
 

 

 

 

 

SHANGHAI JIAO TONG UNIVERSITY 

学士学位论文 
BACHELOR’S THESIS 

 

 

 

 

 

 

 

 

论文题目： 基于机器学习的多模态磁共振脑影像计算分析  

——及其精神分裂症诊断中的应用 
           

学生姓名:        庄惠翔            

学生学号:     5140309131       

专    业:     测控技术与仪器      

指导教师:       刘满华           

学院 (系):电子信息与电气工程学院仪器系   



 

                             

MACHINE LEARNING BASED MULTIMODAL MAGNETIC 

RESONANCE IMAGING ANALYSIS FOR SCHIZOPHRENIA 

DIAGNOSIS 

 

基于机器学习的多模态磁共振脑影像计算分析及其精神分

裂症诊断中的应用 

 

摘要 

精神分裂症是影响全球 2100 多万人的重要脑疾病之一。多模态磁共振影像为检测精

神分裂症引起的脑解剖结构和功能的病理变化和临床诊断提供了重要的依据。在本毕业设

计中，我们研究了基于机器学习的多模态磁共振图像计算和分析算法，旨在对精神分裂症进

行自动诊断并识别具有区分度的生物标志物。首先，我们分别对结构性和功能性脑磁共振影

像进行图像处理以提取代表结构和功能信息的特征。其次，我们提出了结合稀疏编码和多核

线性支持向量机的分类模型对首发精神分裂症和健康对照组进行特征识别与分类。再次，由

于临床评分能提供更准确的精神分裂症评估，本文提出了稀疏编码和基于相似矩阵的随机

森林相结合的回归模型，用于识别与评分最相关的生物标志物和预测精神分裂症的临床评

分。稀疏编码从每种模态的影像特征中选择一组相关的特征，而随机森林用于结合多模态特

征进行回归并且根据特征在评分预测中的重要性进行排序。最后，对上述方法进行了实验验

证。对于分类模型，我们对上海精神卫生中心招募的首发精神分裂症患者和健康对照组进行

了模型测试。实验结果表明我们提出的结合稀疏编码和多核线性支持向量机方法对首发精

神分裂症与健康对照的分类准确率达到 84.29％，ROC 曲线下面积为 81.64％。对于临床评

分估计，我们为提出的结合稀疏编码和随机森林回归模型进行了基于多中心的多模态影像

数据试验，结果表明相关系数达到 0.51±0.10。对于选择的有区分度的生物标志物进一步

分析显示：小脑—皮层的功能连接对首发精神分裂症鉴别诊断的贡献最大；白质中的内侧丘

系、内囊；以及属于边缘系统、默认模式网络、运动系统和额叶的灰质皮层可以帮助评估精

神分裂症的严重程度。实验结果表明本文所提出的机器学习方法可以从多模态磁共振影像

中提取有用的信息并识别重要的生物标志物以改善精神分裂症的诊断。 

 

关键词：精神分裂症诊断，多模态磁共振成像，稀疏编码，支持向量机，随机森林，生物

标记物识别   
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MACHINE LEARNING BASED MULTIMODAL 

MAGNETIC RESONANCE IMAGING ANALYSIS FOR 

SCHIZOPHRENIA DIAGNOSIS 

 

ABSTRACT 

 

Schizophrenia (SZ) is one of the important brain diseases affecting more than 21 

million people in the world. Multimodal magnetic resonance (MR) images provide the 

important biomarkers to detect the pathological changes in both brain function and 

anatomy for diagnosis of SZ. In this thesis, we have developed the multimodal MR 

image computing and analysis algorithms based on machine learning methods, aiming 

to automatically diagnose SZ and identify the discriminative biomarkers. First, the 

structural and functional MR brain images have been processed to extract the 

anatomical and functional features for the representation. Second, we have proposed a 

combination model of sparse coding (SC) and multi-kernel linear support vector 

machine (SC+MKL-SVM) to perform the classification between first-episode 

schizophrenia (FES) and healthy controls and identify the discriminative features. 

Third, since the clinical scores provide more accurate evaluation of SZ, we have 

proposed a regression model by combination of the SC and proximity-based random 

forest (SC+RF) for predicting clinical scores and identifying the most correlated 

biomarkers of SZ. SC has been applied as an initial selection of a group of related 

features from each feature type, while random forest (RF) has been applied to combine 

multimodal features for regression as well as to sort the importance of features in score 

prediction. For classification, our proposed algorithms have been tested on the subjects 

of FES and healthy controls recruited from the Shanghai Mental Health Center. 
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Experimental results show that our proposed SC+MKL-SVM method has achieved the 

classification accuracy of 84.29% and the area under the curve (AUC) of 81.64% for 

discriminating SZ from healthy controls. For score estimation, we have conducted a 

multicenter trial based on our proposed SC+RF method. The result has achieved the 

correlation coefficient of 0.51±0.10. Further analyses of discriminative biomarkers 

have shown that cerebellar-cortical functional connectivity (FC) contributes most to the 

FES diagnosis; white matter measures in medial lemniscus, internal capsule, and 

cortical measures belonging to limbic cortex, default mode network (DMN), motor 

cortex, and frontal lobe can help estimate the severity of SZ. The results have verified 

that the proposed methods can extract useful information from multimodal MR images 

and identify important biomarkers to improve the diagnosis of SZ. 

 

Key words: Schizophrenia diagnosis, Multimodal Magnetic Resonance Imaging 

(MRI), Sparse coding, Support Vector Machine, Random forest, Biomarker 

identification 
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 Chapter 1 Introduction 

 

Machine learning, relying on data analytics and the computational ability of computer 

[1], has widely replaced or assisted many pieces of complex artificial works in various 

fields. Psychosis, as well as dementia, have received greater attentions in modern life. 

Not only for researchers and psychiatrists, more and more people have realized the 

harm of such mental diseases. Thus, it is increasing demand to improve the psychosis 

and dementia diagnosis. Besides the traditional artificial diagnosis by clinical score 

assessment, in the field of neuroscience, psychiatrists explore the pathology and brain 

changes in the patients using some medical imaging techniques, such as magnetic 

resonance imaging (MRI), positron emission tomography (PET), and 

electroencephalogram (EEG), etc.. Each imaging has different modalities, such as 

structural MRI, functional MRI for MRI, and FDG-PET, Amyloid PET for PET. Many 

specific features can be extracted from different modalities to provide an extensive 

vision of the intricate cerebral lesions for psychiatrists. Meanwhile, this brings about 

large computations and more complicated image processing. Machine learning is a 

promising method which can be applied to solve these hot issues in the field of medical 

imaging. For mental disease detection and diagnosis, machine learning researches on 

medical imaging has made a great contribution and has been regarded as a powerful aid. 

Classification and regression problems can be solved by machine learning models, to 

automatically differentiate the patients from the healthy people, to explore the 

relationship with clinical assessment, and to find out biomarkers related to the 

symptoms. 

1.1 Schizophrenia and Clinical Assessment 

Schizophrenia (SZ) is one of the important brain diseases which affects about 21 

million people globally, and the rate of lifetime mortality suffered from SZ is up to 13‰ 

[2]. Neuropsychology and clinical research indicate that the symptoms of SZ mainly 
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include cognitive dysmetria, altered perception, auditory hallucination, motor 

retardation, etc. The 4th edition of Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV) stated that, as in the case with many medical terms, schizophrenia 

"lacks a consistent operational definition that covers all situations" [3]. Clinical score 

assessment is a widely-accepted method to directly evaluate the severity of syndromes. 

The prevailing clinical score of SZ is the Positive and Negative Syndrome Scale 

(PANSS). Kay firstly provided the standard explanation of PANSS score in 1989 [4]. 

The PANSS score contains 30 sub-scores corresponding to several syndromes of SZ. 

The total score can be generally separated into 3 parts: positive, negative, general 

syndrome score. The positive and negative syndrome scores both have 7 items, and the 

general syndrome score has 16 items. For each sub-score, the value represents the 

degree of severity from 1 to 7 in increasing order. In clinical, SZ will be diagnosed by 

clinical scores, and future antipsychotic therapy will be conducted for disease control. 

