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Adaptive Detection and ISI Mitigation For Mobile Molecular Communication

移动情况下分子通信调制技术的研究

摘 要

新兴的纳米技术的发展使得纳米机器摆脱了传统应用的桎梏，具有了解决新问题的

可能。受限于纳米机器本身的尺寸和结构，单个的纳米机器只能执行非常简单的操作。

因此，使得纳米机器相互联系成为纳米网络是将纳米机器投入复杂应用的必要条件。纳

米尺度上，传统的无线通讯网络难以应用到纳米机器，而普遍存在于自然界中的分子通

信却有可能成为纳米网络的最优解决方案。分子通信技术中的信息传输均以分子的形式

进行编码，传输与接受均由纳米机器进行。

当前分子通信的研究主要集中在静态发射与接收器之间的调制与解调技术。但接收

或发射器移动状态下分子通信同样需要被关注，目前为止，这一领域的研究仍然非常有

限。在移动情况下的分子通信之中，距离的不断变化使得信道响应函数的幅值会不断产

生变化，基于固定阈值的解调方法因此失效。码间串扰问题会因为幅值的变化而更加不

可预测，影响解调过程的可靠性。在我们的工作中，我们提出了一种可适应的码间串扰

解调方法以及两种动态解调方案。在我们的系统中，码间串扰的抑制与距离估计被应用

在每一位的解调前处理之中，基于幅值和峰值时间的两种解调方法之后被用于信号的解

调。

除此之外，针对静态条件下的高速分子通信场景，我们提出了局部拟合的方案，通

过信号局部导数的求解进行判定，仿真证明我们提出的方案在高速率的情况下，具有较

高的可靠性。

关键词：分子通信，码间串扰，移动接收器，自由扩散，动态解调
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Adaptive Detection and ISI Mitigation For Mobile
Molecular Communication

ABSTRACT
The emerging nanotechnology enables biological nano-machines to deal with problems

beyond the reach of traditional applications’ tendrils. Limited by its size and structure, a bio-
nanomachine is only capable of performing simple tasks. However, a bio-nanomachine pre-
serves much potential to exploit in interfacing with other bio-nanomachines. While traditional
wireless communication has difficulties to be applied in this scale, molecular communication
is one kind of ideal communication paradigm for nano-networks being energy efficient as well
as reliable. The transmission and the rec reception of information in molecular communication
are encoded in molecules between different nano-machines.

Current studies on modulation and demodulation schemes in molecular communication
mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular
communication is needed in many envisioned applications, such as target tracking and drug
delivery. Until now, investigations about mobile molecular communication are very limited. In
this work, mobile molecular communication with a mobile bacterium-based receiver performing
random walk is investigated. In mobile scenario, system impulse response changes due to the
dynamic change of the distance between the transmitter and the receiver. A fixed threshold fails
in signal detection in the mobile scenario. Inter-symbol interference (ISI) is another problem
in molecular communication. The decoding process will be interfered by residual molecules
from former symbols. Furthermore, the ISI effect becomes more complex due to the dynamic
character of the signal which makes the estimation and mitigation of ISI even more difficult.
In this work, an adaptive ISI mitigation method and two adaptive demodulation schemes are
proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation
of dynamic distance and the corresponding system impulse response calculation are performed
in each symbol interval. Based on the dynamic system impulse response in each interval, two
adaptive demodulation schemes, concentration-based adaptive threshold detection (CATD) and
peak-time-based adaptive detection (PAD), are used for decision.
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Besides, we introduce a non-coherent detection method utilizing the local derivative of
the channel response. By local fitting (LF) technique, reliable decoding information can be
abstracted from incomplete channel response. Therefore, this method can be applied for high
bit rate scenario where heavy effect form ISI and following symbols exist. A generalized bit
rate definition is introduced for proper performance evaluation and Bit Error Rate (BER) is
employed to evaluate the performance of our detection method. Simulations demonstrate that
the ISI effect is significantly reduced, and the adaptive demodulation schemes are reliable and
robust.

KEY WORDS: Molecular communication, inter-symbol interference, mobile receiver, diffu-
sion channel, adaptive demodulation
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Chapter 1 Introduction
Emerging nanotechnology promises the use of molecular communication (MC) in nano-

networks, by which biological nanomachines (bio-nanomachines) can communicate with each
other by sending and receiving molecules[1]. Being highly efficient and low-cost[2], MC is preva-
lent in nature and human bodies, e.g., in cell-cell communication. With the help of nanotechnol-
ogy, MC may facilitate a plethora of applications from nano-electromechanical systems (NEMS)
to in-body health monitoring[3].

Nanomachine is the basic element in a MC system. Size of the nanomachine ranges
from nanometers to micrometers. There are three different approaches for the development
of nanomachines, including top-down approach, bottom up approach, and hybrid approach[1].
These approaches considering different communication layers as beginning. Genetically engi-
neered cell is a good candidate for the development of bio-nanomachines. Among assorted cells
that could be used as bio-nanomachines, flagellate bacteria are universally used in genetic engi-
neering. For example, Escherichia coli (E. coli) is one kind of bacterium with flagella with the
advantages of easy-producing, low-cost[4],[5]. It has been used as the communicating nanoma-
chines in MC[6, 7].

MC for static nanomachines has been intensively studied in the past few years[8–12]. How-
ever, mobile MC is not paid too much attention to so far, although it can be envisioned as a
potential scenario in many applications. There are a few researches on the mobile MC scenar-
ios, a group of nanorobots could communicate and coordinate with each other to move towards
cancer cells to release drugs[13]. In[14], digital MC systems in blood vessels were established,
where the transmitter nanomachine is mobile. A clock synchronization scheme was proposed
for a similar mobile scenario in[15]. In[16] and[17], fluorescence resonance energy transfer (FRET)
based mobile molecular nanonetworks were considered. The communication theoretical anal-
ysis as well as coverage and throughput analysis were conducted. Another kind of mobile ad
hoc nanonetworks is proposed for collision-based MC[13]. A positional-distance codes scheme
was proposed for mobile MCs and a hardware experiment based on a macro-scale testbed was
performed[18]. The mobility pattern of nanoparticles, e.g., E. coli, was described in[19]. A few
investigations have been conducted on the demodulation schemes for mobile MC. In[20], the
authors give a focus on the receptor process of the receiver for the derivation of the system’s

1



Adaptive Detection and ISI Mitigation For Mobile Molecular Communication

Figure 1–1 ToC of the MCvD system

CIR. However, a reliable detection scheme in mobile MC is still absent to the best of the au-
thors’ knowledge. Therefore, we try to pursue a better decoding performance in mobile MC in
our work. Also, we try to find an ideal detector that can be applied both in static and mobile
MC scenario.

In this environment, bio-nanomachine has a scope of nano-to-macro scale[3]. Nanoscale
complexes include protein motors used to bind specific type of molecules[3] or DNA sequence,
while genetically engineered cells are the represent of macroscale bio-nanomachines. Accord-
ing to the recent research in[2], genetically cells, which are under macro-scale, are still the most
feasible ways to produce bio-nanomachines. As we can see from[2], basic approaches to produce
bio-nanomachines with functionality are still on the scale of cells or cell-like structures. There-
fore it would be relatively valuable to focus on the movement of the cell or cell-like structures,
which has the potential to be used as the bio-nanomachine.

For example, Escherichia coli (E. coli) is one kind of bacterium with flagllum with the
advantages of easy-producing, low-cost, etc.[4, 5]. In[7], E. coli is coordinated through the two
types of signaling molecule as the bio-nanosensor. What’s more, the motion characteristics
of this kind of cells has been studied thoroughly, so we could predict its motion with more
credibility[21].

However, so far, the modulation and the demodulation for mobile MC have not been inves-
tigated.

2
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1.1 Coverage Problems
In this subsection, we focus on two problems: the feasible decoding scheme in the mobile

MC scenario and the reliable detection in high bit rate.
In the mobile MC, two categories of problems arise. Both problems root in the random

movement of the transmitter nanomachine and/or the receiver nanomachine. Assuming binary
concentration shift keying (BCSK) modulation technique is used, a bit “1” is represented by
sending Q molecules and a bit “0” is represented by sending nothing[22]. When the transmitter
releases Q molecules, the molecules move randomly based on Brownian motion. According
to the Fick’s second law of diffusion, the impulse response (IR) is a function of time and the
distance between the transmitter and the receiver. The concentration at the receiver increases
quickly until reaching its maximum, and decreases slowly, forming a long tail[23]. If the trans-
mitter and the receiver are static, the IRs for bit “1” transmissions are always the same. However,
if the transmitter and/or the receiver is mobile, then the IR varies due to the random change of
the distance between the transmitter and the receiver. For example, if the transmitter and the
receiver become closer,the peak amplitude of the IR increases while the peak time decreases.
This fact will influence the correct detection at the receiver side if the demodulation scheme for
the static transmitter/receiver is still used.

The random walk of the messenger molecules would limit the concentration of molecules,
forming a long-tail IR with concentration and time at a fixed distance. Also, in the ideal situation,
receiver is fixed or have a steady velocity. However, many kinds of receivers have their own
motions characteristics judged by their scales and types[19]. Some nanoscale bio-nanomachines
would obey the Brownian movements like messenger molecules (often referred to 1–100 nm),
while macroscale bio-nanomahines such as genetically engineered cells would be propelled by
themselves. E. coli is one type of bacterium with a group of flagellum. With the propel pf the
flagellum, they would alternate their motions between ordered and out-of-ordered state, known
as “Run” and “Tumble” mode together, E. coli could produce the motion resembling like random
walk of the messenger molecules[19, 21].

Another problem is the inter-symbol interference, namely, ISI[24, 25]. ISI is caused by the
long-tail of the system IR. The residual molecules in the long-tail from former symbols interfere
with the current symbol. ISI is considered as the most important error source of detection. In the
mobile MC with random walking nanomachine, ISI effect becomes more complicated because
the number of residual molecules from former bits is changing also because of the movement of
the nanomachine. In such case, the ISI effect is hard to calculate and to mitigate. Hence, current

3
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ISI mitigation methods and adaptive threshold approaches for static MC such as[25] do not work
anymore.

