psychology and sociology [62, 63] show that culture can be highly related to emotions
and opinions people express in their discussions. As suggested by [64], we thus define the concept of

1Nevertheless, the techniques are language independent and thus can be utilized for any language pairs so long as the necessary resources outlined
in Section 5.1.3 are available.
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Figure 5–1 Workflow for computing the cross-cultural similarity between an English word W and a Chinese word U, denoted
by ccsim(W,U)

“social word” as the words directly reflecting opinion, sentiment, cognition and other human psychological
processes1, which are important to capturing cultural and social characteristics. Both [65] and [66] find such
social words are most effective culture/socio-linguistic features in identifying cross-cultural differences.

We use these notations throughout the paper: CnVec and EnVec denote the Chinese and English word
vector space, respectively; CSV and ESV denote the Chinese and English social word vocab; BL means
Bilingual Lexicon, and BSL is short for Bilingual Social Lexicon; finally, we use Ex, Cx and Sx to denote the
word vectors of the word x in EnVec, CnVec and SocVec spaces respectively.

5.1.3 Overall Workflow

Figure 5–1 shows the workflow of our framework to construct the SocVec and compute ccsim(W,U). Our
proposed SocVec model attacks the problem with the help of three low-cost external resources: (i) an English
corpus and a Chinese corpus from social media; (ii) an English-to-Chinese bilingual lexicon (BL); (iii) an
English social word vocabulary (ESV) and a Chinese one (CSV).

We train English and Chinese word embeddings (EnVec and CnVec) on the English and Chinese social
media corpus respectively. Then, we build a BSL from the CSV, ESV and BL (see Section 5.1.4). The BSL
further maps the previously incompatible EnVec and CnVec into a single common vector space SocVec, where
two new vectors, SW for W and SU for U, are finally comparable.

5.1.4 Building the BSL

The process of building the BSL is illustrated in Figure 5–2. We first extract our bilingual lexicon (BL),
where confidence score wi represents the probability distribution on the multiple translations for each word.

1Example social words in English include fawn, inept, tremendous, gratitude, terror, terrific, loving, traumatic, etc. We discuss the sources of such
social words in Section 5.2.
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Afterwards, we use BL to translate each social word in the ESV to a set of Chinese words and then filter out
all the words that are not in the CSV. Now, we have a set of Chinese social words for each English social
word, which is denoted by a “translation set”. The final step is to generate a Chinese “pseudo-word” for each
English social word using their corresponding translation sets. A “pseudo-word” can be either a real word
that is the most representative word in the translation set, or an imaginary word whose vector is a certain
combination of the vectors of the words in the translation set.

Bilingual Lexicon (BL)

inept 	�(incompetence)/0.7�
�(clumsy)/0.3

terror ��(horror)/0.6���(fear)/0.4

fawn ��(flatter)/0.4�
�(toady)/0.4��(lamb)/0.3

… …

inept

terror

fawn

…

English Social Vocab Filtered Bilingual Lexicon

inept 	�(incompetence)/0.7�
�(clumsy)/0.3

terror ��(horror)/0.6���(fear)/0.4

fawn ��(flatter)/0.4�
�(toady)/0.4

… …

inept: inept*:
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…

�
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�
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Figure 5–2 Generating an entry in the BSL for “fawn” and its pseudo-word “fawn*”

For example, in Figure 5–2, the English social word “fawn” has three Chinese translations in the bilingual
lexicon, but only two of them (underlined) are in the CSV. Thus, we only keep these two in the translation set
in the filtered bilingual lexicon. The pseudo-word generator takes the word vectors of the two words (in the
black box), namely 奉承 (flatter) and 谄媚 (toady), as input, and generates the pseudo-word vector denoted
by “fawn*”. Note that the direction of building BSL can also be from Chinese to English, in the same manner.
However, we find that the current direction gives better results due to the better translation quality of our BL
in this direction.