The utilized medicines may include typical antipsychotic agents like haloperidol, a 

major tranquilizer, and atypical ones, such as clozapine, risperidone, olanzapine, 

sertindole et al, according to the cardinal symptoms of the specific schizophrenia. 

1.2 Magnetic Resonance Imaging (MRI) 

Besides clinical score, medical imaging is another powerful tool for the diagnosis of 

psychosis. It has been found in clinic that distinct types of symptoms are related to 

different morphological changes and functional disconnections in brains. MRI, an 

imaging technique which detects magnetic resonance (MR) information, can provide 

powerful imaging modalities to detect the brain changes relate to the disease and make 

discrimination between the healthy persons and the disorders. For the brain structure, 

grey matter (GM) anatomy can be clearly observed on T1-weighted images— the 

technique of structural MRI (sMRI). White matter (WM) connection and the track of 

fibers can be detected by diffusion tensor imaging (DTI). Blood oxygen level 

dependent (BOLD)-functional MRI (fMRI), which helps detect the temporal-related 

signal of the blood oxygen fluctuations [5], can reveal the functional work in the brain 
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according to the state of the patient being scanned: task-based or resting state (rs). From 

rs-fMRI, we can have a clear view on the regional functional connections in the brain. 

These techniques all greatly contribute to the diagnosis of dementia and psychosis. 

Brain changes have been proved to be combined with the SZ and the clinical event 

feedbacks. Rajji [6] concluded that functional abilities have a great impact on the stage 

of schizophrenia according to several longitudinal studies, and functional changes were 

also detected in hippocampus-related regions [7]. The studies in [7-11] all mentioned 

the relationship between antipsychotic (medication) and the changes of brain volume 

as a whole or in certain regions, such as left hippocampus and lateral ventricle. 

According to these previous studies, we found the feasibility of analyzing MR data for 

tracking the progression of psychosis. 

1.3 Machine Learning Based SZ Diagnosis 

With the development of MR imaging technologies, especially the multimodal MR 

imaging, there are a huge amount of data captured from MR images, which make it 

difficult for manual image analysis. Mass data from the multiple modalities require 

computational methods to make better use of these data and achieve high efficiency 

and accuracy of diagnosis. Thus, machine learning methods have been widely 

investigated for multimodal brain MR image analysis, with the advantages to deal with 

high-dimensional features and automatically identify the features most related to the 

pathology of psychosis. According to different tasks, the machine learning modeling 

can be divided into two categories: classification and regression. For classification, 

there are many classifiers proposed for disease diagnosis, such as the most popular 

support vector machine (SVM) classifier and random forest classifier [12]. For 

regression, the Least Square-SVM (LS-SVM) method is often applied to predict the 

longitudinal clinical scores and model the SZ progression [13-15]. Because of its 

efficiency to deal with the small sample data, SVM is still widely used in medical 

imaging field for both classification and regression. Multi-kernel SVM also can be used 

to combine the features from multiple modalities [16]. Recently, other machine learning 



 

                             

MACHINE LEARNING BASED MULTIMODAL MAGNETIC 

RESONANCE IMAGING ANALYSIS FOR SCHIZOPHRENIA 

DIAGNOSIS 

4 

 

methods have been proposed to handle with high-dimensional features of medical 

images for the computer aided disease diagnosis [12, 17-20]. It is still challenging to 

combine the features from multiple modalities and achieve high performance for SZ 

diagnosis using multimodal MR images.  

1.4 Our Contributions 

In this thesis, we have investigated the machine learning technologies to analyze the 

multimodal MR data including sMRI, DTI, and rs-fMRI, for schizophrenia diagnosis. 

We have developed 2 machine learning models for both classification and regression 

tasks. First, we have proposed to apply sparse coding (SC) based on multi-variable 

analysis to select the most discriminant features from each modality. Then, for 

classification, the multi-kernel SVM has been applied to combine multimodal features 

and classify drug-naïve first-episode schizophrenia (FES) patients and the healthy 

persons. For regression, random forest (RF) has been used to develop a multimodal 

regression model for clinical score prediction and identifying the predictive biomarkers. 

Our study has the following contributions: 1) we have extracted and successfully 

combined the features containing both structural and functional information from the 

multiple modalities of MRI; 2) we have developed machine learning methods to 

identify the informative biomarkers, classify the drug-naïve FES from heathy controls 

and predict the clinical scores; 3) We have conducted multi-center experiments on SZ 

clinical score prediction to evaluate the proposed methods. The result has revealed the 

universality of the selected biomarkers predictive to the disease. 

The rest of this thesis is organized as follows. Chapter 2 presents the materials and 

the participants used in this study, and the detailed introduction of the image 

preprocessing and feature extraction steps. Chapter 3, 4 introduce the proposed 

multimodal classification and regression models, respectively and present the 

experimental results and analysis. Chapter 5 concludes our thesis.  
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Chapter 2 Materials & Feature Extraction 

 

2.1 Participants 

There are 2 sets of participants with 3 modalities of MR images prepared for different 

tasks in our study. Set I consists of multimodal MR brain images captured from single 

center. Table 2.1 shows demographic statistics and clinical analysis of the participants 

in Set I. The participants are from 2 groups: FES group consisting of 40 patients with 

first-episode schizophrenia (with no medicine intake record for the disease) recruited 

from Shanghai Mental Health Center, China (SMHC) and the healthy control (HC) 

group consisting of 32 normal subjects (female/male=16/16, age=27.16±4.28, range: 

20~39 years) from local community. For subject cleaning, 1 HC participant was 

eliminated due to lack of scanning data (HC017). Furthermore, we removed 2 subjects 

(HC003, HC010) after inspecting their living conditions (HC003 was in lactation 

during scanning time, and HC010 worked as a sailor, who lived a long time in a special 

environment). Finally, 29 HCs are participated in our study. There are 5 SZ patients 

(SZ004, SZ015, SZ022, SZ023, SZ043) without clinical scores in FES group. Since 

missing clinical scores had no effect on the classification result, they are used for 

classification but are excluded for regression. All SZ patients met criteria of 

schizophreniform disorder in Diagnostic and Statistical Manual of Mental Disorders, 

5th Edition (DSM-V). The psychopathology and symptom severity were assessed using 

PANSS.  

Set II includes multimodal MR brain images captured from 3 centers. Table 2.2 

shows demographic statistics and clinical analysis of the participants in Set II. The 176 

SZ participants met criteria of schizophreniform disorder in DSM-V. 35 FES subjects 

are same as those in Set I from SMHC with clinical scores, 70 SZ subjects from 

COBRE study [21, 22], and 71 SZ subjects from BrainGluSchi study in the 
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Schizconnect database (http://www.schizconnect.org/) [23]. All the SZ patients in this 

set have the PANSS clinical scores.  

Table 2.1 Demographic statistics and clinical analysis of the participants in Set I 

Table 2.2 Demographic statistics and clinical analysis of the participants in Set II 

2.2 Data Acquisition 

In set I, all sMRI and rs-fMRI data were collected on a 3.0-T Siemens Verio MR 

Scanner (Siemens AG, Erlangen, Germany) with a 32-channel head coil at SMHC. 

During the scanning process, all the participants were required to lay supinely with 

inflatable pillows placed between the head and coil to minimize movement artifacts. 

The participants were instructed to rest quietly with their eyes closed but to remain 

awake and avoid systematic thinking during scanning. The main parameters of imaging 

were as follows: anatomical T1-weighted images were acquired using a magnetic 

preparation fast gradient echo (MPRAGE) sequence with echo time (TE)=3.65ms, 

repetition time (TR)=2530ms, field of view (FOV)=256mm, slice thickness=1.0mm, 

and slice number=224. DTI data were acquired along the AC/PC line, throughout the 

whole brain, TE=90ms, TR=10200ms, FOV=256mm, slice thickness=2.0mm. Blood 

Group Drug-naïve FES   Healthy Controls 

Number of subjects 40 (*35) 29 

Age (years) 26.88±5.81 27.03±4.32 

Gender (females/males) 18/22 15/14 

Education (years) 12.87±3.41 14.21±2.37 

PANSS total score 72.62±17.10  

Course of psychosis (month) 6.51±11.61  

35 of 40 FES patients have clinical scores. The statistics are presented in the form of mean  

± standard deviation. 