1.2 Contribution of This Work
In this paper, two parts of research are conducted and related research issues are stated

separately.
In contrast to the studies on demodulation for the static MC, our work deals with the issues

caused by the mobile feature. To the best of the authors’ knowledge, ways to mitigate the effect
of ISI for mobile nanomachine has never been studied. Current demodulation method for BCSK
such as fixed or adaptive threshold cannot give a reliable judgment method on this situation. The
main three contributions of this paper lie in the following three parts:

• A three-dimensional channel model is established considering the random motion of E.
coli as the mobile receiver nanomachine.

• An adaptive ISI mitigation method is proposed for mobile MC.
• Two adaptive demodulation schemes are proposed for mobile MC.
Besides, we propose a low-complexity detector for molecular communication system in

high bit rate. Displaying the channel impulse response of the MC via diffusion, we observe that
the ascending part of the channel response (i.e. the interval before the concentration reaches
its maximum value) is less interfered by ISI in the high bit rate transmission. By employing
local fitting technique, we sample the information from the ascending and utilize it to judge
the symbol value in the current interval. Pre-smoothing technique is also adopted to mitigate
the effect the noise from the environment. As there is no need of information about the former
symbol sequence, this method needs less computational ability and memory resources. Shown
in the simulation resources, our proposed scheme is promising in decoding high bit rate signal in
MC and robust to the noise and other channel parameters variations. The main two contributions
of this paper lie in the following:

• A definition of generalized bit rate is given.
• A non-coherent detector for molecular communication system in high bit rate is pro-

posed.

4
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1.3 Organization
The remainder of this paper is organized as follows. In Chapter 2, the related work about

demodulation studies for MC is discussed. In Chapter 3, mobility pattern of the receiver and
the channel model is given. The ISI as well as the mobile environment problems are stated.
Chapter 4 proposes the detection schemes for the mobile MC. In Chapter 5, the local fitting
scheme is proposed for the high bit rate MC scenario, the system model and the generalized
definition of bit rate are also given. Simulations are conducted in this section. Finally, Chapter 6
concludes this paper.

5
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Chapter 2 Related Work
In this section, the related work on demodulation in MC is presented. Due to the channel

property, the modulated signal waveform at the receiver side spreads. Demodulation refers to the
process of extracting the original information from the received signal after the transformation
through the channel. In addition, the channel noise, such as additive noise or ISI, corrupts the
modulated signal, which makes the demodulation more difficult.

The research works about signal detection and receiver design are highly related to the
demodulation, therefore they are also included in this section.

2.1 Signal Detectors
Different types of modulation techniques need different demodulators. For MC, concentration-

based modulation and type-based modulation are the two main widely used modulation tech-
niques[26, 27]. Many works focus on the demodulation issues for either concentration-based mod-
ulation[8, 9, 22, 24, 25, 28–31] or type-based modulation[32, 33], or concentration and type combined
modulation scheme[34]. In this paper, we focus solely on the concentration-based modulation
such as on-off keying (OOK).

The basic process for demodulation include two steps: 1 sampling the received signal and
2 comparing the sample with a threshold to make a decision. An important issue in the demod-
ulation process is to remove ISI. Increasing time interval may be one solution to mitigate the
effect of ISI. However, this sacrifices the data rate, which is undesirable. The existing research
works proposed different demodulation schemes balancing the probability of error and com-
putational complexity for different data rates. Some adaptive detection methods are proposed
for better decoding performance considering the ISI effect. In[22], the authors proposed two de-
modulation schemes, namely, sampling-based detection and energy-based detection for OOK
modulation techniques. The receiver samples the molecule concentration at a time or accumu-
lates the molecule concentration for a bit period, hen the result is used for decision making. In[28]

and[31], theoretical formulations and architectures of the strength-based optimum receivers based
on spike transmission of molecules were presented in the presence of both diffusion noise and
ISI. The optimum and suboptimum versions of ASK and OOK receivers were designed. In[9],
the authors proposed sequence detection methods based on a posteriori (MAP) and maximum
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likelihood (ML) criterions. A linear equalizer based on minimum mean-square error (MMSE)
criterion and a decision-feedback equalizer (DFE) were also proposed which reduced the prob-
ability of error detection. Similar ideas were proposed in[35], which accounts for the possibility
of the presence of the steady uniform flow in any arbitrary direction, sources of information
molecules in addition to the transmitter, and enzymes in the propagation environment to de-
grade the information molecules. In[25], an analytical technique is proposed to determine the
optimum threshold. A new modulation namely molecular transition shift keying (MTSK) were
proposed to decrease the effects of ISI and enhance energy efficiency. A power adjustment
technique that utilizes the residual molecules were proposed. A low-complexity non- coherent
signal detection for nanoscale MCs was proposed which can suppress ISI effectively[24]. In[36],
a detection algorithm for a molecular multiple-input multiple-output scenario is proposed.

2.2 Parameters Estimation
Current ISI mitigation and demodulation methods are based on the situation where the

distance between the transmitter and the receiver is fixed. Because the distance in the whole
communication does not change, the IRs for the same symbols are the same. When the for-
mer symbol values are known, ISI effect on the current symbol is predictable. However, in the
scenario of the mobile MC, the distance between the transmitter and receiver changes all the
time due to the random movement of the nanomachines. The corresponding IR at the receiver
changes accordingly. This means we cannot obtain a fixed optimal threshold for demodulation
for all the transmitted symbols. Therefore, the proposed demodulation schemes in the literature
without considering the mobility of the nanomachines will not work effectively anymore. Fur-
thermore, the existing ISI mitigation method based on fixed IR is also not valid for the mobile
scenario. Even if the former symbols are correctly predicted, the residual number of molecules
at the receiver changes because the receiver moves randomly. Therefore it is almost impossi-
ble to correctly estimate or predict ISI. Therefore the existing demodulation proposals for static
nanomachines are no longer applicable for the mobile scenario.

There exist a few works about parameter estimation in molecular communication, which
may be helpful for distance estimation. In[37], two types of molecules are released in one interval.
Based on the difference of their diffusion coefficient, the distance can be calculated from single
spike feedback signal. In[38] and[39], a ML estimator for the distance was also proposed in an
unbounded environment and the performance is close to the derived Cramer-Rao lower bound.
In[40], two distance estimation schemes are proposed based on the peak concentration time and

7
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the concentration energy. In this paper, a demodulation scheme with ISI mitigation method
suitable for mobile MC is proposed.

8
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Chapter 3 Mobile Molecular Communication Scenario

3.1 System Model
The establishment of a system model must be compatible with application situation and

hardware design. In our system design, a medium range (µm to mm)[41] MC between a fixed
transmitter and a mobile receiver performing random walk in the human intestinal tract[42] is
considered. The transmitter is modeled as a fixed point. One kind of flagellated bacterium, E.
coli with radius a, is adopted as the mobile receiver[19].

In the first subsection, according to E. coli’s characteristics, the receiver’s mobility is mod-
eled. In the second subsection, a mobile three-dimensional channel model of MC via diffusion
is introduced by incorporating the receiver’s mobility. Synchronization among nanomachines
is assumed to be achieved[15]. The unit time in our model and simulation is set as ∆t.

3.1.1 Movement of Mobile Receiver

As a well studied prokaryotic cell, E. coli is frequently used in biological engineering. It
has a group of flagellum to decide its motion status, which falls into two categories, “Run” mode
and “Tumble” mode[7].

In the “Run” mode, E. coli executes a linear motion with a steady velocity Vr. In the
“Tumble” mode, E. coli deviates from its original direction with an angle ±∆θxy. Poisson
distribution is adopted to describe the alternation between two modes[43]. For each unit time,
the occurrence of the “run” mode has a constant probability λ and “tumble” mode’s occurrence
probability is 1-λ. The probability that run occurs between time t and t+∆t is:

P (t;λ)∆t = λe−λt∆t (3–1)

For each tumble, the receiver would change its direction from θ to θ±∆θxy
[7]. The mean-

square angle deviation in time t is
⟨θ2⟩ = 2Dr∆t, (3–2)

where Dr is the rotational diffusion constant[19]. This can be obtained through Einstein-
Smoluchowski relation in (3–3):

Dr =
kbT

fr
, (3–3)

9
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Figure 3–1 Mobile receiver’s motion trail. Based on the E. coli’s mobility pattern, the trail of the receiver
is simulated with 500000 steps. The initial position of the receiver is (0, 0, 0) and it has a initial velocity Vr

along the x axis. Note that this is just an instance of the receiver’s trail.

where kb is the boltzman constant, T is the absolute temperature in the environment and fr is
the rotational frictional drag coefficient.

In three dimensional isotropic environment, that is, a two-dimensional rotational random
walk, motions in different axis are statistically independent[19], therefore we have

⟨θ2⟩ = θ2xy + θ2z = 4Dr∆t, (3–4)

where θ is the current angle and θz represents the angle of the receiver deviates from z axis. The
location changes in each step are ∆x, ∆y, ∆z distinctively.

∆x = Vr∆t sin θz cos θxy
∆y = Vr∆t sin θz sin θxy

∆z = Vr∆t cos θz. (3–5)

If the receiver starts moving from (x0, y0, z0), the current distance would be

d(t) =

√
(x(t)− x0)

2 + (y(t)− y0)
2 + (z(t)− z0)

2. (3–6)

With a motion uncertainty in each step, the receiver performs random walk in a three di-
mension environment shown in Fig. 3–1. Cartesian coordinate is used to describe the location
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of the receiver. Note that the rotational diffusion coefficient varies in different environments
and will largely determine the motion trail of receiver such as E. coli[10].

As a small direction deviation leads to a totally different motion trail for a receiver, it is
hard to predict future location with certainty in random motion.

3.1.2 Diffusive Communication Model

In an isotropic environment without fluid velocity, messenger molecules diffuse according
to concentration gradient. The molecules’ diffusion behavior is described by Fick’s second law
as[10]

∂p(d, t|d0)
∂t

= D∇2p(d, t|d0), (3–7)

where ∇2, p(d, t|d0), d0 and D are Laplacian operator, molecule distribution function, the ini-
tial distance between the receiver and the transmitter, and diffusion coefficient of the message
molecule respectively.