Given an English social word, we denote ti as the ith Chinese word of its translation set consisting of
N social words. We design four intuitive types of pseudo-word generator as follows, which are tested in the
experiments:
(1) Max. Maximum of the values in each dimension, assuming dimensionality is K:

Pseudo(Ct1, ...,CtN) =


max(C(1)t1
, ...,C(1)tN

)
...

max(C(K )t1
, ...,C(K )tN

)


T

(2) Avg. Average of the values in every dimension:

Pseudo(Ct1, ...,CtN) =
1
N

N∑
i

Cti

(3) WAvg. Weighted average value of every dimension with respect to the translation confidence:

Pseudo(Ct1, ...,CtN) =
1
N

N∑
i

wiCti

(4) Top. The most confident translation:

Pseudo(Ct1, ...,CtN) = Ctk, k = arg max
i

wi
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Finally, the BSL contains a set of English-Chinese word vector pairs, where each entry represents an English
social word and its Chinese pseudo-word based on its “translation set”.

5.1.5 Constructing the SocVec Space

Let Bi denote the English word of the ith entry of the BSL, and its corresponding Chinese pseudo-word is
denoted by B∗i . We can project the English word vector EW into the SocVec space by computing the cosine
similarities between EW and each English word vector in BSL as values on SocVec dimensions, effectively
constructing a new vector SW of size L. Similarly, we map a Chinese word vector CU to be a new vector SU.
SW and SU belong to the same vector space SocVec and are comparable. The following equation illustrates
the projection, and how to compute ccsim1.

ccsim(W,U) := f (EW,CU)

= sim
©­­­«

cos(EW,EB1 )

...

cos(EW,EBL )


T

,


cos(CU,CB∗1 )

...

cos(CU,CB∗L )


Tª®®®¬

= sim(SW, SU)

For example, if W is “Nagoya” and U is ‘‘名古屋”, we compute the cosine similarities between
“Nagoya” and each English social word in the BSL with their monolingual word embeddings in English.
Such similarities compose Snagoya. Similarly, we compute the cosine similarities between ‘‘名古屋” and each
Chinese pseudo-word, and compose the social word vector S名古屋.

In other words, for each culture/language, the new word vectors like SW are constructed based on the
monolingual similarities of each word to the vectors of a set of task-related words (“social words” in our
case). This is also a significant part of the novelty of our transformation method.

5.2 Experimental Setup

Prior to evaluating SocVec with our two proposed tasks in Section 5.3 and Section 5.4, we present our
preparation steps as follows.

Social Media Corpora Our English Twitter corpus is obtained from Archive Team’s Twitter stream
grab2. The Chinese Weibo corpus comes from Open Weiboscope Data Access3 [67]. Both corpora cover
the whole year of 2012. We then randomly down-sample each corpus to 100 million messages where each
message contains at least 10 characters, normalize the text [68], lemmatize the text [69] and use LTP [70] to
perform word segmentation for the Chinese corpus.

Entity Linking and Word Embedding Entity linking is a preprocessing step which links various
entity mentions (surface forms) to the identity of corresponding entities. For the Twitter corpus, we use
Wikifier [71, 72], a widely used entity linker in English. Because no sophisticated tool for Chinese short

1The function sim is a generic similarity function, for which several metrics are considered in experiments.
2https://archive.org/details/twitterstream
3http://weiboscope.jmsc.hku.hk/datazip/
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text is available, we implement our own tool that is greedy for high precision. We train English and Chinese
monolingual word embedding respectively using word2vec’s skip-gram method with a window size of 5 [73].

Bilingual Lexicon Our bilingual lexicon is collected from Microsoft Translator1, which translates
English words to multiple Chinese words with confidence scores. Note that all named entities and slang terms
used in the following experiments are excluded from this bilingual lexicon.

Social Word Vocabulary Our social word vocabularies come from Empath [74] and OpinionFinder [75]
for English, and TextMind [76] for Chinese. Empath is similar to LIWC [64], but has more words and more
categories and is publicly available. We manually select 91 categories of words that are relevant to human
perception and psychological processes following [66]. OpinionFinder consists of words relevant to opinions
and sentiments, and TextMind is a Chinese counterpart for Empath. In summary, we obtain 3,343 words from
Empath, 3,861 words from OpinionFinder, and 5,574 unique social words in total.

