
SHANGHAI JIAO TONG UNIVERSITY

学士学位论文
BACHELOR’S THESIS

论文题目: 学术大数据的主题分析

学生姓名： 何俊贤

学生学号： 5130309699

专 业： 信息工程

指导教师： 王新兵

学院 (系)： 电子信息与电气工程学院



Topic Analysis of Big Scholarly Data

学术大数据的主题分析

摘 要

主题模型在过去的十年里被广泛应用，方便了人们对学术大数据的探索。但是已有的主题模型

在应用来分析学术大数据时依然存在两个重大缺陷：（1）传统的主题用关键词表示，缺乏对学术数

据在文章层面的分析；（2）具有代表性的相关性主题模型可以有效地提取出主题间关系，但其计算

复杂度非常高，使之不能够在工业界投入实际使用。在这篇论文中，我们设计了两个不同的模型来

分别解决这两个问题。

第一，我们引入了 “论文主题”的概念，在两种不同主题的基础上构建了异构的主题网络去关联

词层面分析和文章层面分析。为此我们提出了一个新的模型量化存在于两种不同主题之间的三种关

系。除此之外，我们还开发了一个演示系统 TopicAtlas来展示异构主题网络。量化实验部分，我们在

真实的学术数据上进行了实验，证明了我们的模型相较于其他方法的优势。

第二，我们提出了一个新的模型去学习紧凑的主题向量，然后通过主题向量之间的距离来对主

题相关度建模。我们的模型将此前针对主题数量立方或者平方的时间复杂度降到了线性。后续的实

验证明我们的方法能够处理的数据和模型规模是之前的 100倍，在这同时我们也提供了论文分类和
检索的结果证明了我们在提高模型效率的同时也并没有牺牲模型的精确性。

关键词：主题模型，异构网络，主题向量，主题相关性，线性复杂度
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Topic Analysis of Big Scholarly Data

ABSTRACT

Topic models serve as a powerful tool to facilitate big scholarly data exploration. However,

existing topic models have encountered two limitations when applied to analyze big scholarly

data: (1) Traditional topics are composed of words and lack an insight for academic data on

document level; (2) Existing expressive correlated topic models are computationally expensive

and impractical for industry deployment. In this thesis, we propose two different models to

address the problems respectively.

First, we introduce the concept of “DocTopic” and construct a heterogeneous web of topics

to associate word level with document level. To achieve this, a new generative model is pro-

posed, where three different relationships in the heterogeneous topic web are quantified. We

also develop a prototype demo system named TopicAtlas to exhibit such heterogeneous topic

web. Extensive qualitative analyses are included to verify the efficacy of this heterogeneous

topic web. Besides, we validate our model on real-life academic citation networks, showing

that it preserves good performance on objective evaluation metrics.

Second, we propose a new model which learns compact topic embeddings and captures

topic correlations through the closeness between the topic vectors. Our method reduces pre-

vious cubic or quadratic time complexity to linear w.r.t the topic size. Extensive experiments

show that our approach is capable of handling model and data scales which are several orders

of magnitude larger than existing correlation results, without sacrificing modeling quality by

providing competitive or superior performance in document classification and retrieval.

Key words: topic model, heterogeneous web, topic embedding, topic correlation, linear com-

plexity
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Chapter 1 Introduction

1.1 Motivation

Large ever-growing academic document collections provide great opportunities, and pose

compelling challenges, to infer rich semantic structures underlying the scholarly data for data

management and utilization. When faced with a new or unfamiliar academic collections, people

may first ask a basic question: “What is there?”. To answer this question, we resort to the

notion of exploratory search [1], which is proposed to help people develop a general sense of

the properties of a new academic collections before embarking on more specific inquiries [2].

Topic models, particularly the Latent Dirichlet Allocation (LDA) model [3], have been one of the

most popular statistical frameworks to identify latent semantics from text corpora and facilitate

exploratory search. Nevertheless, existing topic models suffer from significant limitations and

are far from adequate for advanced big scholarly data mining.