Channel IR with a fixed distance d between the transmitter and the receiver is expressed
as[19]

C(d, t) =
VRN

(4πDt)
3
2

exp{− d2

4Dt
}. (3–8)

where the transmitter will send N molecules for symbol “1” each time. VR represents the
volume of the spherical receiver area. By substituting d in (3–8) by variable d(t) in (3–6), the
channel IR for a mobile receiver is

C(t) =
VRN

(4πDt)
3
2

exp{−d2(t)

4Dt
}. (3–9)

In[12], there are two types of noise sources in molecular communication via diffusion:
physical-sampling noise and physical-counting noise. Also, the external additive noise is con-
sidered and its impact on the receiver is derived in[44]. Since the physical sampling noise is
negligible in the discrete binary concentration modulation[45] and we assume there is no other
sources in the environment, we only include counting noise in our study. The counting noise is
the counting error at receiver. It is generated due to the randomness of molecules in the move-
ment and to the discreteness of the particles diffusion process and the limited sensing sensitivity
of the receiver[12]. The counting noise ncs(t) is assumed to be independent and identically dis-
tributed (i.i.d) zero-mean white Gaussian noise[45][46]:

ncs(t) ∼ N (0, σ2
c (t)) (3–10)
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Figure 3–2 True IR in one interval with twenty steps. The receiver performs random walk and records signals
with such twenty steps in an interval. Twenty different IR profiles determined by twenty different distances
at these steps with (3–8) are shown in different colors. The corresponding values of these IRs at the twenty
steps are highlighted by black diamond marks which forms the true IR in this interval. The plots other the
bold red marked one are the IR plot based on the static distance in different time. Note that we have set the
velocity larger than the actual situation to clarify the fluctuation in one interval. Also, this is an evaluation of
a PDF under 1× 105 molecules in one release.

As the Brownian motion is conducted independently by each molecule in the medium, the
noise at different time is indpendent[45].

In our channel model, one interval is divided into multiply steps to include the distance
change caused by the receiver’s random walk in our simulation. Hence, each step has a new
distance dm (m = 1, 2, . . . , Ns) and a corresponding channel IR value Cm (m = 1, 2, . . . , Ns)
within an interval according to (3–8). If we consider the channel IR in an interval, it is a com-
posite of individual values Ci as shown in Fig. 3–2. The amplitude of this true IR in one interval
fluctuates due to the randomness of distances. These multiply points are on the different IR plots
based on different physical distance due to the random nature of the receiver. Therefore the true
IR cannot be exactly expressed or fitted by one individual equation as in (3–8) with a constant
d. However, a good estimate of the true IR by a reconstructed IR with a constant d is possible.
This will be discussed in Section V.

Furthermore, from a macroscale perspective, true IRs are different even with the same
transmitted symbol value due to the randomness of positions caused by random walk as illus-
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Figure 3–3 Channel IRs in static MC and in mobile MC. The transmitted symbols are [1 1 1 1 1 1 1 1 1 1]. (a)
channel IRs at the receiver with fixed distance between transmitter and receiver. Fixed distance between the
transmitter and the receiver is 15 mm. (b) channel IRs at the random walking receiver. (c) random distances
between the transmitter and the random walking receiver in the case of (b). adaptive threshold in (a) and (b)
is defined as half of the peak value of the IR of the initial distance for signal detection. It is shown that, with
the adaptive threshold, symbols are correctly detected in static MC in (a) while they are not correctly detected
in mobile MC in (b).

trated by Fig. 3–3. Fig. 3–3 (a) shows the IRs of a series of symbol “1” with a fixed distance
between the transmitter and the receiver while Fig. 3–3 (b) shows the IRs with variable distances
for the mobile receiver. Fig. 3–3 (c) presents the corresponding random distance values in (b).
When the distance is fixed, the IRs are the same for each symbol “1” as in (a). However, when
the distance is randomly changing as in (c), the shapes of the IRs differ from each other for the
same symbol value and the change of IRs is unpredictable due to randomness as in (b).

The receiver in our system is “passive” type. When a molecule enters into a receiver, it
triggers the receiver and continues its brownian motion and can trigger the same receiver or
other receivers in the future.
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Figure 3–4 adaptive threshold demodulation for BCSK in non-mobile MC. The distance between the trans-
mitter and the receiver is fixed during the communication and each symbol interval consists of 30 steps.
Diffusion coefficient is 5 rad2/s and symbol sequence from the transmitter is [1 1 0 0 1 0 0]. The adaptive
threshold is set as half of the peak concentration value. Leaving aside ISI, the demodulated signal would be
[1 1 0 0 1 0 0], however, with ISI effect, the demodulated result would be [1 1 1 0 1 1 0].

3.2 Problem Statement
Due to the mobility of the receiver, the IR is random. Such randomness complicates the

ISI effect. The combination of the randomness of IR and complicated ISI further degrades the
received signal in mobile MC.

Firstly, mobility may cause false detection. As discussed in Fig. 3–3 (b), a predetermined
threshold fails in signal detection due to the randomness of the IR amplitude caused by the
randomness of the distance and Brownian motion of the information molecules. Especially in
the situation that the distance increases shown in the first half in Fig. 3–3 (c), the amplitude of
IR decreases. If the amplitude decreases to the value smaller than the threshold, symbol “1” is
misdetected as “0”.

Secondly, ISI effect distorts the received signal. In the mobile scenario, this situation be-
comes more complicated:

1 In an isotropic environment, it is unavoidable that some messenger molecules would
arrive at the receiver after their symbol interval and therefore interfere with future symbol
molecules, which causes ISI[25]. In the case of a fixed distance, the ISI effect of a former sym-
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bol in a following interval is determined by the time lag between the intended interval of the
former symbol and the following interval. Except from the first symbol interval, the molecules
detected by the receiver are the accumulation of messenger molecules from intended symbol
and residual molecules from former symbols[24]. For the ith symbol, the concentration detected
by the receiver is

Ci
R(t) = Ci(t) +

i−1∑
k=1

Ck(t− kTb) + ncs(t) = Ci(t) + CISI(t) + ncs(t), (3–11)

where Ci
R(t) is the overall received concentration, Ci(t) is the concentration of the intended

symbol, and CISI is the concentration of ISI which is the sum of the concentrations of all the
residual molecules from former symbols. The receiver cannot distinguish the concentration
of intended molecules Ci(t) from received concentration Ci

R(t). Therefore, ISI further causes
incorrect signal detection. This phenomenon with a fixed distance is illustrated in Fig. 3–4. The
symbol sequence sent by the transmitter is 1100100. The dash-dot curves are the IRs for each
symbol. The solid plot is the received concentration CR(t) including the ISI effect. The 3th and
6th symbols are incorrectly detected as “1” due to the ISI effect.

2 In mobile MC, mobility complicates the ISI effect. On one hand, ISI is determined by
the concentration spread (long tail) of previous symbols as in the fixed distance scenario. On
the other hand, the changing distance between the transmitter and the receiver makes the IR
changing and further the long tail varies. Fig. 3–5 illustrates the ISI effect in a mobile MC.
Only one symbol “1” is transmitted by sending N molecules. Its ISI effects at the receiver on
the following three intervals are considered. The distance of the total four intervals are 27, 30,
33 and 23mm respectively. To clarify the ISI change due to the distance change, the distance
value is set as a constant value. The channel IRs in different intervals are different depending
on their random distances. The dashed green, the dotted pink, the solid yellow and the dash-dot
red curves are the IRs in the 1st (27mm), 2nd (30mm), 3rd (33 mm) and 4th (23 mm) intervals.
Take the ISI in the 2nd interval (30 mm) for example. Its random IR is the dotted pink curve.
The ISI effect of the transmitted symbol on the 2nd interval is black circles on the dotted-pink
curve. Similarly, the ISI effect of the transmitted symbol “1” in the 3rd and 4th interval are the
highlighted black circles on the solid yellow and dash-dotted red curves, respectively. Therefore,
we can see that the ISI in mobile MC is affected by a varying IR. We should note that Fig. 3–
5 only illustrates the ISI from one transmitted symbol “1”. However, ISI is the accumulated
interference from all former symbols. This makes the signal degradation more complicated.
Hence investigation of demodulation schemes suitable for the mobile MC is quite necessary.
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Figure 3–5 The transmitter sends a symbol “1”. The ISI effect of this single symbol on the following intervals
are considered in this example. The dashed green, dotted pink, solid yellow, and dash-dotted red curves
are the IRs at the receiver with different distances in the 1st, 2nd, 3rd, and 4th interval which are 27 mm,
30 mm, 33 mm, 23 mm, respectively. The black circles on the green, pink, yellow, and red curves are the real
concentrations at the mobile receiver for the four intervals. The ISI effects for 2nd, 3rd, and 4th intervals are
highlighted by the black circles on the pink, yellow, and red curves.
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Chapter 4 Proposed Schemes And Simulations For
Mobile MC

4.1 Proposed Demodulation Scheme
In this section, we propose a demodulation scheme for the mobile MC with a mobile re-

ceiver. The proposed scheme includes an adaptive ISI mitigation method, distance estimation
and IR reconstruction, and two adaptive signal detection methods. The aim of the proposed
scheme is to solve the problem caused by mobility and complicated ISI in the mobile MC and
to provide a solution for correct demodulation for the mobile MC.

4.1.1 Overall Scheme

Our proposed signal demodulation scheme for the mobile MC is illustrated in Fig. 4–1.
Firstly, samples are taken by the receiver. Next the receiver judges whether the samples are the
first symbol. A simple method could be like this: the receiver senses the environment. Once the
environmental concentration is higher than a threshold after a long time silence, it is considered
as the first symbol. If the symbol is the first symbol, we use the samples to estimate the current
distance. Based on the estimated distance, the IR for the current interval is reconstructed. The
next step is adaptive signal detection. Two adaptive detection methods, concentration-based
adaptive threshold detection (CATD) and peak-time-based adaptive detection (PAD) methods,
are proposed by comparing the sample values with the reconstructed IR. The detection result
and the estimated distance are stored for the ISI calculation in the following interval.

If the symbol is not the first symbol, ISI mitigation is performed before distance estimation,
IR reconstruction and adaptive signal detection. The ISI reduced data are used in the procedures
including distance estimation, IR reconstruction and adaptive signal detection. The reason that
the ISI mitigation is implemented before the distance estimation and IR reconstruction is to
reduce the influence of the ISI effect and therefore to guarantee the accuracy of the distance
estimation and the IR reconstruction and signal detection in the following steps.