5.3 Task 1: Mining cross-cultural differences of named entities

Task definition: This task is to discover and quantify cross-cultural differences of concerns towards named
entities. Specifically, the input in this task is a list of 700 named entities of interest and two monolingual
social media corpora; the output is the scores for the 700 entities indicating the cross-cultural differences of
the concerns towards them between two corpora. The ground truth is from the labels collected from human
annotators.

5.3.1 Ground Truth Scores

[77] states that the meaning of words is evidenced by the contexts they occur with. Likewise, we assume that
the cultural properties of an entity can be captured by the terms they always co-occur within a large social
media corpus. Thus, for each of randomly selected 700 named entities, we present human annotators with
two lists of 20 most co-occurred terms within Twitter and Weibo corpus respectively.

Our annotators are instructed to rate the topic-relatedness between the two word lists using one of
following labels: “very different”, “different”, “hard to say”, “similar” and “very similar”. We do this for
efficiency and avoiding subjectivity. As the word lists presented come from social media messages, the social
and cultural elements are already embedded in their chances of occurrence. All four annotators are native
Chinese speakers but have excellent command of English and lived in the US extensively, and they are trained
with many selected examples to form shared understanding of the labels. The inter-annotator agreement is
0.67 by Cohen’s kappa coefficient, suggesting substantial correlation [36].

5.3.2 Baseline and Our Methods

We propose eight baseline methods for this novel task: distribution-based methods (BL-JS, E-BL-JS, and
WN-WUP) compute cross-lingual relatedness between two lists of the words surrounding the input English
and Chinese terms respectively (LE and LC); transformation-based methods (LTrans and BLex) compute

1http://www.bing.com/translator/api/Dictionary/Lookup?from=en&to=zh-CHS&text=<input_word>
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Table 5–1 Selected culturally different entities with summarized Twitter and Weibo’s trending topics
Entity Twitter topics Weibo topics

Maldives
coup, president Nasheed quit, political
crisis

holiday, travel, honeymoon, paradise, beach

Nagoya tour, concert, travel, attractive, Osaka Mayor Takashi Kawamura, Nanjing Massacre, denial of history

Quebec
Conservative Party, Liberal Party,
politicians, prime minister, power
failure

travel, autumn, maples, study abroad, immigration,
independence

Philippines gunman attack, police, quake, tsunami South China Sea, sovereignty dispute, confrontation, protest

Yao Ming NBA, Chinese, good player, Asian
patriotism, collective values, Jeremy Lin, Liu Xiang, Chinese
Law maker, gold medal superstar

USC
college football, baseball, Stanford,
Alabama, win, lose

top destination for overseas education, Chinese student
murdered, scholars, economics, Sino American politics

the vector representation in English and Chinese corpus respectively, and then train a transformation; MCCA,
MCluster and Duong are three typical bilingual word representation models for computing general cross-
lingual word similarities.

The LE and LC in the BL-JS and WN-WUP methods are the same as the lists that annotators judge.
BL-JS (Bilingual Lexicon Jaccard Similarity) uses the bilingual lexicon to translate LE to a Chinese word
list L∗E as a medium, and then calculates the Jaccard Similarity between L∗E and LC as JEC . Similarly, we
compute JCE . Finally, we regard (JEC+JCE )/2 as the score of this named entity. E-BL-JS (Embedding-based
Jaccard Similarity) differs from BL-JS in that it instead compares the two lists of words gathered from the
rankings of word embedding similarities between the name of entities and all English words and Chinese
words respectively. WN-WUP (WordNet Wu-Palmer Similarity) uses Open Multilingual Wordnet [78] to
compute the average similarities over all English-Chinese word pairs constructed from the LE and LC .

We follow the steps of [79] to train a linear transformation (LTrans) matrix between EnVec and CnVec,
using 3,000 translation pairs with maximum confidences in the bilingual lexicon. Given a named entity, this
solution simply calculates the cosine similarity between the vector of its English name and the transformed
vector of its Chinese name. BLex (Bilingual Lexicon Space) is similar to our SocVec but it does not use any
social word vocabularies but uses bilingual lexicon entries as pivots instead.