Center SMHC   COBRE BrainGluSchi 

Number of subjects 35 70 71 

Age (years) 27.13±5.90 38.36±13.76 35.68±13.93 

Gender (females/males) 17/18 15/55 8/69 

PANSS total score 73.54±17.47 60.17±15.59 63.00±20.27 

The statistics are presented in the form of mean ± standard deviation. 

http://www.schizconnect.org/
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oxygen level dependent (BOLD) images with TE=30ms, TR=2000ms, FOV=220mm, 

slice thickness=4.0mm, voxel size=3.4×3.4×4.0mm, matrix size=256×256, and slice 

number=180. COBRE and BrainGluSchi MR image data in set II were also collected 

on a 3.0-T Siemens Verio MR Scanner (Siemens AG, Erlangen, Germany) at the center 

of the Mind Research Network (MRN). The detailed scan information is available in 

the Attachment 1, 2. 

2.3 MRI Preprocessing and Feature Extraction 

2.3.1 Structural MRI 

For sMRI data, Freesurfer 6.0.0 [24, 25] is used for the preprocessing, as well as the 

feature extraction. This software provides a completely automated pipeline of cortical 

and subcortical nuclei segmentation and surface reconstruction process. ‘recon-all’ is a 

batch program and is the core command of the software. It has 3 auto-reconstruction 

sections and totally 31 steps during a complete procedure, and all the subjects need to 

go through the whole steps automatically to get the ultimate detailed statistics. The first 

section contains motion correction and conform, non-uniform (NU) intensity 

normalization, Talairach registration, intensity normalization, skull stripping to get the 

basic preparation for segmentation and calculation. In the next two sections, subcortical 

segmentation is initially done and the statistics of segmented subcortical structures are 

recorded. Sequentially, white matter is segmented and surface is generated for both 

hemispheres. Parcellation can be based on 3 different atlases (the Killiany/ Desikan 

parcellation atlas, Destrieux atlas, DKT atlas). In the stats table, we have access to 9 

measures for each segment based on different registration protocols. The statistical 

measures such as standard deviations derived from some of the other measures are 

excluded. Altogether, we choose 6 kinds of measures in our study [26]. They are: 1) 

cortical thickness (th); 2) gray matter volume (vol); 3) surface area (area), which is 

calculated by computing the area of every triangle after tessellation; 4) mean curvature 

(meancurv), computed by using the registration surface based on the folding patterns; 

5) curvature indices (curvind); 6) folding index (foldind). To detect the potential errors 
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in segmentation and achieve more accurate results, manual interventions need to 

conduct for each subject using GUI tools in Freesurfer when the fully automated 31 

processing steps were finished. White matter segmentation errors may high-frequently 

happen among No.130 to No.170 coronal plane slides. The old segmentation files 

should be replaced by the manual-edited ones and the following steps where these old 

files were first generated in the pipeline are rerun.  

When the processing is finished, the statistical outputs of the cortical parcellation are 

recorded, and the information of proposal measures on each labeled region for each 

subject can be extracted from these output files. As to the 6 cortical measures, we can 

get different numbers of features due to different kinds of atlas. Finally, we choose the 

stats based on Destrieux atlas consisting of 74 ROIs in each hemisphere. In all, the total 

feature number of sMRI can be expressed as follows: 

   6 × 74 ROIS × 2 Hemisphere = 888 features (2-1) 

2.3.2 DTI 

DTI data is processed by FMRIB Software Library (FSL) [27] and Pipeline for 

Analyzing braiN Diffusion imAges (PANDA). The raw diffusion weighted images 

(DWIs) are firstly processed by motion and eddy current correction, then brain 

extraction (Here we set a threshold of 0.25), finally calculation of fractional anisotropy 

(FA), mean diffusivity (MD). These steps are completed in FSL. After obtaining FA 

and MD images, we utilize PANDA 1.3.1 to normalize every subjects’ FA and MD 

images to standard MNI152 template, smoothed images with a Gaussian kernel of 2mm, 

and calculate DTI parameters of 50 ROIs in whole brain, which are labeled in JHU-

Atlas. We select 50×2=100 features (50 FA, 50 MD) for further classification. 

2.3.3 Resting-state fMRI 

Rs-fMRI imaging data preprocessing is conducted with SPM8 package, rest1.8 and 

DPARSF2.3 advanced edition, under Matlab 2013a (Mathworks, USA). The first 10 

time points of 180 time points should be removed for subjects’ adaption to the 

environment and the stabilization of the machine. The time series of slices are 
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uniformed to 15th slice (slice scanned in the middle). Realignment is conducted to 

reduce head motion artifacts using DPARSF 2.3. Subsequently, all corrected functional 

data are normalized to EPI templates. After this, smoothing is also performed to raise 

SNR and the effect of normalization. Detrend is conducted to correct the linear drifting 

of signal. Temporal waveform of each voxel is band-passed into 0.1-0.8HZ to reduce 

the effect of low frequency drift and high signal noise. Fractional amplitude of low-

frequency fluctuation (fALFF) is calculated in the following based on voxels. The total 

number of voxels is 63×71×63=281799. Voxels located out of the brain have 0 value 

and are deleted. 70831 voxels with fALFF value are eventually selected as the features. 

Functional connectivity (FC) matrix is constructed by employing an automatically 

labeled template (i.e., automated anatomical labeling (AAL) to parcellate the brain into 

116 regions of interest). The representative time series of each ROI is obtained by 

averaging the time series of each voxel within that region. A Fisher’s-Z transformation 

is further applied to the correlation matrices to improve the normality of the correlation 

coefficients. One value of FC revealed the connection between 2 different ROIs. So, 

116 ROIs can generate 116×115÷2=6670 FC values.  

Suppose the subject number is 𝑁, and the number of features is 𝑄. For each feature 

matrix, its size can be represented as 𝑁 × 𝑄 . For sMRI and DTI, considering the 

dimension of features in each modality is relatively small, we combine different types 

of measurements together and generate one matrix for each modality. As to rs-fMRI, 

which has 2 kinds of features with large dimension: FC (6670 features) and fALFF 

(70831 features), creating 2 matrices for this modality is suitable. Finally, we gain 4 

feature matrices from 3 modalities. The dimensions are: 888 for sMRI, 100 for DTI, 

6670 for FC (rs-fMRI), 70831 for fALFF (rs-fMRI). These 4 feature matrices will be 

served as the original input of the following classification and regression models.  

2.3.4 Normalization 

Since the multimodal features containing different information have different ranges, 

normalization is usually required to make all features in a specific range. Normalization 



 

                             

MACHINE LEARNING BASED MULTIMODAL MAGNETIC 

RESONANCE IMAGING ANALYSIS FOR SCHIZOPHRENIA 

DIAGNOSIS 

10 

 

can reduce the effect of unit diversity of the extracted measurements and make the 

multimodal features comparable. Generally, there are two methods widely used for 

normalization [28]. One is Min-Max scaling to a fixed range. The other method is z-

score normalization. In this method, the features are scaled to have the same average 

sum-of-squares and they are normalized into a same distribution. In this work, the Min-

Max scaling method is used for all multimodal features to ensure each feature to be 

scaled to a fixed range of 0 to 1 across all the subjects. 
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Chapter 3 Multimodal Classification for FES Diagnosis  

 

3.1 Overview 

In this chapter, we have proposed a multimodal classification algorithm by combining 

the multimodal MR images for FES diagnosis. Fig.3.1 shows the flowchart of the 

proposed algorithm. First, the multimodal features are extracted as described in Chapter 

2. Then, sparse coding (SC) is applied to select the most discriminant features based on 

multi-variable analysis for each modality. Finally, multi-kernel linear SVM (MKL-

SVM) is applied to combine the multimodal features for the final classification.  