The functional blocks including adaptive ISI mitigation, distance estimation and IR recon-
struction, and CATD/PAD detection, are discussed in the following subsections in detail.
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Figure 4–1 Demodulation scheme in one interval.

4.1.2 Demodulation

For the symbols without symbol “1” in the previous sequence, after sampling, the distance
estimation and the IR reconstruction are performed. If the symbol “1” is included in the ISI
sequence, the distance estimation and the IR reconstruction are performed on the ISI reduced
data after ISI mitigation. In this subsection, when we talk about samples and data, we mean
the samples without ISI in the first interval or ISI reduced samples from the second interval by
default.
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In the static MC with a fixed distance, decisions are made by directly comparing sample
values with a threshold which is derived from the amplitude of the IR. However, this does not
work for the mobile MC with random distance. In a mobile MC, the distance changes randomly.
The IR which is a function of distance d as in (3–8) also changes randomly. In order to make
correct decision, the threshold should also be changed accordingly in different intervals. In such
case, a fixed threshold does not work in the mobile MC.

The key difference of the mobile MC from the static MC is the dynamic distance. If the
random distance is known, all the problems discussed above could be solved. Herein we propose
a demodulation scheme to solve this issue. The demodulation process is as follows. We use
samples to estimate the dynamic distance and reconstruct the IR for the current interval. Then
we compare the samples with the reconstructed IR to make decision for signal detection.

4.1.2.1 Distance Estimation and IR Reconstruction

The first step in the proposed demodulation scheme is to estimate the dynamic distance
with the samples and use the dynamic distance to reconstruct the according dynamic IR in one
interval. Previous works have proposed some methods on the parameter estimation especially
on the distance estimation. In[37], two types of molecules are released in one interval. Based
on the difference of their diffusion coefficient, the distance can be calculated from single spike
feedback signal. In[38], for an unbounded environment, The Cramer-Rao lower bound on the
variance of the distance estimation error is derived. A ML distance estimator is also proposed
and the performance is close to the Cramer-Rao lower bound. In[40], two distance estimation
schemes are proposed based on the peak concentration time and the concentration energy.

In our mobile MC, the mobile receiver performs multiple steps of random walk in an inter-
val,say twenty steps. Due to the limitation of the energy supply of nanomachines, sampling at
each step is energy consuming and not necessary. Our strategy is to take limited samples uni-
formly in one interval. Other sampling strategies are also possible. The influence of different
sampling strategies on the estimation accuracy is little and can be ignored. With our sampling
strategy, the samples (tm, Cm) with m = 1, 2, .., Ns as in (4–1), are uniformly taken within one
interval as shown in Fig. 4–2. With an sample interval Ts, the mth sample’s time in ith interval
can be expressed as tim = ti1 + (m− 1)Ts. With (tm, Cm) (m = 1, 2, .., Ns),.

Ci
R(t

i
m) = Ci(t

i
m)S

i
t +

i−1∑
k=1

C(tim − iTb)S
t
k + ncs(t) (4–1)
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Si
t is the ith symbol value from the transmitter side.

After the ISI mitigation stated in the following subsection, we can obtain the ISI mitigated
signal CRAM and we utilize this signal to calculate the distance. di is solved by (4–2).

dm = |2(−Dtim ln
Ci

R(tim)(4πDtim)
3
2

N
)

1
2

| m = 1, 2, . . . , Ns, (4–2)

The average distance dave calculated in (4–3) is the estimated distance for this interval. The
averaging is to mitigate the impact of the counting noise in the estimation.

diave =

∑Ns

m=1 dm
Ns

, (4–3)

Also, it aims to obtain a distance which can better resemble the true CIR. In each interval,
the receiver’s random walk has a range. The physical meaning of dave is the estimation of the
average position of the receiver in this interval. Due to the randomness, different intervals have
different values of dave. Accordingly, the IR in each interval could be estimated by (4–4) with
dave. If dave is a good estimation of the distance range in an interval, Cave in (4–4) could be a
good estimation of the true IR in the interval.

Cave(t) =
N

(4πDt)
3
2

exp(− d2ave

4Dt
). (4–4)

4.1.2.2 Adaptive Signal Detection

In this work, two adaptive detection methods for the mobile MC are proposed.
The commonly used signal detection method in the static MC fails in the mobile MC. In

the static MC, signal detection is usually performed by comparing the amplitude of samples in
one interval with a fixed threshold. In the mobile MC, it is impossible to distinguish the symbol
“1” or “0” purely from the received samples’s amplitude. In an ideal situation without ISI in
BCSK modulation, IR will be a long-tail curve for symbol “1” while no molecules are received
for symbol “0”. However, in practice, this is not the case. There are molecules received for
symbol “0” even after ISI mitigation. This is because ISI mitigation method cannot remove ISI
completely. Mobility further worsens such situation. In the mobile MC, ISI is more complicated
and the mitigation is even harder to be complete. Besides ISI, other noise sources also exist such
as the counting noise at the receiver side. Therefore, the received samples’ amplitude are not
zero for symbol “0” in practice. In the mobile MC, the amplitude of IR for symbol “1” is random
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Figure 4–2 Samples in one interval. During one interval, five concentration samples are taken.The blue curve
is the concentration curve and the five points on it are the samples taken. Samples are used to estimate the
distance dave in this interval by (4–2) and (4–3) and then to reconstruct the IR in this interval by (4–4). These
samples are included in one symbol interval TB. 1st S here is the abbreviation of the first sample.

due to the receiver’s random walk. It is difficult to distinguish the received samples are from
symbol “1” or “0” purely from the amplitude in such complicated situation of MC. Therefore
adaptive signal detection methods are needed herein.

In our proposed method, we use samples to estimate the distance and reconstruct the IR
regardless of symbol value “0” or “1”. However, for symbol “0”, both the estimated distance
and reconstructed IR are incorrect. This is because the samples used are residual ISI and the
noise where no information is included. Luckily, there are characteristics in the IR to help judge
the correctness of the IR reconstruction. By judging the correctness of the IR reconstruction,
symbol values are judged. If the reconstructed IR is correct, the symbol is detected as “1” and
otherwise “0”.

Fig. 4–3 illustrates such characteristics. Two situations with symbol value “0” and “1”
are shown respectively. In the case that the transmitted symbol is “0” (left pane), the received
signal in an interval is the blue curve which is composed by residual ISI and noises. Five samples
pointed by the arrows are taken in one interval. Distance estimation and IR reconstruction are
performed based on the samples. The reconstructed IR is the dotted red curve 1st M. In the case
that the transmitted symbol is “1” (right pane), the received signal in one interval is the blue
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curve. Same processing procedures as for symbol “0” are performed. The reconstructed IR is
the red dot-dashed curve 2nd M. By comparing the two reconstructed IRs in the two panes, it is
seen that the reconstructed IR for symbol “1” fits the true signal well while the reconstructed IR
for symbol “0” does not fit the true signal. In the case of symbol “0”, the concrete differences of
the reconstructed IR from received signal are in the characteristics of the amplitude and phase
(peak time). The amplitudes of the samples are much smaller than the peak amplitude of the
reconstructed IR. The peak time of the reconstructed IR falls outside of the current symbol
interval. This is against common sense that, the peak point of IR should be within the symbol
interval. Otherwise the main part of signal energy of a symbol will appear in the next interval
and causes an unwanted interference.

Based on the above two characteristics in amplitude and phase respectively, we propose two
adaptive detection schemes which are concentration-based adaptive detection (CATD) scheme
and peak-time-based adaptive detection (PAD) scheme.

In CATD scheme, the sample amplitudes are compared with the reconstructed IR. A thresh-
old Cthreshold and the decision rule is mathematically defined as (4–5) based on the peak value of
the established IR.

Bn =

1, Cn ≥ Cthreshold = α× Cmax,

0, Otherwise
(4–5)

where Cn is the maximum amplitude of the samples in the current interval and Cmax is the peak
amplitude of the reconstructed IR. If Cn is higher than Cthreshold, the symbol is detected as “1”,
otherwise “0”. The parameter α is determined by system parameters such as the noise and ISI
effect. Investigated by Monte Carlo simulations, Cthreshold is set as 70 % of peak value when
SNR is 22 dB and symbol interval is two times of the peak value time.The value of the metric
might be set through the simulation. However, it may be adjusted according to the change of
the system parameters. Furthermore, design of the threshold should be based on the analytical
expression of the system error probability considering the noise and ISI effect.

In PAD scheme, decision is made by comparing peak time tpeak of the reconstructed IR and
the symbol interval length. The time interval of the MC system is set larger than tpeak in the
system design. In a reconstructed IR, tpeak is calculated by setting the derivative of (3–9) to zero
and we obtain

tpeak =
d2ave

6D
. (4–6)

The decision rule of PAD scheme is mathematically expressed as
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signal for symbol “0” and “1”. Red dotted and red dash-dotted curves are the according reconstructed IRs for
symbol “0” and “1”, respectively. Arrows and diamonds are concentration samples.

Bn =

1, Tb ≥ tpeak,

0, Tb < tpeak.
(4–7)

If the tpeak is larger than the current interval, the intended symbol is detected as “0”, otherwise
“1”.

4.1.3 Accuracy Analysis and Parameter Design

The accuracy of both the ISI mitigation and proposed demodulation scheme rely on the
accuracy of the distance estimation of dave in (4–3) and the corresponding reconstructed Cave(t)

in (4–4). As discussed in Section IV, the reconstructed Cave(t) with a fixed distance dave cannot
be exactly the same as the true IR in Fig. 3–2 which is a composite curve of the points from
different IRs at different distances in one interval. However, a reconstructed Cave(t) can be a
good estimation of the true IR. To quantitatively evaluate the estimation accuracy of Cave(t),
correlation coefficient ρ is used to quantify the similarity of the reconstructed IR Cave(t) and
true IR Ctrue(t).

ρ =
Cov(Cave, Ctrue)√

V ar(Cave)
√
V ar(Ctrue)

, (4–8)
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Table 4–1 Correlation Coefficients for Index Values
k 0.3% 3% 30% 50%

Correlation Coefficient 1 0.9985 0.8687 0.5631

where Cov(X,Y ) is the covariance function of two variables X and Y , V ar is the data’s vari-
ance. Larger ρ indicates a larger similarity and therefore a better estimate. To achieve a good
estimate of IR Cave(t), the average distance dave used to reconstruct IR should be a good estima-
tion of the range of random walk in one interval. For this purpose, the range of relative distance
change in one interval should be controlled in the previous system design. Herein we define
relative distance change index k in (4–9) to calculate the maximum relative distance change in
one interval.

k =
dmax

d0
=

Vr × Tb

d0
, (4–9)

where Tb is the time length of an interval and d0 is the initial distance. dmax is the maximum
possible distance change a receiver could reach in an interval. A larger k indicates the possibility
of larger deviation in the estimated distance dave from the specific distances in one interval.