MCCA [80] takes two trained monolingual word embeddings with a bilingual lexicon as input, and
develop a bilingual word embedding space. It is extended from the work of [81], which performs slightly
worse in the experiments. MCluster [80] requires re-training the bilingual word embeddings from the
two mono-lingual corpora with a bilingual lexicon. Similarly, Duong [82] retrains the embeddings from
monolingual corpora with an EM-like training algorithm. We also use our BSL as the bilingual lexicon
in these methods to investigate its effectiveness and generalizability. The dimensionality is tuned from
{50, 100, 150, 200} in all these bilingual word embedding methods.

With our constructed SocVec space, given a named entity with its English and Chinese names, we can
simply compute the similarity between their SocVecs as its cross-cultural difference score. Our method is
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Table 5–2 Comparison of Different Methods
Method Spearman Pearson MAP
BL-JS 0.276 0.265 0.644

WN-WUP 0.335 0.349 0.677
E-BL-JS 0.221 0.210 0.571
LTrans 0.366 0.385 0.644
BLex 0.596 0.595 0.765

MCCA-BL(100d) 0.325 0.343 0.651
MCCA-BSL(150d) 0.357 0.376 0.671
MCluster-BL(100d) 0.365 0.388 0.693
MCluster-BSL(100d) 0.391 0.425 0.713

Duong-BL(100d) 0.618 0.627 0.785
Duong-BSL(100d) 0.625 0.631 0.791

SocVec:opn 0.668 0.662 0.834
SocVec:all 0.676 0.671 0.834

SocVec:noun 0.564 0.562 0.756
SocVec:verb 0.615 0.618 0.779
SocVec:adj. 0.636 0.639 0.800

based on monolingual word embeddings and a BSL, and thus does not need the time-consuming re-training
on the corpora.

5.3.3 Experimental Results

For qualitative evaluation, Table 5–1 shows some of the most culturally different entities mined by the SocVec
method. The hot and trendy topics on Twitter and Weibo are manually summarized to help explain the
cross-cultural differences. The perception of these entities diverges widely between English and Chinese
social media, thus suggesting significant cross-cultural differences. Note that some cultural differences are
time-specific. We believe such temporal variations of cultural differences can be valuable and beneficial for
social studies as well. Investigating temporal factors of cross-cultural differences in social media can be an
interesting future research topic in this task.

In Table 5–2, we evaluate the benchmark methods and our approach with three metrics: Spearman and
Pearson, where correlation is computed between truth averaged scores (quantifying the labels from 1.0 to
5.0) and computed cultural difference scores from different methods; Mean Average Precision (MAP), which
converts averaged scores as binary labels, by setting 3.0 as the threshold. The SocVec:opn considers only
OpinionFinder as the ESV, while SocVec:all uses the union of Empath and OpinionFinder vocabularies1.

Lexicon Ablation Test. To show the effectiveness of social words versus other type of words as the
bridge between the two cultures, we also compare the results using sets of nouns (SocVec:noun), verbs
(SocVec:verb) and adjectives (SocVec:adj.). All vocabularies under comparison are of similar sizes (around

1The following tuned parameters are used in SocVec methods: 5-word context window, 150 dimensions monolingual word vectors, cosine similarity
as the sim function, and “Top” as the pseudo-word generator.
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Table 5–3 Different Similarity Functions
Similarity Spearman Pearson MAP
PCorr. 0.631 0.625 0.806
L1 + M 0.666 0.656 0.824
Cos 0.676 0.669 0.834
L2 + E 0.676 0.671 0.834

Table 5–4 Different Pseudo-word Generators
Generator Spearman Pearson MAP

Max. 0.413 0.401 0.726
Avg. 0.667 0.625 0.831

W.Avg. 0.671 0.660 0.832
Top 0.676 0.671 0.834

5,000), indicating that the improvement of our method is significant. Results show that our SocVec models,
and in particular, the SocVec model using the social words as cross-lingual media, performs the best.

Similarity Options. We also evaluate the effectiveness of four different similarity options in SocVec,
namely, Pearson Correlation Coefficient (PCorr.), L1-normalized Manhattan distance (L1+M), Cosine Sim-
ilarity (Cos) and L2-normalized Euclidean distance (L2+E). From Table 5–3, we conclude that among these
four options, Cos and L2+E perform the best.