 

FIGURE 3.1 The flowchart of the proposed multimodal classification algorithm 
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3.2 Feature Selection Based on Sparse Coding 

To avoid missing the important features for classification, we have extracted the 

features as many as possible from multimodal MR images. Thus, the total extracted 

multimodal features have huge dimensionality (>70000), when compared with the 

small number of subjects. It is necessary to identify the discriminative features to 

facilitate disease classification and interpretation. Traditionally, the t-test method is 

often used to find significant biomarkers by individually evaluating the discrimination 

of each feature with p-value. However, this method has completely ignored the 

correlations of imaging features and failed to consider the discrimination of multiple 

variable combination. This is not suitable for our application because the informative 

imaging biomarkers may be distributed over more than one brain regions. Thus, to 

identify the informative imaging biomarkers, a multivariate model is learned to 

consider the combinations of features over the distant brain regions for handling the 

multivariate interactions in feature selection. Sparse coding as a machine learning 

method has been widely applied to the task of feature selection [29, 30], as well as 

classification [31, 32] in the field of face recognition. In this work, a sparse coding 

method with 𝐿1 -regularization [33, 34] has been applied to select the informative 

features for each modality [31]. Unlike the traditional two-sample t-test, SC considers 

the combination of multi-variable features to achieve a global significance.  

Let 𝚨 represent a 𝑁 × 𝑄 feature matrix. The pth row of 𝚨 is the feature vector 

of the image from the pth participant. y denotes the class labels of all participants with 

the pth element being the class label of the pth participant. Thus, a linear regression 

model can be used to generate the class outputs with a set of features as follows: 

 y = 𝚨𝜔⃑⃑ + 𝜀 (3-1) 

where 𝜔⃑⃑ = (𝜔1, 𝜔2, … , 𝜔𝑁) be a vector of coefficients assigned to the corresponding 

features, and ε is an independent error term. The class output can be characterized as 

the linear combination of features. One popular method to solve this problem is the 
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least square optimization. When the number of features is large, sparsity is imposed on 

the coefficients to choose a small number of relevant features for classification. The 

𝐿1-regularized sparse coding can be formulated as: 

 𝜔⃑⃑ = argmin𝜔‖𝑦 − 𝚨𝜔⃑⃑ ‖2
2 + z‖𝜔⃑⃑ ‖1,   𝑠. 𝑡. 𝜔⃑⃑ 𝑖 ≥ 0, ∀𝑖 (3-2) 

where z is the sparsity regularization parameter which controls the amount of zero 

coefficients of 


. The non-zero elements in 𝜔⃑⃑  indicate that the corresponding 

features are more relevant to the classification. When the z  value increases, the 

number of non-zero elements in 𝜔⃑⃑  decrease, and more features will be selected to be 

relevant. Thus, the 𝐿1-regularized sparse coding method provides an effective multi-

variate regression model to select a subset of relevant features by taking into 

consideration both the correlations of features to the class labels and the combinations 

of individual features [35]. By adjusting the values of sparsity, various numbers of 

features can be selected without ranking. This method can jointly select the features 

from multiple contiguous brain regions based on the population difference. 

3.3 Multimodal Combination Based on MKL-SVM 

To combine the features selected by SC from multiple modalities, one simple method 

is to concatenate all features into a vector and then design a linear support vector 

machine (SVM) classifier to make classification. But the concatenated feature vector 

is of high dimension which will degrade the classification performance. Instead, we 

apply the MKL-SVM classifier to combine the multimodal features for classification. 

Different from the conventional linear classifier, the kernel based SVM classifier maps 

the linearly nonseparable feature space in the original lower-dimensional space to a 

higher-dimensional feature space, where they are more likely to be separable, with a 

kernel function. In the higher-dimensional space, a maximum margin hyperplane is 

calculated with the SVM for classification. Let 𝐾 be a kernel function, and 𝑥1, 𝑥2 be 

the feature vectors of 2 subjects. The kernel used for SVM can be denoted as 𝐾(𝑥1, 𝑥2). 

To combine the multimodal features, we apply the multi-kernel SVM method for 
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multimodal classification. The kernel matrices for different modalities are combined 

into a mixed kernel by a linear weighted combination as follows: 

 𝐾(𝑥1, 𝑥2) =
∑ 𝑘𝑚𝐾𝑚(𝑥1

𝑚, 𝑥2
𝑚)𝑚∈𝑀

∑ 𝑘𝑚𝑚∈𝑀
 (3-3) 

where 𝑀 = {sMRI, DTI, FC, fALFF} is a set of features in different types, and 𝑘𝑚 ∈

[0,1] represents the weight assigned to feature type 𝑚. Based on the mixed kernel, the 

traditional SVM such as LIBSVM can be used for classification. In our implementation, 

LIBSVM toolbox [36] has been used to implement the SVM classifier and the linear 

kernel with a default value for the parameter 𝐶  (i.e., 𝐶 = 1 ) has been used for 

single/multi-modal classification tests. 

3.4 Experimental Results 

In this section, we will present the experimental results of the multimodal MRI analysis 

for diagnosis of FES and give some discussions. The 3 MRI modalities, i.e., sMRI, DTI 

and rs-fMRI from set I are used in our experiments. The classifier is implemented with 

LIBSVM 3.22 toolbox [36] in Matlab 2014b for classification. For each type of feature, 

sparse coding method has been implemented for feature selection using the SLEP 

package downloaded at http://www.public.asu.edu/~jye02/Software/SLEP. The details 

on the materials used in the experiments have been introduced in Chapter 2. To 

statistically evaluate the classification performance, the standard 10-fold cross-

validation has been performed in the experiments. Each time, 1 fold of data set is used 

for test, while the remaining 9 folds are used for training. In the experiments, the 

parameters to be optimized are sparsity 𝑧, which can be adjusted to change the number 

of selected features, and the weights 𝑘𝑚. Grid search from 0 to 1 at step of 0.05 for 𝑧 

and from 0 to 1 at step of 0.1 for 𝑘𝑚 are used to optimize these parameters. 

To evaluate the classification results, classification accuracy, sensitivity and 

specificity are calculated as follows: 

 accuracy=
TN + TP

TN + FP + FN + TP
% (3-4) 

 sensitivity=
TP

FN + TP
% (3-5) 

http://www.public.asu.edu/~jye02/Software/SLEP
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 specificity=
TN

TN + FP
% (3-6) 

where TP is the number of FES patients which are correctly classified, TN is the number 

of HC correctly classified, FP denotes the number of HCs falsely classified, and FN is 

the number of falsely classified FES. Thus, the sensitivity denotes the accuracy to 

classify the real patients while the specificity evaluates the accuracy to classify the 

healthy controls. In addition, ROC curve has been demonstrated by sensitivity and 1-

specificity at different thresholds and area under the curve (AUC) has been calculated 

to evaluate the classification performance. In the following subsections, we will present 

the classification results of single/multi-modality and discuss the selected biomarkers. 

3.4.1 Single-modal Classification 

The first experiment is to test the classification with single modality. There are 4 types 

of features (denoted as sMRI, DTI, FC, fALFF) extracted from 3 MRI modalities: sMRI, 

DTI, fMRI. Table 3.1 shows the classification accuracies and the feature numbers for 

single modality of sMRI, DTI, FC, fALFF as well as the multimodal classification. The 

comparison of their corresponding ROC curves are demonstrated in Fig.3.2. From these 

results, we can see that FC feature of rs-fMRI can achieve the best single-modal 

classification result with 75.24% of accuracy and 75.26% of AUC, when compared with 

those of other features. The fALFF and DTI features have relatively low discriminative 

ability. In addition, these results also show that the multimodal classification with 84.29% 

accuracy performs better than any single modalities, showing the effectiveness of our 

proposed method. Comparing the numbers of original and selected features, we can see 

that SC can effectively identify the informative features to improve the classification 

performance. Subjects can be correctly classified with less than 5% features selected 

by SC, which indicates that a large number of MRI features are redundant for 

classification. 