In order to study the impact of the relative distance change on the estimation quality of
IR, the relation between the relative distance change index k and the correlation coefficient ρ
is investigated by simulation. At different k values, the average distance dave is calculated and
the according IR Cave(t) is reconstructed by (4–3) and (4–4). The result is shown in Fig. 4–4.
The solid curves are the true IRs while the non-solid curves are the reconstructed IRs. The
curves of same color are of the same set of data and k. As seen in Fig. 4–4, the true IR and
the reconstructed IR fit well with each other with k = 0.3% and k = 3%. However their
difference gets larger when k increases. To quantify the similarity of true and the reconstructed
IRs, correlation coefficient ρ in (4–8) is calculated and presented in Table 4–1 which shows
that, coefficient ρ decreases when k increases. This quantitative result in Table 4–1 agrees with
the result shown in Fig. 4–4 that similarity of the reconstructed IR and the true IR decreases
when the relative distance range in an interval increases. With k less than 3%, the correlation
coefficient ρ between our estimated IR and true IR is larger than 0.9985 which indicates that
the established IR is a good estimation of the true IR. In this work, we define the situation with
k ≤ 5% as good conditions for estimation according to our investigation data.

Therefore, in order to achieve accurate IR reconstruction, system parameters including
initial distance d0, receiver velocity Vr, and interval length Tb should be designed to make the
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Figure 4–4 IR reconstruction with different values of k. Value of k changes from 0.3%, 3%, 30% and
50%. The solid blue, red, green and yellow curves are the true IR. The according reconstructed IRs with our
proposed methods are presented by dashed blue, dotted red, dash-dotted green and yellow with circle dots
respectively. The difference between true and reconstructed IRs gets larger with larger k.

index k be less than 5%. By controlling index k in this range, the reconstructed IR is a good
estimation of the true IR. This accurate reconstructed IR is utilized in the signal detection and the
ISI mitigation in the following intervals. Only with accurate IR, the accuracy of signal detection
and ISI mitigation can be guaranteed.

4.1.4 ISI mitigation

ISI is an interference of former symbols to the current symbol. In our demodulation
scheme, if the symbol is the first symbol, there is no ISI and we do not implement ISI miti-
gation. If symbol is not the first symbol, ISI exists and ISI mitigation is implemented before
other steps to eliminate its impact on the following steps in current interval and to improve the
accuracy of the whole demodulation scheme.

To implement ISI mitigation, the key issue is the calculation of ISI in current interval.
To calculate ISI in the current interval, the values of former symbols and system IR in current
interval should be known. However, IR randomly changes and is difficult to know in the mobile
MC. This is because the position of the receiver in the mobile MC changes with its random
walk. Only when the random distance between the transmitter and receiver is known, the IR in

25



Adaptive Detection and ISI Mitigation For Mobile Molecular Communication

the current interval can be calculated. But, in our scheme, ISI mitigation is performed before
the distance estimation in each interval. Therefore, the distance in the current interval and the
corresponding IR is unknown when the ISI calculation is implemented.

To solve this key problem, we utilize the distance of last symbol “1” to approximate the
distance in the current interval in ISI calculation. This distance can be expressed as di−l

ave and
symbol sequence [Si−l+1, . . . , Si−1] are all symbol zero. The corresponding IR for mitigation is
acquired by 4–10.

Ci
Re(t

i
m) =

i−1∑
k=1

C(diave − l, tim − iTb)S
d
k (4–10)

For the ith symbol, the mitigated signal in ith symbol is calculated by 4–11.

Ci
RAM = Ci

R(t
i
m)− Ci

Re(t
i
m) (4–11)

However,the counting noise still exists during the distance estimation. Also, there are still some
residual molecules after the ISI mitigation. Therefore, there is a difference between the true
averaged distance and the approximate distance diave. This concentration error can be expressed
in 4–12.

Ci
e =

i−1∑
k=1

Ck(t
i
m − kTb)S

t
k + ncs(t)−

i−1∑
k=1

C(diave − l, tim − iTb)S
d
k (4–12)

A question arises that whether the approximation accuracy can be guaranteed. To answer this
question, we firstly investigate the characteristic of the IR. As shown in Fig. 4–5 where IRs of
the true averaged distance dave(i) = 20 mm and approximate distance dApprDist(i) = 22 mm are
presented, the maximum amplitude difference is at the peak value. In MC, symbol interval Tb is
usually set after the peak time to avoid severe symbol interference as in (4–13). Some detection
methods have been proposed where the peak time can exceed the interval[45]. The long-tail part
after the peak is where the ISI is calculated. In the long-tail part, it is seen that the amplitude
difference of the two curves decreases rapidly with respect to time. Hence, it is possible to
approximate one curve by another in the long-tail part far from the peak time as long as the
difference of the two distances are not large. Therefore, that Tb is larger than the peak time and
that the difference between the true average distance and the approximate distance is not too
large are the two preconditions for the approximation. Based on the first precondition, we have
(4–13). For the second precondition, let us recheck the relative distance change index k in (4–9)
in the last subsection where we require k < 5% for accurate distance estimation in an interval.
The physical meaning of this requirement is that the maximum distance change in an interval is
less than 5% of d0. This also guarantees that the distance change in nearby intervals is limited.
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Figure 4–5 IRs of two different distances 20 mm (red) and 22 mm (black).

With constant velocity of the receiver Vr and the initial distance d0, requirement k < 5% is
rewritten as (4–14). Combining (4–13) and (4–14), we have (4–15) which expresses the two
preconditions in our system. Next we check the accuracy of the distance approximation under
the condition of (4–15). With different values of Tb in range of (4–15), IR reconstructed by
the approximate distance dApprDist(i) is compared with the IR reconstructed with dave(i) in the
current interval. Accuracy is quantitatively evaluated by correlation coefficient ρ of the two IRs.
The result shows that the correlation coefficient ρ of the two IRs is better than 99.9987% under
the condition of (4–15). This demonstrates that the approximate distance dApprDist(i) is quite an
accurate approximation of the current distance dave(i) and the proposed ISI mitigation based on
the approximate distance is feasible under the condition of (4–15).

Tb > Tpeak, (4–13)

Tb < 0.05
d0
Vr

, (4–14)

Tpeak < Tb < 0.05
d0
Vr

. (4–15)

Next, the proposed adaptive ISI mitigation method and the demodulation scheme is illus-
trated by Fig. 4–6 by an example. The transmitted symbol sequence is [1 1 0] with BCSK
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Figure 4–6 Illustration of the proposed ISI mitigation method. The plot Mab in the figure is defined as the
reconstructed model of symbol a in the bth interval. Transmitted symbol sequence [1 1 0] is detected by
the mobile receiver with BCSK modulation. (a) CR is the concentration at the receiver and Th is the fixed
threshold derived from the initial distance d0 which fails in demodulation in mobile MC; (b) ISI mitigation in
the 2nd interval; (c) ISI mitigation in the 3rd interval; (d) ISI mitigated signal by our proposed ISI mitigation
method and symbols are demodulated properly.

modulation. With ISI, the true signal CR(t) at the receiver is shown in Fig. 4–6 (a). With a fixed
pre-determined threshold Th defined as half of the peak amplitude of IR at initial distance d0,
the 3rd symbol is incorrectly decoded as “1”. The proposed adaptive ISI mitigation method and
demodulation scheme is applied as follows. The receiver takes only limited samples of CR(t).
In Fig. 4–6 (b), samples in the first interval are not affected by ISI. Therefore no ISI mitigation
is implemented. The samples are directly used to estimate the distance and reconstruct the IR
M11 with estimated distance shown by yellow curve in (b). By comparing reconstructed IR M11

and the samples of CR taken in the 1st interval, adaptive signal detection method detects the
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symbol as “1”. In the 2nd interval, ISI from the 1st symbol is firstly calculated and mitigated.
At this moment, the distance in the 2nd interval is unknown. Because the last symbol is “1”,
the distance for the first symbol is used as the approximated distance and the IR M11 is used as
the approximate IR in the 2nd interval for ISI calculation. With the demodulated value in the
1st interval and the approximate IR in the 2nd interval, the ISI in the 2nd interval is calculated
by (4–11). By subtracting it from the received CR(t) (blue curve) in the second interval, the
ISI mitigated samples on the purple curve S2 is obtained in (b). Note that when the subtracted
values are negative, we replaced the values as zero in the calculation. Then distance estimation
and IR reconstruction is performed based on these ISI mitigated samples. The reconstructed IR
M22 is shown by the light purple curve in (c). Adaptive detection scheme detects the symbol as
“1” by comparing reconstructed IR M22 and the samples of ISI mitigated signal S2 in the 2nd
interval. The whole process in the 3rd interval is similar to that in the 2nd interval. The only
difference is that, instead of only one former symbol in 2nd interval, all the two former symbols
are included in the ISI calculation by (4–11). Fig. 4–6 (d) presents the ISI mitigated signals in
all the three intervals. Comparing with CR(t) in (a), the ISI mitigation is effective.

The system model will eventually lose its function as the received moves so far that the
estimation of the system parameters and signal detection occurs with a large error. Both the
ISI effect and noise contribute to this result. The main reason is that after each ISI mitigation,
some ISI molecules still exist and lead to a small error in the distance estimation. The calculated
distance for symbol “1” will be further used for ISI mitigation and this error will accumulate
and finally disable the system. The noise will also degrade the decoding system.

BER is the direct metric to consider when the system loses its function or become not
reliable anymore. When the BER is higher than the pre-set value, we can judge that the system
has lose its function. However, BER can’t be obtained by the practical demodulator as the
true symbol sequence from the transmitter is unknown. Also, it can’t expose the effect of a
few system parameters on the system’s lifetime such as the initial distance, symbol interval,
receiver velocity.