Pseudo-word Generators. Table 5–4 shows effect of using four pseudo-word generator functions, from
which we can infer that “Top” generator function performs best for it reduces some noisy translation pairs.

5.4 Task 2: Finding most similar words for slang across languages

Task Description: This task is to find the most similar English words of a given Chinese slang term in
terms of its slang meanings and sentiment, and vice versa. The input is a list of English/Chinese slang
terms of interest and two monolingual social media corpora; the output is a list of Chinese/English word sets
corresponding to each input slang term. Simply put, for each given slang term, we want to find a set of the
words in a different language that are most similar to itself and thus can help people understand it across
languages. We propose Average Cosine Similarity (Section 5.4.3) to evaluate a method’s performance with
the ground truth (presented below).

5.4.1 Ground Truth

Slang Terms. We collect the Chinese slang terms from an online Chinese slang glossary1 consisting
of 200 popular slang terms with English explanations. For English, we resort to a slang word list from
OnlineSlangDictionary2 with explanations and downsample the list to 200 terms.

1https://www.chinasmack.com/glossary
2http://onlineslangdictionary.com/word-list/
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Table 5–5 ACS Sum Results of Slang Translation
Gg Bi Bd CC LT

18.24 16.38 17.11 17.38 9.14
TransBL MCCA MCluster Duong SV

18.13 17.29 17.47 20.92 23.01
(a) Chinese Slang to English

Gg Bi Bd LT TransBL
6.40 15.96 15.44 7.32 11.43

MCCA MCluster Duong SV
15.29 14.97 15.13 17.31

(b) English Slang to Chinese

Truth Sets. For each Chinese slang term, its truth set is a set of words extracted from its English explanation.
For example, we construct the truth set of the Chinese slang term ‘‘⼆百五” by manually extracting significant
words about its slang meanings (bold) in the glossary:
二百五: A foolish person who is lacking in sense but still stubborn, rude, and impetuous.

Similarly, for each English slang term, its Chinese word sets are the translation of the words hand picked from
its English explanation.

Table 5–6 Bidirectional Slang Translation Examples Produced by SocVec
Slang Explanation Google Bing Baidu Ours

浮云
something as ephemeral and
unimportant as “passing clouds”

clouds nothing
floating
clouds

nothingness, illusion

⽔军

“water army”, people paid to slander
competitors on the Internet and to
help shape public opinion

Water army Navy Navy
propaganda,
complicit, fraudulent

floozy
a woman with a reputation for
promiscuity

N/A
劣根性

(depravity)
荡妇 (slut)

骚货 (slut), 妖精

(promiscuous)

fruitcake
a crazy person, someone who is
completely insane

⽔果蛋糕

(fruit cake)
⽔果蛋糕

(fruit cake)
⽔果蛋糕

(fruit cake)
怪诞 (bizarre), 厌烦

(annoying)

5.4.2 Baseline and Our Methods

We propose two types of baseline methods for this task. The first is based on well-known online translators,
namely Google (Gg), Bing (Bi) and Baidu (Bd). Note that experiments using them are done in August, 2017.
Another baseline method for Chinese is CC-CEDICT1 (CC), an online public Chinese-English dictionary,
which is constantly updated for popular slang terms.

Considering situations where many slang terms have literal meanings, it may be unfair to retrieve target
terms from such machine translators by solely inputing slang terms without specific contexts. Thus, we

1https://cc-cedict.org/wiki/
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utilize example sentences of their slang meanings from some websites (mainly from Urban Dictionary1). The
following example shows how we obtain the target translation terms for the slang word “fruitcake” (an insane
person):

Input sentence: Oh man, you don’t want to date that girl. She’s always drunk and yelling. She is a total
fruitcake.2

Google Translation: 哦, 男⼈, 你不想约会那个⼥孩。她总是喝醉了, ⼤喊⼤叫。她是⼀个水果蛋糕。

Another lines of baseline methods is scoring-based. The basic idea is to score all words in our bilingual
lexicon and consider the top K words as the target terms. Given a source term to be translated, the Linear
Transform (LT), MCCA, MCluster and Duong methods score the candidate target terms by computing cosine
similarities in their constructed bilingual vector space (with the tuned best settings in previous evaluation).
A more sophisticated baseline (TransBL) leverages the bilingual lexicon: for each candidate target term w in
the target language, we first obtain its translations Tw back into the source language and then calculate the
average word similarities between the source term and the translations Tw as w’s score.