 

 

 



 

                             

MACHINE LEARNING BASED MULTIMODAL MAGNETIC 

RESONANCE IMAGING ANALYSIS FOR SCHIZOPHRENIA 

DIAGNOSIS 

16 

 

 

Table 3.1 Classification results of first-episode schizophrenia patients and 

healthy controls using single-modal and multi-modal features. 

 

FIGURE 3.2 ROC curves of linear SVM classifiers 

3.4.2 Multimodal Classification 

After feature selection by SC, we have calculated the linear kernel matrices 

representing the 4 types of features and MKL-SVM classifier has been applied for 

Feature 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
AUC (%) 

# of 

features  

# of 

selected 

features  

sMRI 71.19 77.50 63.33 68.19 888 4 

DTI 67.86 72.50 61.67 63.45 100 9 

FC 75.24 80.00 68.33 75.26 6670 39 

fALFF 69.29 80.00 55.00 61.90 70831 1662 

Multimodal 84.29 92.50 73.33 81.64 78489 1714 

AUC: area under the curve; #: the feature dimension. 

MKL: the multimodal classification by multi-kernel linear SVM. The grey diagonal line denotes 

random classification result. 
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multimodal classification. The results have also been recorded in Table 3.1 and Fig.3.2. 

The performance is better than any single ones with 84.29% accuracy and 81.64% AUC, 

showing that combination of multiple modalities by our proposed method has 

significantly improved the classification results. Moreover, Table 3.2 and 3.3 have 

shown the results of classification accuracy and AUC, respectively, with different 

combinations of multiple MRI modalities. The experiments are performed by gradually 

adding a new type of features. First, we test the classification performances of each 

single modality shown in the first row of Table 3.2, 3.3. Second, we combine the sMRI 

with the features of other types, i.e., DTI, FC and fALFF. The results are shown in the 

second row of Table 3.2, 3.3. From these results, we can see that the classification 

performances have been improved (accuracy from 71.19% to 74.29%, 75.71% and 

74.05%; AUC from 68.19% to 68.97%, 75.52% and 68.45%) by combing sMRI with 

other feature types. Third, the features of FC and fALFF are added to the sMRI+DTI 

combination and the classification performances are further improved as shown in the 

third row of Table 3.2, 3.3 (accuracy from 74.29% to 78.57% and 75.48%; AUC from 

68.97% to 79.31% and 73.02%). Finally, fALFF features are added to the 

sMRI+DTI+FC combination, and the classification performance has finally been 

improved to the best (accuracy from 78.57% to 84.29%; AUC from 79.31% to 81.64%). 

The results indicate that adding any kind of features to the previous combination can 

improve the performance. The combination of all multimodal features achieves the best 

classification performance for disease diagnosis. 

Table 3.2 The comparison of accuracy in different combinations 

Step\Combined: sMRI (%) DTI (%) FC (%) fALFF (%) 

1:- 71.19 67.86 75.24 69.29 

2:sMRI - 74.29 75.71 74.05 

3:sMRI+DTI - - 78.57 75.48 

4:sMRI+DTI+FC - - - 84.29 
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Table 3.3 The comparison of AUC in different combinations 

Step\Combined: sMRI (%) DTI (%) FC (%) fALFF (%) 

1:- 68.19 63.45 75.26 61.90 

2:sMRI - 68.97 75.52 68.45 

3:sMRI+DTI - - 79.31 73.02 

4:sMRI+DTI+FC - - - 81.64 

 

3.4.3 Biomarker Identification 

This subsection aims to analyze the discriminant features selected from the 3 MRI 

modalities for disease interpretation. We have examined the selected multimodal 

features by SC with the optimal regularization parameter for single-modal 

classification. In our experiments, the standard 10-fold CV has been used. The selected 

features are different for different folds due to the different training data. Thus, we 

compute the frequency of feature selected in 10 folds. We have identified the imaging 

features with the frequency larger than a threshold (set to 5 in our experiments) as the 

biomarkers. The identified biomarkers for the multimodal features in sMRI and DTI 

have been listed in Appendix I. Fig.3.3-3.6 illustrate these biomarkers separately. We 

have referred to the corresponding papers of these atlas to determine the region indices 

and names [37-39]. 

For sMRI (recorded in Fig.3.3 and Appendix I), the identified biomarkers are the 

cortical thickness in the left superior segment of the circular sulcus of the insula (No. 

49), the mean curvature of left planum temporale or temporal plane of the superior 

temporal gyrus (STG) (No.36), the curvature index of left posterior transverse collateral 

sulcus (No.51), and right long insular gyrus and central sulcus of the insula (No.17).  

For DTI based on JHU-ICBM altas (recorded in Fig.3.4 and Appendix I), among 

the 100 features (50 ROIs for FA & MD), region number 1 to 50 represent FA features 

and 51 to 100 represent the MD features. The FA changes in left superior corona radiata 
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(No.26), left fornix (cres) / stria terminalis (No.40), left posterior thalamic radiation 

(include optic radiation) (No.30); MD changes in right uncinate fasciculus (UF) 

(No.47), right superior cerebellar peduncle (No.13), right posterior thalamic radiation 

(include optic radiation) (No.29), right cingulum (cingulate gyrus) (No.35). Right 

cingulum (hippocampus) (No.37) identified as the significant biomarkers in both FA 

and MD variance. 

For the FC results based on AAL template, each feature represents a functional 

connection between 2 regions parcellated by AAL atlas. From Fig.3.5, we find the most 

discriminant FCs concentrate in: sub-regions in cerebellar lobe with intrinsic 

connections, and those to the cortical regions; left temporal pole: STG to thalamus and 

cerebellar regions; right parahippocampal gyrus (PHG) to left calcarine and bilateral 

lingual gyrus; bilateral postcentral gyrus (PoCG) and paracentral lobe to bilateral 

thalamus, caudate, and cerebellar regions. Other seed regions, such as orbitofrontal 

cortex (OFC), right rectus, and basal ganglia, et al. 

For fALFF based on 61×73×61 voxels, each selected feature represents a voxel. 

Thus, we have mapped the selected voxels to the surface and drawn the mapping 

representing the voxels’ distribution, which has been shown in Fig.3.6. The most related 

fALFF voxels mainly gather in bilateral occipital lobe, precuneus, and cuneus. Other 

regions including left angular gyrus (ANG), bilateral lingual gyrus, calcarine, and 

several cerebellar regions possess small-scale gathering of fALFF voxels. 

 

FIGURE 3.3 The significant ROIs of sMRI measures in the surface map 
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FIGURE 3.4 The significant ROIs of DTI measures 

 

 

FIGURE 3.5 The connection map of top FC features 

 

The labels on the circle denote the ROIs in AAL atlas acting as nodes in FCs. The nodes are divided 

into 6 regions with 6 colors according to [39]. The edges are presented by the bands with different 

colors that represent the frequency. 
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FIGURE 3.6 Map of selected voxels of fALFF in several axial slices 

 

From these results, we can explore the pathology of first-episode schizophrenia. For 

functional features, according to the results in Table 3.1, FCs contribute most to the 

diagnosis of drug-naïve FES. Among the discriminative FC pairs, cerebellar regions 

connected to cortical regions are the most common ones. FCs abnormalities including 

cerebellum have been widely reported in SZ patients [40-42]. Also, a recent study first 

reported functional abnormalities in drug-naïve FES patients cerebellum [43]. 