One limitation of LDA lies in its intrinsic assumption of “topic” as distribution over words,

lacking an insight on document level for text corpora, which is sometimes significantly demand-

ing (e.g., researchers might want to locate the influential papers related to some word-composed

topics). It is thus expected to introduce a new variable which represents the document impor-

tance to enable advanced big scholarly data navigation.

Another drawback of LDA derives from the conjugate Dirichlet prior, as it models topic

occurrence (almost) independently and fails to capture rich topical correlations (e.g., a document

about virus may be likely to also be about disease while unlikely to also be about finance). Ef-

fective modeling of the pervasive correlation patterns is essential for structural topic navigation,

improved document representation, and accurate prediction [4, 5, 6]. Correlated Topic Model

(CTM) [5] extends LDA using a logistic-normal prior which explicitly models correlation pat-

terns with a Gaussian covariance matrix. Despite the enhanced expressiveness and resulting
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richer representations, practical applications of correlated topic modeling have unfortunately

been limited due to high model complexity and poor scaling on large data. For instance, in

CTM, direct modeling of pairwise correlations and the non-conjugacy of logistic-normal prior

impose inference complexity of O(K3), where K is the number of latent topics, significantly

more demanding compared to LDA which scales only linearly. While there has been recent

work on improved modeling and inference [6, 7, 8, 9], the model scale has still limited to less

than 1000s of latent topics. This stands in stark contrast to recent industrial-scale LDA models

which handle millions of topics on billions of documents [10, 11] for capturing long-tail se-

mantics and supporting industrial applications [12], yet, such rich extraction task is expected to

be better addressed with more expressive correlation models. It is therefore highly desirable to

develop efficient correlated topic models with great representational power and highly scalable

inference, for practical academic deployment.

In this thesis, we develop two different models to learn topic-related influential documents

and extract correlation structures of industrial-scale latent topics, respectively.

1.2 Learning Topic-Related Influential Documents

In the topic-related influential documents learning task, we model the academic citation

network as vertices associated with text and possessing high degrees of connectivity among

themselves as shown Figure 1–1(a). We view each document as a “bag of references” [13, 14]

inspired by popular “bag of words” assumption. For example, in the academic paper network,

a paper with k references is viewed as a document with k “reference tokens” (or “document

tokens”). Then, we can model these documents within a topic model framework where a new

type of “topics” characterized by distributions over documents arises and important documents

are assigned with high probabilities. By combining “word token” and “document token”, each

document is composed of two parts as shown in Figure 1–1(b), and two different types of topics

are included as illustrated in Figure 1–1(c). To distinguish the two categories of topics, we call

them WordTopic and DocTopic respectively.

However, it is still inconvenient to explore big scholarly data since users can only inspect

2/51



Topic Analysis of Big Scholarly Data

(a) Academic citation network (b) Two parts of a document

(c) WordTopic and DocTopic (d) Heterogeneous topic web

Figure 1–1: Illustration of some concepts. (a) Academic citation network. (b) Two parts of
a document. W represents the “word token” part, and D below W represents “document
token” part. (c) WordTopic (WT) and DocTopic (DT). (d) Heterogeneous topic web with
two types of topics and three types of relationships.

the individual topic in isolation. Therefore, we expect to uncover the relations between topics

to enable users to examine not only a topic itself but also the related fields and important doc-

uments. With that in mind, a complete heterogeneous topic web which displays three different

types of relationships as described in Figure 1–1(d) is indispensable. Although the relation-

ship between WordTopics (Word-Word relation) has been investigated previously [5, 15, 16,

17, 18, 14, 19, 20], the connections between DocTopic and DocTopic (Doc-Doc relation) and

WordTopic and DocTopic (Word-Doc relation) have not been studied before.

To construct such heterogeneous topic web, we propose a probabilistic generative model

called MHT (Model for Heterogeneous Topic Web), where all three relationships are quantified.

Our experiments on two academic citation networks demonstrate that MHT not only produces

reliable heterogeneous topic web with high-quality topics but also preserves strong generaliz-
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ability and predictive power.