Our SocVec-based method (SV) is also scoring-based. It simply calculates the cosine similarities between
the source term and each candidate target term within SocVec space as their scores.

5.4.3 Experimental Results

To quantitatively evaluate our methods, we need to measure similarities between a produced word set and the
ground truth set. Exact-matching Jaccard similarity is too strict to capture valuable relatedness between two
word sets. We argue that average cosine similarity (ACS) between two sets of word vectors is a better metric
for evaluating the similarity between two word sets.

ACS(A, B) = 1
|A| |B|

|A|∑
i=1

|B |∑
j=1

Ai · Bj

∥Ai∥∥Bj∥

The above equation illustrates such computation, where A and B are the two word sets: A is the truth set and
B is a similar list produced by each method. In the previous case of ‘‘⼆百五” (Section 5.4.1), A is {foolish,
stubborn, rude, impetuous} while B can be {imbecile, brainless, scumbag, imposter}. Ai and Bj denote the
word vector of the ith word in A and j th word in B respectively. The embeddings used in ACS computations
are pre-trained GloVe word vectors3 and thus the computation is fair among different methods.

Experimental results of Chinese and English slang translation in terms of the sum of ACS over 200 terms
are shown in Table 5–5. The performance of online translators for slang typically depends on human-set
rules and supervised learning on well-annotated parallel corpora, which are rare and costly, especially for
social media where slang emerges the most. This is probably the reason why they do not perform well. The
Linear Transformation (LT) model is trained on highly confident translation pairs in the bilingual lexicon,
which lacks OOV slang terms and social contexts around them. The TransBL method is competitive because
its similarity computations are within monolingual semantic spaces and it makes great use of the bilingual

1http://www.urbandictionary.com/
2http://www.englishbaby.com/lessons/4349/slang/fruitcake
3https://nlp.stanford.edu/projects/glove/
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Table 5–7 Slang-to-Slang Translation Examples
Chinese Slang English Slang Explanation

萌

adorbz, adorb,
adorbs, tweeny,

attractiveee
cute, adorable

⼆百五
shithead, stupidit,

douchbag
A foolish
person

鸭梨

antsy, stressy,
fidgety, grouchy,

badmood

stress, pressure,
burden

lexicon, but it loses the information from the related words that are not in the bilingual lexicon. Our method
(SV) outperforms baselines by directly using the distances in the SocVec space, which proves that the SocVec
well captures the cross-cultural similarities between terms.

To qualitatively evaluate our model, in Table 5–6, we present several examples of our translations for
Chinese and English slang terms as well as their explanations from the glossary. Our results are highly
correlated with these explanations and capture their significant semantics, whereas most online translators
just offer literal translations, even within obviously slang contexts. We take a step further to directly translate
Chinese slang terms to English slang terms by filtering out ordinary (non-slang) words in the original target
term lists, with examples shown in Table 5–7.

5.5 Related Work

Although social media messages have been essential resources for research in computational social science,
most works based on them only focus on a single culture and language [83–88]. Cross-cultural studies have
been conducted on the basis of a questionnaire-based approach for many years. There are only a few of such
studies using NLP techniques.

[89] present a framework to visualize the cross-cultural differences in concerns in multilingual blogs
collected with a topic keyword. [65] show that cross-cultural analysis through language in social media data
is effective, especially using emotion terms as culture features, but the work is restricted in monolingual
analysis and a single domain (love and relationship). [66] investigate the cross-cultural differences in word
usages between Australian and American English through their proposed “socio-linguistic features” (similar
to our social words) in a supervised way. With the data of social network structures and user interactions, [90]
study how to quantify the controversy of topics within a culture and language. [91] propose an approach to
detect differences of word usage in the cross-lingual topics of multilingual topic modeling results. To the best
of our knowledge, our work for Task 1 is among the first to mine and quantify the cross-cultural differences
in concerns about named entities across different languages.