Moreover, our study has found the selected fALFF voxels also include cerebellar 

regions. Cerebellum is considered to not only take charge of balance control, but to play 

a role in conceptual activity and emotion state [44]. The cortical regions with most 

connections with cerebellum are mainly in left temporal pole and STG, key regions in 

affective network (AN) [39]. We suppose cerebellum-to-AN connections lead to the 

emotional abnormality of first-episode schizophrenia. We can also detect some 

potential pathologies by other functional features. Medial temporal subsystem of DMN 

(bilateral PHG, precuneus, ANG included), which is one of the most frequently reported 

networks for drug-naïve FES [45-48], can affect autobiographical memory and future 

simulations [49]; the sensory-motor network (SMN) [39], mainly bilateral PoCG to 

subcortical region connections included, can lead to the integration disability of sensory 

information with motor actions [50]. We suggest that the syndromes caused by these 

functional network impairments are significantly related to early onset schizophrenia.  

Compared with FCs, structural measures are not so discriminative to FES. Besides left 

STG in AN, the only proof of cortical changes happen in limbic system (especially for 
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insula), which leads to disorders of external sensory integration and interoception [51]. 

Structural connections are mainly in the anatomy typically work for memory (e.g. UF, 

fornix, hippocampus). Prefrontal–thalamo–hippocampal circuit, in charge of working 

memory [52, 53] and goal-directed spatial navigation [54], is also mentioned. These 

structural connection damages have been widely reported in SZ patients regardless of 

the course of disease and the patients’ age [55-59]. Considering DTI measures are 

among the least discriminative features in our study (see Table 3.1), we suppose the 

symptom of memory impairment is mild in drug-naïve FES.  

Referring to the description and categorization of PANSS [4, 60], through overall 

consideration, emotional discomfort relates to cerebellum, AN; cognitive dysmetria 

and sensory processing disability relate to DMN, limbic system; motor reaction 

retardation relates to SMN are the significantly obvious symptoms of drug-naïve first-

episode schizophrenia. Working memory and spatial sensing impairment are mild in 

drug-naïve FES and might get worse in the course of disease. 

3.5 Chapter Summary 

In this chapter, we have proposed a multimodal classification method by combining the 

SC and multi-kernel SVM for the auto-detection and early diagnosis of first-episode 

schizophrenia. In our study, a large number of features are extracted from multi-

modality MR images. SC is effective to identify the discriminative features in each 

modality through multi-variable learning, since the disease-induced abnormal changes 

often happen in multiple contiguous brain regions, instead of isolated ROIs or voxels. 

Multi-kernel SVM classifier has been applied to combine the 4 selected multimodal 

features, which can improve the classification performance for early detection and 

diagnosis of schizophrenia.  
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Chapter 4 Multimodal Regression for Clinical Score Prediction 

 

4.1 Overview 

In this section, we have proposed a multimodal regression algorithm for PANSS clinical 

score prediction to achieve more accurate diagnosis of SZ. Fig.4.1 shows the flowchart 

of the proposed algorithm. Similar to classification, SC is also used for feature selection. 

The random forest (RF) method is used to compute the proximity measures and make 

the final multimodal regression. In addition, the classical multidimensional scaling 

(MDS) is applied to the proximity matrix to generate embedded feature data in a lower 

dimension, which would serve as the input of the final regression model.  

4.2 Random Forest 

RF can be an ensemble supervised classifier or predictor of 𝑇 decision trees in the 

forest. For regression task, decision trees act as regression trees. As to each regression 

tree in the forest, the training samples are randomly selected to establish the training 

set, which is known as bootstrap aggregation (bagging) [61]. Given a set of data with 

the scale of 𝑁, bootstrap sampling will make the pick by 𝑁 times randomly and with 

replacement to form a sample bag. In this way, the unpicked data for each tree can be 

generated, which is called out-of-bag (OOB) dataset. The OOB set is used for self-

validation, to decide the growth of the regression tree. The bagging has a similar effect 

as cross-validation, intrinsically ensures the cogence of statistical evaluation. 

Besides bagging, RF has another intrinsic property of feature selection, which is 

derived from the mode of tree growth [62]. Each node in the tree contains a selected 

feature to divide the current subset. During the growth of a tree, each node is determined 

by finding a feature that can minimize the difference of the left-subset predicting error 

and the right-subset predicting error, which means to best split the current set. When 

the OOB predicting error is below to a default threshold, the node will stop splitting 
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and be considered as a terminal node. RF can not only select features, but also give their 

ranking of the importance by evaluating the OOB predicting error [62].  

 

FIGURE 4.1 Flowchart of the proposed multimodal regression algorithm 

When a test subject goes through each tree of the forest, it will fall into a terminal node 

and obtain a predicting score. The final prediction result 𝑃(𝑦) is the unweighted 

average of the predicting scores 𝑝𝑡(𝑦) given by 𝑇  trees [63]. The formulation is 

shown as follows: 
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 𝑃(𝑦) =
1

𝑇
∑ 𝑝𝑡(𝑦)

𝑇

𝑡=1
 (4-1) 

After training, the RF generates proximity measures [64, 65]. Proximity matrix, 𝐏𝑁×𝑁, 

is calculated when all the input subjects pass down the 𝑇 trees in the forest. If subject 

𝑛𝑖 and 𝑛𝑗  finish in the same terminal node of a tree, their proximity 𝑝𝑖𝑗 is increased 

by 1. The final pairwise proximity measures are normalized by 𝑇, i.e., the total number 

of trees. Since the proximity of a subject to itself is 1, the diagonal elements in 𝐏 are 

always 1. Other elements in the matrix are in [0,1]. The proximity matrix can be 

written as: 

 𝐏 = (

1
𝑝21

𝑝12

1
⋯
⋯

𝑝1𝑖

𝑝2𝑖

⋮      ⋮ ⋱ ⋮
𝑝𝑗1 𝑝𝑗2 ⋯ 1

)

𝑁×𝑁

 (4-2) 

Proximity matrix preserves the characteristics of the original subjects, i.e. the features, 

and represents them in a mathematical form. It also serves to depress the features with 

small importance, since they contribute little to the proximity measures. In fact, 

proximity matrix plays a similar role as the kernel of SVM, which gives a hint to the 

feature combination. 

4.3 Multimodal Combination Based on RF 

After calculating the corresponding proximity matrix for each type of features, the 

matrices can also be linearly combined into a new proximity matrix to fulfill the 

multimodal combination as follows: 

 𝐏 = ∑ 𝛼𝑚𝐏𝑚
𝑚∈𝑀

 (4-3) 

where ∑ 𝛼𝑚𝑚∈𝑀 = 1, 𝑀 = {sMRI, DTI, FC, fALFF}. However, the proximity matrices 

always possess redundant proximity information, which may act as a barrier to pursue 

for a better predicting performance. Thus, dimensionality reduction is considered. 

Classical MDS is a dimensionality reduction method with the aim of generating 

manifolds that are optimal for the feature storage in a relatively low dimension. It is 
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applied on the distance matrix to generate a reduced coordinate embedding for the 

feature vectors based on eigenvalue calculation. The proximity matrix is transformed 

into a distance matrix with element 𝑑𝑖𝑗 =1−𝑝𝑖𝑗 [66] as follows:  

 𝐃 = (

0
𝑑21

𝑑12

0

⋯
⋯

𝑑1𝑖

𝑑2𝑖

⋮      ⋮ ⋱ ⋮
𝑑𝑗1 𝑑𝑗2 ⋯ 0

)

𝑁×𝑁

 (4-4) 

The output of MDS contains the matrix of coordinates X, representing a lower-

dimension embedding for the information of distance. Furthermore, a goodness-of-fit 

parameter G [12] is computed for evaluation: 

   G =
∑ 𝜆𝑖

𝑘
𝑖=1

∑ (𝜆𝑖 > 0)𝑁
𝑖=1

 (4-5) 

where λ is the eigenvalue and 𝑘 is the number of selected eigenvectors which also 

represents the dimension of the ultimate manifold space. G is set to 0.9 by experience. 

The final reduced 𝑘-dimensional matrix, possesses the multimodal feature information, 

can serve as an input of the final RF regression model. 

4.4 Experimental Results  

In this section, we will present the regression experiments, the results comparison for 

score estimation, and discuss the predictive biomarkers in detail. The proposed 

regression algorithm is test on set II with 176 SZ subjects from 3 study centers with 

PANSS score records. 