Furthermore, we build TopicAtlas, a prototype demo system for convenient navigation

in heterogeneous topic web. TopicAtlas displays Word-Word relation, Doc-Doc relation, and

Word-Doc relation in a unified framework. With TopicAtlas, users are able to freely wander

around the academic citation network via WordTopics and DocTopics.

1.3 Extracting Industrial-Scale Correlated Topics

To ease the high complexity of existing correlated topic models, we design a new model that

extracts correlation structures of latent topics, sharing comparable expressiveness with the costly

CTM model, while keeping as efficient as the simple LDA. We propose to learn a distributed

representation for each latent topic, and characterize correlatedness of two topics through the

closeness of respective topic vectors in the embedding space. Compared to previous pairwise

correlation modeling, our topic embedding scheme is parsimonious with less parameters to es-

timate, yet flexible to enable richer analysis and visualization. Figure 1–2 illustrates the corre-

lation patterns of 10K topics inferred by our model from two million NYTimes news articles,

in which we can see clear dependency structures among the large collection of topics and grasp

the semantics of the massive text corpus.

We further derive an efficient variational inference procedure combined with a fast sparsity-

aware sampler for stochastic tackling of non-conjugacies. Our embedding based correlation

modeling enables inference in the low-dimensional vector space, resulting in linear complexity

w.r.t topic size as with the lightweight LDA. This allows us to discover 100s of 1000s of latent

topics with their correlations on near 10 million articles, which is several orders of magnitude

larger than prior work [6, 5].

Our topic embedding scheme differs from recent research which combines topic models

with word embeddings [21, 22, 23, 24] for capturing word dependencies, as we instead focus on

modeling dependencies in the latent topic space which exhibit uncertainty and are inferentially

more challenging. To the best of our knowledge, this is the first work to incorporate distributed

representation learning with topic correlation modeling, offering both intuitive geometric inter-
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Figure 1–2: Visualization of 10K correlated topics on the NYTimes news corpus. The
point cloud shows the 10K topic embeddings where each point represents a latent topic.
Smaller distance indicates stronger correlation. We show four sets of topics which are
nearby each other in the embedding space, respectively. Each topic is characterized by the
top words according to the word distribution. Edge indicates correlation between topics
with strength above some threshold.

pretation and theoretical Bayesian modeling advantages.

We demonstrate the efficacy of our method through extensive experiments on various large

text corpora. Our approach shows greatly improved efficiency over previous correlated topic

models, and scales well as with the much simpler LDA. This is achieved without sacrificing the

modeling power—the proposed model extracts high-quality topics and correlations, obtaining

competitive or better performance than CTM in document classification and retrieval tasks.

1.4 Contributions

To summarize, contributions of this thesis are three folds:

• We design a new WordTopic-DocTopic model to construct heterogeneous web of topics

successfully.

• We develop TopicAtlas, a prototype system for academic citation network exploration,

allowing users to investigate the heterogeneous topic web with details and explore big
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scholarly data easily.

• We propose a new correlated topic model with topic embeddings, capable of handling

model and data scales which are several orders of magnitude larger than existing corre-

lation results.

The rest of the thesis is organized as follows: Chapter 2 briefly reviews related work; Chap-

ter 3 presents the proposed WordTopic-DocTopic model and topic embedding model; Chapter 4

shows extensive experimental results; and finally we conclude the thesis.
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Chapter 2 Related Work

2.1 Exploratory Search

When dealing with large collections of digitized historical documents, very often only little

is known about the quantity, coverage, and relations of its content. In order to get an overview,

exploring the data beyond simple “lookup” approaches is needed. The notion of exploratory

search has been introduced to cover such cases [1].

Chaney and Blei [25] make an early effort in exploratory search via visualizing traditional

topic models, where a navigator of documents is created and allows users to explore the hidden

structure. Gretarsson et al. build a relatively mature system called TopicNets [26], which en-

ables users to visualize individual document sections and their relations within the global topic

document. Maiya et al. [27] build the topic similarity network for exploration and recognize

how topics form large themes. Recently, Jahnichen et al. [28] develop a complete framework

in this field, they depict probability distributions as tag clouds and permit the identification of

related topic groups or outliers.