Existing research on slang mainly focuses on automatic discovering of slang terms [92] and normalization
of noisy texts [68] as well as slang formation.
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parenciteni2017learning are among the first to propose an automatic supervised framework to mono-lingually
explain slang terms using external resources. However, research on automatic translation or cross-lingually
explanation for slang terms is missing from the literature. Our work in Task 2 fills the gap by computing
cross-cultural similarities with our bilingual word representations (SocVec) in an unsupervised way. We
believe this application is useful in machine translation for social media [93].

Many existing cross-lingual word embedding models rely on expensive parallel corpora with word or
sentence alignments [28, 94]. These works often aim to improve the performance on monolingual tasks
and cross-lingual model transfer for document classification, which does not require cross-cultural signals.
We position our work in a broader context of “monolingual mapping” based cross-lingual word embedding
models in the survey of [25]. The SocVec uses only lexicon resource and maps monolingual vector spaces
into a common high-dimensional third space by incorporating social words as pivot, where orthogonality is
approximated by setting clear meaning to each dimension of the SocVec space.

5.6 Conclusion

We present the SocVec method to compute cross-cultural differences and similarities, and evaluate it on two
novel tasks about mining cross-cultural differences in named entities and computing cross-cultural similarities
in slang terms. Through extensive experiments, we demonstrate that the proposed lightweight yet effective
method outperforms a number of baselines, and can be useful in translation applications and cross-cultural
studies in computational social science. Future directions include: 1) mining cross-cultural differences in
general concepts other than names and slang, 2) merging the mined knowledge into existing knowledge bases,
and 3) applying the SocVec in downstream tasks like machine translation.
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Summary

Commonsense knowledge and related works have been one of the most important areas in Artificial Intelli-
gence, because a lot of artificial intelligent systems can benefit from incorporating commonsense knowledge
as background priors in their models. These kinds of commonsense facts have been used in many downstream
tasks, such as textual entailment in Natural Language Processing (NLP) and object detection in Computer
Vision (CV).

An automatic method of extracting commonsense relationship from textual corpora or other data is
an essential topic. LocatedNear relation is a kind of commonsense knowledge describing two physical
objects that are typically found near each other in real life, of which ConceptNet contains only 49 triples.
In the first section of this thesis, the author studies how to automatically extract such relationship through a
sentence-level relation classifier and aggregating the scores of entity pairs from a large corpus. Apart from
that, we release two benchmark datasets for evaluation and future research: 1）one containing 5,000 sentences
annotated with whether a mentioned entity pair has LocatedNear relation in the given sentence or not; 2）

the other containing 500 pairs of physical objects and whether they are commonly located nearby. We propose
a number of baseline methods for the tasks and compare the results with a state-of-the-art general-purpose
relation classifier. The second section of this thesis proposes the very first dataset for CSKGE and investigate
the characteristics as well as the performance of state-of-the-art KGE models on it. The author also proposes
a novel CSKGE model purposely designed for CSKGs. The third section of this thesis studies the problem
of computing such cross-cultural differences and similarities. This thesis presents a lightweight yet effective
approach, and evaluate it on two novel tasks: 1) mining cross-cultural differences of named entities and 2)
finding similar terms for slang across languages. Experimental results show that our framework substantially
outperforms a number of baseline methods on both tasks. The framework could be useful for machine
translation applications and research in computational social science.

The works in this thesis are published in the following papers:
1. Mining Cross-Cultural Differences and Similarities in Social Media.

(to appear) in Proc. of ACL 2018 (CCF-A class)
Bill Yuchen Lin, Frank F. Xu, Kenny Q. Zhu, Seung-won Hwang

2. Automatic Extraction of Commonsense LocatedNear Knowledge.
(to appear) in Proc. of ACL 2018 (CCF-A class)
Frank F. Xu, Bill Yuchen Lin, Kenny Q. Zhu

3. Multi-channel BiLSTM-CRF Model for Emerging Named Entity Recognition in Social Media.
in Proc. of EMNLP 2017 (CCF-B class) Workshop on Noisy User-generated Text
Bill Y. Lin, Frank F. Xu, Zhiyi Luo, Kenny Q. Zhu
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