Therefore, when the BER has reached the maximum value we set, we adopt the ratio of
current symbol “1”’s max concentration to the symbol “1”’s max concentration at initial
distance as the metric to judge if the system has reached its lifetime the amplitude. This ratio
is decided by the factors of initial distance, symbol interval, receiver velocity and therefore has
the potential to describe the system status when it loses its function. We have conducted the
experiment to find the metric for the system lifetime. We set the BER standard as the 3e-2 and
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Table 4–2 Simulation Parameters
Parameters Symbol Values

Symbol sequence B 7× 104

Generalized symbol interval Tm 5
Samples per symbol interval NS 5

Signal to noise ratio SNR 22 dB
Absolute temperature T 305 K
Diffusion coefficient D 5 µm2/s

The number of molecules N 105

Initial distance d0 1.2mm
Radius of the receiver a 1× 10−4cm

Generalized symbol interval Tm 5
Velocity of the receiver Vr 2× 10−3 cm/s

Rotational diffusion coefficient Dr 5 rad2/s
Simulation Repeated times 1× 103

1e-3 for CATD and PAD methods as they fall in the same symbol interval unit, the ultimate
ratio is 3.3%. When the mean ratio value in the unit can’t satisfy our standard, the system can
be considered as “die”.

4.2 Simulation Results
In this section, our proposed demodulation scheme is examined by simulations. Important

system factors of our proposed schemes are investigated using Monte Carlo simulation. These
factors include symbol sequence length B, symbol interval Tb, initial distance d0, samples per
symbol interval NS and signal to noise ratio (SNR).

4.2.1 Simulation Parameters

In the simulations, flagellated bacterium performing random walk is considered as mobile
receiver[42]. We assume that there is no drift velocity in the environment. The released molecules
by the transmitter performs Brownian motion[26]. Default parameters adopted are shown in
Table 4–2 based on[7, 19]. Different fluid environments and receiver types may have different
system parameters. BCSK is adopted as the modulation scheme.
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To compare our proposed adaptive demodulation scheme, an adaptive threshold demodu-
lation method is also implemented[25].The threshold can be determined based on MAP detection
rule:

Bn =

1, CR(t) > γn,

0, CR(t) < γn.
(4–16)

where CR(t) represents the concentration in the nth interval and Bn is the decoded symbol
value in the nth interval, γn is the threshold in the demodulation system. Note that calculation
of γ requires information about the sequence history and we assume the receiver has a memory
of ten symbol length memory. The optimal threshold will be obtained through based on the
symbol value of the former symbol sequence.

To quantitatively evaluate the performance of the different demodulation schemes, bit error
rate (BER) is used as the performance metric in this simulation investigation[30]. All the simu-
lations are conducted in one life time of the system. The complete demodulation algorithm is
described in Algorithm 4–1.

4.2.2 Investigation of Symbol Sequence Length

Due to the random walk of the receiver, the increase of released symbol sequence length
increases the possibility of a larger distance change with respective to the initial distance d0. In
this subsection, The impact of released symbol sequence length on the performance of demod-
ulation schemes for mobile MC are evaluated. System parameters are set as in Table 4–2.

The simulation result is shown in Fig. 4–7. BER here represents the bit error rate of the
entire sequence. All of the three demodulation methods’ BER increase as the symbol sequence
length increases. Our proposed CATD and PAD demodulation methods outperform the adaptive
threshold method.

The adaptive threshold based on the fixed distance considers the former symbols with a
static CIR. When the symbol sequence is short (i.e. less than 1× 104 bits), the distance change
is not very obvious and the static CIR can still be used for the calculation of the current CIR.
As the symbol sequence increases, the distance change accumulates and current CIR varies
significantly than the initial CIR. The adaptive threshold based on the static CIR has a large
error than the ideal threshold and the performance degrades gradually.

Meanwhile, BER of both CATD and PAD methods increases as the symbol sequence length
increases. The reasons are analyzed as follows. There are two approximations in our proposed
scheme. One is the usage of dave to represent the average dynamic distance range in an interval
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算法 4–1 Adaptive Demodulation Algorithm
Initialization: set ISIF lag = 0, dave = 0, formerd = initial distance, decode = 0, Tb

for ii = 1 : B do
Sample (t1, C1), ...,(t5, C5) in current interval;
Set Cs = [C1, C2, ..., C5];
if ISIF lag != 0 then

Remove ISI of former bits using based on formerd;
end if
Calculate current interval’s dave from Cs;
Reconstruct longTail IR with current dave using (3–8);
Record peak point Cmax and Tmax of this IR;
Set Th according to Cmax;
Find the max concentration value Cn within interval;
Decode signal in decode by (4–5) and (4–16) using Th and Cn;
if decode == 1 then
ISIF lag = 1;

end if
Store distance of latest symbol “1” in formerd;

end for=0

and its corresponding IR Cave(t) to approximate the true IR. The other is the use of the approxi-
mated distance dApprDist and the corresponding IR in the ISI mitigation. Although the parameters
are designed to pursue the accuracy of these approximation, differences exist. More importantly,
the errors caused by these differences accumulate. For example, there are difference between
the IR with approximate distance dApprDist and the true IR in the ISI mitigation. Therefore in
the ISI mitigation, the ISI cannot be removed completely. Residual molecules are left on the
samples which are used in the distance estimation and the IR reconstruction for the current in-
terval. There will be errors in the estimated distance and reconstructed IR which further affect
the signal detection. Once there is a symbol “1” is decoded incorrectly as “0”, its ISI of this
symbol “1” on the following symbols cannot be counted and cannot be removed. This leads to
more residual molecules in the following sequence and affects the demodulation in the follow-
ing intervals. As the released symbol sequence length increases, errors keep accumulating and
result in a worse performance with a larger BER.
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Figure 4–7 The impact of symbol sequence length on the BER performance for different demodulation
schemes.

Among the two proposed demodulation methods, PAD performs better than CATD with
about one to three orders of magnitude. The reason is that CATD is more sensitive to distance
than PAD. Hence, PAD has a better tolerance to the distance error than CATD. In PAD, de-
modulation is based on the peak time tpeak. The peak time value is calculated by (4–6) and its
derivative with respect to distance is shown in (4–17) which presents its sensitivity to distance.
In CATD, demodulation is based on peak concentration. By substituting tpeak of (4–6) into (3–
8), peak amplitude Cpeak for CATD is obtained in (4–18). Its derivative with respect to distance
is (4–19) which presents its measurement sensitivity to distance. To compare two methods’
sensitivity to distance, we calculate absolute value of (4–17) and (4–19). With parameters in
Table 4–2, the absolute value of (4–19) for CATD is larger than that of (4–17) for PAD. This
indicates that CATD is more sensitive and easily affected by the distance error than PAD. In the
mobile MC, the root error source is the random changes in distance and PAD is more robust to
such error than CATD. Hence, PAD performs better than CATD.

d tpeak

d dave
=

dave

3D
, (4–17)

Cpeak = C(tpeak) =
1

(2π
3
)
3
2d3ave

exp− 3
2 , (4–18)
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Figure 4–8 The impact of symbol interval on the BER performance of different demodulation schemes for
mobile MC.
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d4ave
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4.2.3 Investigation of Symbol Interval

Symbol interval is an important parameter in the decoding system. It determines the data
rate and affects the ISI effect. Decreasing the symbol interval increases data rate, but aggravates
the ISI effect. In this part, the impact of symbol interval on the performance of demodulation
schemes of the mobile MC is investigated.

In the simulation, system parameters in Table. 4–2 are adopted. In the environments with
different receiver velocity and initial distance, the same Tb has different meaning for ISI mitiga-
tion. Therefore normalized Tnorm in (4–20), instead of Tb, is introduced and investigated in this
part. In each run, Tnorm changes from to 2 to 6 with a step of 0.5.

Tnorm =
Tb

Tpeak
. (4–20)

Simulation result is shown in Fig. 4–8. The proposed CATD and PAD perform better than
the adaptive threshold. For the adaptive threshold method, the BER keeps stable before Tm

reaches 3. During this period, even the larger interval gives an inaccurate ISI mitigation and a
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larger error in the distance estimation, the larger interval introduces less ISI molecules into each
interval as the CIR falls sharply after peak time. Then the BER increases with respect to Tm.
With the increase of Tm, the decrease of ISI is not obvious but the severer distance estimation
becomes the main factor in affecting the decoding.

For the proposed CATD and PAD methods, BER increases gradually with respect to Tnorm.
To illustrate such phenomenon, we consider simple case that the increase of Tnorm is caused by
the increase of Tb with the same value of Tpeak. With larger symbol interval Tb, dynamic range of
the distance in an interval increases and index k = Vr×Tb

d0
in (4–9) increases too. Therefore dave

is not a good representative of the dynamic range in large interval as in small one. The deviation
between the averaged distance dave and the true distance range in one interval increases. This
further causes a larger deviation between the reconstructed IR and true IR. This affects the
signal detection accuracy where the reconstructed IR is compared with signal samples to make
a decision. Meanwhile, the reconstructed IR is also used in the ISI estimation. Larger deviation
reduces the accuracy of the ISI calculation and the effectiveness of the ISI mitigation. Although
increasing Tb reduces ISI effect, the result manifests that the impact of increased inaccuracy of
the reconstructed IR overwhelms the impact of reduced ISI effect and results in larger BER of
the proposed demodulation methods.

Among the two proposed methods, PAD performs better than CATD. Similar to the reasons
in the investigation of the symbol sequence length, it is because PAD is more robust to distance
error in dave.

4.2.4 Investigation of Initial Distance

System’s initial distance d0 affects index k in (4–9) which determines the relative mobility
of the system. The decoding parameters such as the amplitude of the CIR or the peak value time
are also affected by the initial distance. In this part, the impact of the initial distance d0 on the
performance of demodulation schemes is investigated. In this simulation, system parameters in
Table. 4–2 are adopted. In each run, d0 changes from to 1 to 5 mm with a step of 0.5 mm.

The simulation result is shown in Fig. 4–9. For adaptive threshold method, its BER in-
creases gradually with initial distance. As the initial distance increases, the amplitude of the
CIR is lower and this makes the decoding more easily affected by the noise and ISI.

Both the proposed CATD and PAD method outperform the adaptive threshold method as
shown in Fig. 4–9. The BER of both methods decrease as d0 increases before the initial distance
reaches 2.3mm. This is because with larger initial distance d0, index k in (4–9) decreases.
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Figure 4–9 The impact of initial distance d0 on the BER performance of different demodulation schemes for
mobile MC.