4.4.1 Multimodal Regression 

The algorithm is implemented in Matlab 2014b with the class ‘Treebagger’. According 

to the bagging property, the hold-out validation has been used to split test set into 

training and test sets. First, SC has been used for feature selection, and the RF models 

have been trained based on the 4 feature matrices independently for proximity matrix 

calculation. Then, RF has been again used for the final prediction. Classical MDS has 

been added to proximity matrices for dimensionality reduction. When establishing the 
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RF model, the number of trees in the forest, 𝑇, has to be globally determined. The way 

of setting 𝑇 is to observe the OOB predicting error, The OOB error figure is helpful 

for finding the proper number of trees for all the RFs in the experiments, see Appendix 

II. The estimates of the OOB error are consistently stable when 𝑇 ≳ 300, for insurance, 

we have set 𝑇 = 1000  for all the experiments [12]. 2 parameters: sparsity 𝑧  and 

weighting factor 𝛼𝑚 have been optimized similarly via grid searching through training 

to achieve the best regression performance.  

According to the description of PANSS score in [4, 60] and the score table we have 

obtained, the total PANSS score can be divided into positive, negative, and general 

score. The outputs of the regression model are the estimated total, positive, negative, 

and general PANSS scores.   

We have randomly held-out 25% data for testing and 75% for training and have 

conducted 10 times repeated experiments. To evaluate the predicting performance, the 

Pearson’s correlation coefficient (CORR) and the root mean square error (RMSE) 

between the actual and estimated PANSS scores have been computed by average. 

Additionally, the determination coefficient 𝑟2 with the value of the square of CORR, 

has been used to evaluate the power of regression line in data representation. The 

multimodal predicting results are shown in Table 4.1. 

Table 4.1 Performance of prediction on PANSS scores (mean±std) 

Scores CORR RMSE 𝒓𝟐 

PANSS-total 0.51±0.10 16.01±3.04 0.27±0.11 

PANSS-positive 0.48±0.10 5.09±0.35 0.24±0.10 

PANSS-negative 0.47±0.11 5.24±0.72 0.23±0.10 

PANSS-general 0.52±0.11 8.94±1.59 0.28±0.10 

From Table 4.1, we can see that our proposed regression model has a satisfactory 

predicting performance on all 3 parts of PANSS scores and the total one. We also find 

that the CORR results of 4 score tests are similar. PANSS general score prediction has 

reached the best CORR. It may imply that the general syndrome items in PANSS system 
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are more correlated with the selected features.  

Additionally, we have tested the predicting performance of the single-modal models. 

We have compared the 4 single-feature-type models with the multimodal model by 

CORR. The results are shown in Table 4.2. Accordingly, for some parts of PANSS 

scores, some feature types actually cannot provide any prediction (e.g. DTI for PANSS 

negative score, FC for PANSS general score). Through multimodal combination, the 

predicting performance of the regression model has been significantly improved. This 

improvement has indicated the effectiveness of our proposed method. 

Table 4.2 Single-feature-type vs multimodal predicting performance (mean±std) 

Feature PANSS-total PANSS-positive PANSS-negative PANSS-general 

sMRI 0.21±0.19 0.20±0.15 0.21±0.19 0.28±0.13 

FC 0.17±0.14 0.19±0.12 0.14±0.18 0.05±0.16 

fALFF 0.23±0.13 0.20±0.11 0.12±0.10 0.18±0.10 

DTI 0.26±0.13 0.18±0.12 0.07±0.17 0.30±0.16 

Multimodal 0.51±0.10 0.48±0.10 0.47±0.11 0.52±0.11 

4.4.2 Biomarker Identification 

In the regression model, SC serves as an initial feature selection to select a group of 

discriminative features. RF makes a second feature selection intrinsically and provides 

the importance of features for ranking. Thus, the proposed regression method can select 

the top contributive features quantitively across the modalities. This advantage benefits 

the identification of predictive biomarkers. During the repeated experiments, the 

importance values 𝑠 have been separately aggregated for all participated features, and 

the final importance values have been judged by the aggregation of importance 𝑆 , 

during the 10 times repeat. 𝑆 could be ranked in global considering the difference in 

the strategy of feature extraction and scale of feature measurements across the 

modalities (i.e. the ROI-based sMRI, DTI, FC features and the voxel-based fALFF 

features). We have discussed the biomarkers within categories under different criterions. 

We set the threshold of 𝑆 with 0.1 to the ROI-based features. For sMRI and DTI, the 
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biomarkers with the 𝑆 > 0.1  for 4 types of clinical scores have been listed in 

Appendix III. The corresponding ROIs have been depicted in Fig.4.2 and Fig.4.3 

respectively; Fig.4.4 has presented the topology graphs for FC with nodes containing 6 

colors determined by [39] for AAL atlas, and edges containing different thickness 

representing the values of 𝑆. For voxel-based fALFF, considering the scale, we have 

decided not to apply ranking information. Instead, the selected voxels for 4 types of 

PANSS scores have been all depicted with 4 colors in Fig.4.5. 

Different from the biomarker identification in Section 3.4.3, the subjects for 

regression are from multiple studies and centers and the biomarkers have been double 

selected by SC+RF for regression. If we compare the selected predicable biomarkers 

with the biomarkers selected during classification tasks in Chapter 3, there exists 

similarities and differences. For similarities, limbic system and DMN have been still 

among the top brain system containing predictive biomarkers across the modalities, and 

the abnormality in cerebellar connections with cortical regions has also been highly 

related to the disease. As for differences, we have found that FCs are no longer the best 

feature types, and anatomical measures seem to better explain the severity of SZ than 

the functional ones. DTI has possessed the most stable results showing that bilateral 

medial lemniscus, and internal capsule are the most predictive biomarkers. They have 

great impacts on predicting the all types of PANSS score, which means they are related 

to a variety of syndromes in SZ. We can also find that fornix and UF, 2 important ROIs 

taking charge of working memory, are more related to the negative and general 

syndromes in SZ. For sMRI, limbic system is prevailing in score prediction. Especially 

for periarcheocortex [67], consisting of a complete anatomy system of cingulate gyrus, 

subcallosal area and PHG.  

There have been 3 new findings worth reporting: 1) precentral gyrus (PCG), 

belonging to motor system, is among the all-round PANSS-score predictors. It suggests 

that motor retardation or out-of-control actions are not severe in first-episode patients 

but become severe when the disease goes on. 2) Abnormalities in frontal lobe have been 
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more frequently reported. Superior frontal sulcus (SFS) is most related to the general 

scores, and orbital sulcus and gyrus are found to be related to both positive and negative 

scores, which have been proved to be correlated with clinal scores among FES, chronic 

SZ, and schizoaffective disorder [68, 69]. Structural changes in frontal lobe are not 

sensitive in detecting FES, but they are useful in predicting specific syndrome scores. 

3) Biomarkers of fALFF voxels in frontal lobe have also increased. Only the negative 

score seems to have small relation to the fALFF changes in brain. We conclude that 

limbic system, DMN, motor system, orbital/frontal lobe, and cerebellar connection will 

change according to the severity of SZ. 

 
*The ROIs are mapped to the left hemisphere of surface. The color refers to the total value of 𝑆 

in the bilateral ROIs. 

FIGURE 4.2 The important ROIs in sMRI measures in the surface map 
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*The values of 𝑆 are divided into 6 levels globally. 