Smaller k indicates a smaller dynamic range of the distance in an interval. Accordingly, the
reconstructed IR with dave is a better representative of the true IR. The signal detection and ISI
mitigation are more effective by using such reconstructed IR. Hence, the demodulation accuracy
increases accordingly. However, the BER of both detection methods increases as the initial
distance keeps increasing. Amplitude here becomes lower and the decoding process is easily
affected by noise and ISI. This reminds us that the initial distance should be controlled when
the released molecules number for one symbol is settled.

Among the two proposed methods, PAD outperforms CATD. Similar to the investigations
of symbol sequence length and interval, It is because PAD is more robust to distance error.

4.2.5 Investigation of Sampling Number in An Interval

Due to the limitation of energy supply of nanomachines, taking fewer samples in one in-
terval is expected through more samples could provide high accuracy in distance estimation, IR
reconstruction and demodulation. Therefore a trade-off arises between the energy saving and
accuracy requirement about how many samples to take in an interval. In this part, the impact
of sampling numbers Ns in an interval on the performance of demodulation schemes for the
mobile MC is investigated. Ns changes from to 1 to 5 with a step of 1.

The result is shown in Fig. 4–10. For adaptive threshold method, as the threshold is de-
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Figure 4–10 The impact of sampling number in an interval on the BER performance of different demodulation
schemes for mobile MC.

signed based on the initial CIR, which has been settled, the samples only provide more infor-
mation for the max concentration. As the first sample has been around the peak location, more
samples have only a slight impact on adaptive threshold method. Both of our demodulation
methods, CATD and PAD, outperform the adaptive threshold and present a better performance
when Ns is larger than 2. For PAD, BER tends to be stable after three sample points cause the
sample number has provided enough accuracy for the decoding. As the CATD relies more on
the concentration, a larger sample number has a more obvious effect on the decoding.

Among the two proposed methods, PAD outperforms CATD. Similar to the above investi-
gations, it is because that PAD is more robust to distance error and the inaccuracy in the recon-
structed IR.

4.2.6 Investigation of Noise

Apart from ISI effect, other noises like the counting noise in MC also has an impact on the
decoding process. In the simulation, SNR varies from 16 dB to 26 dB with a step of 2 dB.

Simulation result is shown in Fig. 4–11. The increase of SNR will lead to better perfor-
mance for all of the three methods. After 18 dB, both our proposed CATD and PAD methods
outperform the adaptive threshold demodulation method. With less noise, distance estimation
and IR reconstruction are more accurate. ISI mitigation is more effective. Accordingly, the
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Figure 4–11 The impact of SNR in an interval on the BER performance of different demodulation schemes
for the mobile MC.

accuracy of signal detection is improved with a lower BER. Similar to the above investigations,
it is because PAD is more robust to distance error and the corresponding inaccuracy in the re-
constructed IR.

4.2.7 Summary

In this section, the proposed demodulation schemes CATD and PAD for the mobile MC
are examined by simulations.These studies reveal system parameters’ impact on the mobile MC.
The results show that the adaptive threshold design method used in the static MC fails in the
demodulation for the mobile MC. The proposed PAD and CATD perform much better than
the adaptive threshold design strategy. Their effectiveness for the mobile MC is demonstrated.
Among the two proposed methods, PAD is demonstrated to be more effective and reliable than
CATD due to its robustness to distance error.
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Chapter 5 High Bit Rate Static MC Scenario
In existing works, much efforts have been taken to fight against ISI. In[9], the authors pre-

sented maximum a posteriori (MAP) and maximum likelihood (ML) criterions. Then minimum
mean square error (MMSE) and a decision-feedback equalizer (DFE) scheme are proposed to
mitigate both the ISI and noise in the MC. By utilizing the former symbol sequence and channel
sate information, coherent detectors can achieve effective ISI mitigation under low bit rate (i.e.
interval time is longer than the peak value time)[9]. However, based on the absolute amplitude
of CIR, the detectors are not robust enough to ISI when the data rate gets further higher. As
th detectors rely on the information from former sequence, the decoding error will interfere the
following decoding process. Some non-coherent detection methods have also been proposed
focusing on the characteristics of the channel impulse response (CIR). In[24], the concentration
difference in two adjacent intervals is used to decode signal requiring no matrix computation.
Using relative amplitude of CIR, this method is less sensitive to heavy ISI while it still needs the
information from former symbol. In[45], local convexity is a stable characteristic of the channel
response and the detection relying on it requires no information from former symbols. There-
fore, it not sensitive to ISI and can be applied into high data rate scenario. Compared with the
coherent detectors, non-coherent methods require less former symbol sequence information and
are not easily interfered by ISI. However, as the high bit rate scenario can only reveal incom-
plete and inaccurate CIR characteristic under the heavy effect from ISI and very short symbol
interval. The decoding performance based on characteristic like local convexity is limited. To
the best of the authors’ knowledge, an effective detection technique based on incomplete CIR
for the high bit rate scenario in MC is still needed.

In this paper, we propose a non-coherent detector for molecular communication system in
high bit rate based on the local derivative of CIR. Displaying the channel impulse response of
the MCvD, we observe that the ascending part of the channel response (i.e. the interval before
the concentration reaches its maximum value.) is less interfered by ISI in the high bit rate trans-
mission. By employing local fitting technique, we sample the information from the ascending
and utilize it to judge the symbol value in the current interval. Pre-smoothing technique is also
adopted to mitigate the effect the noise from the environment. As there is no need of informa-
tion about the former symbol sequence, this method needs less memory resources. Shown in
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Figure 5–1 Block diagram of the MCvD system

the simulation resources, our proposed scheme is promising in decoding high bit rate signal in
MC and robust to the noise and other channel parameters variations.

5.1 System Model
5.1.1 Channel Model

A point-to-point MCvD system is considered in a 3-D unbounded environment. The re-
ceiver has a radius of r and a point transmitter is located with a Euclidean distance of d from the
receiver. The synchronization of the system is assumed to be accomplished in advance. Binary
Concentration Shift Keying (BCSK) is employed as the modulation scheme in this system as in
[] and the symbol value is si ∈ S = {0, 1}, i = 0, 1, . . . , I .

A pulse of information molecules is emitted as the transmitter side at the beginning of each
time slot Tb. Here we consider the emission pulse to be a rectangular pulse function.

E(t) = Xrect(
t− Te/2

Te

) (5–1)

where X is the transmission rate[47] and Te is the emission duration of the transmitter. Generally
the emission duration Te is far shorter than the symbol interval Tb. These molecules diffuse
randomly in the environment conforming to Brownian motion. After the propagation process
depicted in Fig.1, molecules received at the receiver side can be expressed:

r(t) =
∞∑
i=0

siy(t− iTb) + nc(t)

=
∞∑
i=0

siE(t− iTb)⊗ h(t) + nc(t)

(5–2)

Here y(t) is the noiseless channel response of the signal input and⊗ denotes the convolution op-
eration. si is the ith symbol value. Counting noise nc(t) is introduced by the imperfect counting
process happened as the receiver side. nos(t) obeys the normal distribution[46] as:

nc(t) conforms to the zero-mean white Gaussian distribution[46]:

nc(t) ∼ N (0, σ2
c ) (5–3)
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Distorted by ISI, the received concentration consists of molecules from current symbol and
former symbols as well as noise. Meanwhile, as the molecules from previous symbols become
negligible after a few bits, the effect from ISI may therefore assumed to come from a finite length
e.g. I . The received molecules can be expressed as

∑I
i=0 siy(t− iTb).

The channel impulse response in our system can be expressed as:

h(t) =
1

(4πDt)
3
2

exp (− |d|2

4Dt
) (5–4)

Here D is the diffusion coefficient decided by both the environment medium and the molecule
type.

5.1.2 Bit Rate

In this part, we introduce a generalized definition of bit rate for better evaluation of different
MC system. For molecular communication employing BCSK, 1/Tb is usually adopted as the
bit rate. However, when the diffusion coefficients change in different MC system, shapes of the
channel impulse response vary accordingly and the same symbol interval length with Tb actually
include CIR information on different scale. Therefore, we consider our transmission rate Br as:

Br =
Tb

Tm

(5–5)

where Tm is the time location of the peak concentration of the channel response. This can be
derived as:

Tm =
d2

6D
(5–6)

5.2 Local Fitting Demodulation Scheme
5.2.1 MAP Coherent Detection in Previous Work

Coherent Detection methods are proposed in the system design of MC due to their appeal-
ing performance. MAP framework is commonly adopted in the coherent decoding. In our paper,
MAP-based detector is employed to compare with our proposed detector performance. To obtain
the decoded symbol sequence ŝ0:I , MAP detector shall maximize the joint pdf of transmitted
symbol sequence r0:I and the received molecule concentration r0:I using Bayes Rule,

ŝ0:I = arg max
s∈S

f(r0:I , s0:I)

= arg max
s∈S

I∏
i=0

Pr (si|si+1:I)
I∏

i=0

f(ri|ri+1:I , s0:I)
(5–7)
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Figure 5–2 Channel impulse response and its derivative.

Here Pr (si|si+1:I) is the conditional probability function of the transmitted symbol sequence
and f(ri|ri+1:I , s0:I) is conditional pdf following Gaussian distribution[9]. As the transmitted
symbol is independent from other ones, Pr (si|si+1:I) can be further simplified to Pr (si).

5.2.2 Local Fitting Demodulation

Compared with the MC system where Br > 1, high bit rate MC scenarios (e.g. Br =0.71)
bring two disadvantages for decoding process. Heavier ISI is included due to the extremely
short symbol interval. Whats’ more, we can only obtain part of the CIR information as most of
the CIR in cut off by the short Tb. We derive the first order derivative of the channel impulse
response hd(t) in (5–8) and observe its plot in Fig. 5–2:

hd(t) =
dh(t)

dt
=

d2 exp− d2

4Dt

16D2πt
7
2

−
3 exp− d2

4Dt

8Dπt
5
2

(5–8)

We can see that there is a sharp peak during the ascending part (i.e. before the max concen-
tration location) of the CIR derivative. By deriving the equation of the CIR’s second derivative
d2h(t)
dt2

= 0, we can obtain the CIR’s peak derivative location:

tp1 = −10
1
2d2 − 5d2

30D
tp2 =

10
1
2d2 + 5d2

30D
(5–9)

tp1 ≈ 0.37Tm is the time instance where the derivative has the maximum value and tp2 is for the
minimum derivative value. Knowing that the maximum derivative is significantly large and its
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location tp1 is in the ascending part of CIR, we then prove that this index can bu used to decode
signal even in the presence of severe ISI and it only calls for part of the CIR information.

As stated in section II, we can derive the received signal in the absence of noise:

rp(t) =
I∑

i=0

siy(t− iTb)

= sIy(t− ITb) +
I−1∑
i=0

siy(t− iTb)

(5–10)

As the emission time is sufficiently smaller than the symbol interval, e(t)⊗h(t) can be approx-
imated as Xh(t) and the derivative of r(t) can be expressed as:

rp(t) = sIXh(t− ITb) +
I−1∑
i=0

siXh(t− iTb) (5–11)

∂r(t)

∂t
=

I∑
i=0

hd(tp1 + iTb) (5–12)

As tp1, Tm and Tb can all be expressed in terms of parameters D and d, hd(tp1 + iTb) can be
expressed as the function hd(D, d). Then we consider an extremely high bit rate scenario where
Tb ≈ 0.71Tm. In the previous work, the finite ISI length is usually less than two bits and we
firstly adopt a four bits symbol-one length ISI sequence due to the severer ISI effect of a shorter
symbol interval. With a positive constant parameter D, hd(D, d) is a monotonic function and
we have:

lim
d→∞

hd(D, d) = 0 D ∈ R+ (5–13)

We can find that the sum of the derivative is always beyond zero when the current symbol value
is one. Then we expand the ISI sequence to five bits interference, by calculating its stationary
point and hessian matrix. We found the fifth symbol’s derivative influence can be neglected
showing that considering four-bit length ISI is enough for our demodulation method.

As the derivative from previous symbols are all negative, its easy to observe that the deriva-
tive is negative when the current symbol value is zero. Therefore, we can obtain an approximat-
ing derivative around tp1 to decode current symbol:

dr ≷1
0 δ (5–14)

where dr is the index we calculate from the actual concentration by local fitting and δ is the
local fitting index from symbol one. This is especially suitable for the high bit scenario as we
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don’t need the information from the descending out of the interval bound. Note that this metric
can be slightly adjusted considering the effect from the noise. Discussions are conducted in the
simulation part.

5.2.3 Noise Mitigation and Derivative Calculation

Noise-mitigating has to be conducted before we use the signal for the next step processing.
For our MC system, in the equivalent discrete signal model we have

r(m) = s0h(m) +
I∑

i=0

sih(m− iTb) (5–15)

h(m) =
N∑

n=−N

h(m− tp1 − nTs) (5–16)

where Ts is the oversampling rate set as 1/tm. Now we have a sample sequence with a length of
2N+1 in each interval: c = [c1, . . . , c2N+1]. We then conduct the ISI mitigating process between
(K + 1)th and (2N −K)th sample:

c′i =

∑i+K
l=i−K cl

2K + 1
(5–17)

After mitigating the noise effect, we use local fitting method to get the first order fitting index
of the samples. The local derivative we desire can be solved Using Vandermonde determinant.

5.3 Simulation Results
In this section, our local fitting detection method is examined through Monte Carlo simu-

lation. The trade off between the bit rate and system performance is evaluated firstly and then
we forward to discuss the proper range in the metric design. 1 × 105 symbols are transmitted
randomly in each simulation. Bit Error Rate (BER) is employed to evaluate our system per-
formance. As noise is considered in our system, we define the signal to noise ratio (SNR) in
logarithmic decibel scale as:

SNR ≜ 10 log10(
Pr

PN

) ≜ 10 log10(
1

I+1

∑I
i=0 r

2
i

E[δ2N ]
) (5–18)

where Pr and PN is the signal power and the noise power, δ2N is the variance of the combined
noise. ri is the average signal amplitude in an interval.
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Figure 5–3 BER performance for MAP, local convexity and LF detector. Three time interval is discusses to
investigate the detector performance in different bit rate scenarios.

Channel Parameters have to be set in advance and we assume that the receiver side has
already known the time location of tp1 in one interval. This can be achieved by sending a se-
quence of pilot symbols. In our high data rate scenarios, symbol interval can be set shorter than
the peak value time Tm but need to be longer than tp1. We arrange D = 4.8 × 10−8m2/s and
d = 65nm[45]. MAP coherent detector[9] and local convexity non-coherent[45] are compared
with our LF non-coherent detector.

In the first experiment shown in Fig. 5–2, we investigate the performance difference when
the factors Br and SNR varies. Shown in Fig. 5–3, both of the two non-coherent detectors be-
have better under the low influence of noise. However, the MAP method (I = 15) has a poor
performance when the data rate is extremely high (e.g. Br = 0.57&0.71), this is because the
incomplete CIR information (i.e. receiver can only obtain samples from ascending part con-
strained by the short interval.) and severe ISI can’t enable MAP detector to make an accurate
detection and estimation. The MAP detector is not reliable anymore in this scenario. Our LF
detector has excellent BER performance in high bit rate and it is also suitable for the scenario
where Tb is larger than Tm. This result indicates our detector is robust in the high bit rate and
also has a wide range of application scenarios.

In the next experiment, we focus on the metric design of the detector in high bit rate (Br =

0.71). Considering the energy consumption, we only sample five points around tp1 universally
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Figure 5–4 Channel impulse response and its derivative

with a interval of Ts = 1.06 × 10−9. In the ideal situation without noise, we calculate the
local derivate around tp1 and set half of its value as metric δ. In our case, the ideal metric is
δ = 0.7× 1016. However, we find that the system has the best performance around 0.5× 1016.
This is because true ISI comes from a infinite sequence and the actual derivative is lower than
the analytical one. What’s more, the noise effect may slightly distract the LF calculation and
therefore some calculation results from symbol ones may also have a lower value than the ideal
one.
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Chapter 6 Conclusion
In this paper, we propose a demodulation scheme for the mobile MC. For the mobile MC

scenario, a well studied flagellated bacteria, E.coli, is considered as a mobile receiver performing
random walk. Three-dimensional channel model is established considering the random walk of
E. coli as the mobile receiver. For the mobile MC, current demodulation schemes do not work
due to the randomness of the IR of the mobile channel. In this paper, adaptive demodulation
scheme is proposed for the mobile MC. This adaptive demodulation scheme includes three main
parts which are adaptive ISI mitigation, distance estimation and IR reconstruction, and two
adaptive detection methods PAD and CATD. These three parts are proposed specifically for the
mobile MC.

The proposed demodulation scheme is verified by Monte Carlo simulations. The simulation
results show that the proposed demodulation scheme performs better than the adaptive threshold
strategy for the static MC. Among the two detection schemes, PAD outperforms CATD. There-
fore, we recommend PAD for demodulation in the mobile MC. The impacts of important system
factors including symbol sequence length, symbol interval, initial distance, sampling number in
one interval and SNR, are also studied. These studies reveal the rules of the impacts of these
factors which could be used to optimize the system performance.

In future, there are open issues to be solved. Firstly, the data rate in the current system is
too low. High data rate scenario detection remains to be solved for our demodulation schemes.
Also, demodulation schemes for other modulation methods such as MoSK in the mobile MC
should also be investigated and compared.
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[Proof of the System Error Probability]
For the channel impulse response of our system in (3–9), we consider it as the probabil-

ity density function of the sensed concentration at time t. Therefore, it can be represented as
Pob(D, d, t) in terms of parameters of Diffusion coefficient, distance d and time t.For the current
symbol, the received concentration includes the transmitted molecules from current symbol and
residual molecules as ISI. Also, the counting noise should also be included in our analytical
expression. We have the received concentration as:

CR(t) = C0(t)S0 +
I∑

i=1

Ci(t)Si + ncs (–1)

Ci(t) here can be expressed as C0(t+ iTb). Ncs represents the value of the counting noise.
Si represents the symbol value of the ith symbol. C0(t)S0 is the concentration from the current
symbol and it obeys the binomial distribution:

C0(t)S0 ∼ B(NS0, P0) (–2)

P0 can be expressed as Pob(D, dc, t) and dc is the distance for current time t. For the ISI ef-
fect with a symbol length of I, the concentration from each symbol also complies to the binomial
distribution:

Ci(t)Si ∼ B(NSi, Pi − Pi−1) (–3)

After sampling the current concentration, we need to mitigate the ISI for the further de-
modulation. We reconstructed the CIR for the former symbols using our storage distance df and
the mitigated signal CRM become:

CR(t) = C0(t)S0 +
I∑

i=1

Ci(t)Si −
I∑

i=1

Cir(t)Sir +Ncs (–4)

Where Cir(t) and Sir are the estimated concentration and symbol values and the estimated
concentration also complies to the binomial distribution:

Cir(t)Sir ∼ B(NSir, Pir − Pir−1) (–5)

The difference from the actual ISI signal is that Pir represents Pob(D, de, t + iT b) and de

represents the distance for the last symbol one. As the transmitted molecules N are large enough,
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the binomial distribution can be approximated to the normal distribution and our mitigated signal
can be expressed as:

CRM(t) ∼ N (NS0P0, NS0P0(1− P0))

+N(NSiQi, NSiQi(1−Qi))

−N(NSirQir, NSirQir(1−Qir)) +N(0, σ2
cs)

(–6)

Here Qi = Pi–Pi − 1 and Qir = Pir–Pir − 1. Referring[64], we can derive the error
probability for the CATD detection method:

Pe = M0 Pr(Sr = 1|S0 = 0) +M1 Pr(Sr = 0|S0 = 1)

=
M1

2
(1 + erf(

τ − µ1√
2σ1

2
)) +

M0

2
(1− erf(

τ − µ0√
2σ0

2
))

(–7)

Here we assume the probability of sending symbol one in the current symbol is M1 and the
probability for symbol zero is M0. For PAD detection method, we need to calculate the peak
value time from the distance we derived and utilizes this index to decode. However, as the
distance between the transmitter and the receiver is hard to predict and we haven’t reached an
analytical expression for the distance between the transmitter and the receiver under the mobile
situation. The error probability is still hard to estimate or exposed in the numerical results.
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