FIGURE 4.3 The important ROIs in DTI measures 
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FIGURE 4.4 The topology graphs of selected FCs 

 

FIGURE 4.5 Map of selected voxels of fALFF in several axial slices 

4.5 Chapter Summary 

In this chapter, a multimodal regression model has been proposed for the multimodal 

analysis on the correlation of brain changes with clinical scores of SZ. The proposed 

method is a cogent regression model with double feature selection, has proved to 

achieve outstanding performance on both clinical score prediction and biomarker 

identification. Considering the data captured from different centers, the model has been 

realized in selecting appropriate groups of predictive features with validity and 

generality. This indicates the potential of our proposed model in identification of 

schizophrenic general pathology and auto-detection of disease level variation. 
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Chapter 5 Conclusion 

 

In this study, we have developed the multimodal MR image analysis algorithms based 

machine learning methods for both classification and regression of SZ diagnosis. Based 

on 4 types of features extracted from 3 modalities of MR images, we have proposed a 

scheme of SC+SVM for the multimodal classification of first-episode schizophrenia 

patients and the healthy people; we have proposed a SC+RF combination method for 

multimodal regression to estimate the PANSS clinical scores and to find out predictive 

biomarkers for schizophrenia diagnosis. Both SC+SVM and SC+RF models have 

shown the effective multimodal combination, as well as the good feature selection, 

indicating that the achievements of machine learning based neuroimage analysis in 

auto-detection and diagnosis of psychosis.  

For future work, we plan to focus on the longitudinal study of SZ. Based on our 

regression model, we aim to find the relationship between brain changes and other 

clinical factors, such as medical treatment, the course of disease. For this work, more 

longitudinal MR data are required to be collected. So, we may first make effort to recruit 

more participants. Or we can turn to some online databases including Schizconnect to 

choose conforming data. Furthermore, I am interested in applying machine learning to 

the stage of data acquisition. The ideal outcome is that more feature modalities can be 

extracted in spite of the tasks. 
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APPENDIX 

 

Appendix I The identified sMRI and DTI biomarkers by SR in classification 

 Brain Region Feature Hemisphere 

sMRI  

No.49 
Superior segment of the circular sulcus of 

the insula 
Thickness 

Left 

No.36 
Planum temporale or temporal plane of 

the superior temporal gyrus 
Mean curvature Left 

No.51 Posterior transverse collateral sulcus Curvature index Left 

No.17 
Long insular gyrus and central sulcus of 

the insula 
Curvature index Right 

DTI   

No.26 Superior corona radiate FA Left 

No.40 Fornix / terminal stria FA Left 

No.37 Cingulum (hippocampus) FA, MD Right 

No.47 Uncinate fasciculus MD Right 

No.30 
Posterior thalamic radiation (include optic 

radiation) 
FA 

Left 

No.29 
Posterior thalamic radiation (include optic 

radiation) 
MD 

Right 

No.13 Superior cerebellar peduncle MD Right 

No.35 Cingulum (cingulate gyrus) MD Right 
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Appendix II Out-of-bag error figure 
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Appendix III The predictive biomarkers of sMRI and DTI in SR+RF regression 

sMRI 

(a) PANSS-total score 

ROI No. Label name Importance 

43 Pole_temporal 0.4074  

59 S_occipital_ant 0.3990  

69 S_precentral-sup-part 0.3923  

9 G_cingul-Post-dorsal 0.3172  

66 S_pericallosal 0.2946  

23 G_oc-temp_med-Parahip 0.2381  

18 G_insular_short 0.2264  

29 G_precentral 0.2168  

65 S_parieto_occipital 0.2092  

45 S_central 0.1622  

10 G_cingul-Post-ventral 0.1583  

32 G_subcallosal 0.1392  

48 S_circular_insula_inf 0.1109  

22 G_oc-temp_med-Lingual 0.1045  

68 S_precentral-inf-part 0.0999  

(b) PANSS-positive score 

ROI No. Label name Importance 

66 S_pericallosal 0.6551  

59 S_occipital_ant 0.4482  

69 S_precentral-sup-part 0.4311  

32 G_subcallosal 0.4233  

48 S_circular_insula_inf 0.3879  

54 S_front_sup 0.3820  

51 S_collat_transv_post 0.3755  

43 Pole_temporal 0.3222  

64 S_orbital-H_Shaped 0.2772  

45 S_central 0.2628  

10 G_cingul-Post-ventral 0.2091  

68 S_precentral-inf-part 0.2028  

30 G_precuneus 0.1658  

23 G_oc-temp_med-Parahip 0.1427  

9 G_cingul-Post-dorsal 0.1198  

18 G_insular_short 0.1140  
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(c) PANSS-negative score 

ROI No. Label name Weight 

69 S_precentral-sup-part 0.5415  

30 G_precuneus 0.5264  

66 S_pericallosal 0.4960  

8 G&S_cingul-Mid-Post 0.3978  

58 S_oc_sup&transversal 0.3869  

64 S_orbital-H_Shaped 0.3784  

43 Pole_temporal 0.3770  

68 S_precentral-inf-part 0.3419  

9 G_cingul-Post-dorsal 0.2853  

48 S_circular_insula_inf 0.2564  

54 S_front_sup 0.2463  

29 G_precentral 0.2453  

18 G_insular_short 0.2265  

59 S_occipital_ant 0.1985  

6 G&S_cingul-Ant 0.1768  

10 G_cingul-Post-ventral 0.1576  

32 G_subcallosal 0.1460  

17 G_Ins_lg&S_cent_ins 0.1040  

7 G&S_cingul-Mid-Ant 0.1024  

(d) PANSS-general score 

ROI No. Label name Weight 

43 Pole_temporal 0.5970  

59 S_occipital_ant 0.4926  

69 S_precentral-sup-part 0.4280  

9 G_cingul-Post-dorsal 0.4246  

66 S_pericallosal 0.3356  

23 G_oc-temp_med-Parahip 0.3257  

18 G_insular_short 0.2549  

29 G_precentral 0.2517  

65 S_parieto_occipital 0.2501  

45 S_central 0.2245  

10 G_cingul-Post-ventral 0.2221  

32 G_subcallosal 0.1941  

48 S_circular_insula_inf 0.1691  

22 G_oc-temp_med-Lingual 0.1358  

68 S_precentral-inf-part 0.1186  

 



 

                             

MACHINE LEARNING BASED MULTIMODAL MAGNETIC 

RESONANCE IMAGING ANALYSIS FOR SCHIZOPHRENIA 

DIAGNOSIS 

42 

 

 

DTI 

(a) PANSS-total score 

ROI No. label name Measure Importance 

9 Medial lemniscus R FA 1.1191  

10 Medial lemniscus L FA 0.8971  

39 
Fornix (cres) / Stria terminalis (can not be 

resolved with current resolution) R 
FA 0.6378  

32 

Sagittal stratum (include inferior longitidinal 

fasciculus and inferior fronto-occipital 

fasciculus) L 

MD 0.3657  

17 Anterior limb of internal capsule R FA 0.2936  

14 Superior cerebellar peduncle L FA 0.2276  

20 Posterior limb of internal capsule L MD 0.1882  

(b) PANSS-positive score 

ROI No. label name Measure Importance 

9 Medial lemniscus R FA 1.0120  

17 Anterior limb of internal capsule R FA 0.8807  

20 Posterior limb of internal capsule L MD 0.7173  

10 Medial lemniscus L FA 0.3798  

(c) PANSS-negative score 

ROI No. label name Measure Importance 

9 Medial lemniscus R FA 0.3327  

20 Posterior limb of internal capsule L MD 0.2132  

10 Medial lemniscus L FA 0.1619  

17 Anterior limb of internal capsule R FA 0.1314  

39 
Fornix (cres) / Stria terminalis (can not be 

resolved with current resolution) R 
FA 0.0918  

32 

Sagittal stratum (include inferior longitidinal 

fasciculus and inferior fronto-occipital 

fasciculus) L 

MD 0.0848  

(d) PANSS-general score 

ROI No. label name Measure Importance 

9 Medial lemniscus R FA 1.3112  

20 Posterior limb of internal capsule L MD 1.0127  

17 Anterior limb of internal capsule R FA 0.9877  

39 
Fornix (cres) / Stria terminalis (can not be 

resolved with current resolution) R 
FA 0.6863  
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(d) PANSS-general score 

ROI No. label name Measure Importance 

10 Medial lemniscus L FA 0.5062  

32 

Sagittal stratum (include inferior longitidinal 

fasciculus and inferior fronto-occipital 

fasciculus) L 

MD 0.2528  

14 Superior cerebellar peduncle L FA 0.2334  
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