While the works mentioned above convey some information visually, these approaches

consider the data as isolated-document corpus rather than linked text networks. With only text

they cannot conduct a serious analysis for a text network on a document level. Specifically,

although some of them are able to retrieve topic-related documents, there is no possibility for

them to identify topic-significant documents, which are more crucial in exploratory search. We

introduce DocTopic and propose the idea of heterogeneous topic web to enable users to keep

track of related topic groups, relevant documents and significant documents.
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2.2 Topic Modeling

Topic models represent a document as a mixture of latent topics. Among the most popular

topic models is the LDA model [3] which assumes conjugate Dirichlet prior over topic mixing

proportions for easier inference. Due to its simplicity and scalability, LDA has extracted broad

interest for industrial applications [11, 12].

However, traditional topic models only consider text and ignore the significant link infor-

mation. Recently, some variants of topic models are proposed for jointly analyzing text and

links. A major part of them models the link information as evidence of content similarity be-

tween two documents [29, 30, 31, 16, 17, 32, 18, 33], but this kind of approach is not able

to detect important documents with respect to a specific topic. Another categories of methods

which generate the links from DocTopics can recognize significant documents [34, 35, 13, 15,

14]. These works, however, fail to construct a complete heterogeneous topic web composed of

WordTopic, DocTopic and three different types of relations among them. Although the connec-

tion between WordTopics has been investigated before [5, 15, 16, 17, 18, 14, 19, 20], we are the

first to model two types of topics and three types of relations jointly and build the heterogeneous

topic web successfully.

On the other hand, the Dirichlet prior of LDA is incapable of capturing dependencies be-

tween topics. The classic CTM model provides an elegant extension of LDA by replacing the

Dirichlet prior with a logistic-normal prior which models pairwise topic correlations with the

Gaussian covariance matrix. However, the enriched extraction comes with computational cost.

The number of parameters in the covariance matrix grows as square of the number of topics,

and parameter estimation for the full-rank matrix can be inaccurate in high-dimensional space.

More importantly, frequent matrix inversion operations during inference lead to O(K3) time

complexity, which has significantly restricted the model and data scales. To address this, [6]

derives a scalable Gibbs sampling algorithm based on data augmentation. Though bringing

down the inference cost to O(K2) per document, the computation is still too expensive to be

practical in real-world massive tasks. [8] reformulates the correlation prior with independent

factor models for faster inference. However, similar to many other approaches, the problem
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scale has still limited to thousands of documents and hundreds of topics. In contrast, we aim

to scale correlated topic modeling to industrial level deployment by reducing the complexity to

the LDA level which is linear to the topic size, while providing as rich extraction as the costly

CTM model. We note that recent scalable extensions of LDA such as alias methods [36, 11] are

orthogonal to our approach and can be applied in our inference for further speedup. We consider

this as our future work.

Another line of topic models organizes latent topics in a hierarchy which also captures topic

dependencies. However, the hierarchy structure is either pre-defined [37, 38, 39] or inferred

from data using Bayesian nonparametric methods [40, 41] which are known to be computation-

ally demanding [42, 43]. Our proposed topic embedding model is flexible without sacrificing

scalability.

2.3 Distributed Representation Learning

There has been a growing interest in distributed representation that learns compact vectors

(a.k.a embeddings) for words [44, 45], network nodes [46, 47], and others. The induced vec-

tors are expected to capture semantic relatedness of the target items, and are successfully used

in various applications. Compared to most work that induces embeddings for observed units,

we learn distributed representations of latent topics which poses unique challenge for inference.

Some previous work [48, 49] also induces compact topic manifold for visualizing large docu-

ment collections. Our work is distinct in that we leverage the learned topic vectors for efficient

correlation modeling and account for the uncertainty of correlations.

An emerging line of approaches [21, 22, 23, 24] incorporates word embeddings (either

pre-trained or jointly inferred) with conventional topic models for capturing word dependencies

and improving topic coherence. Our topic embedding model differs since we are interested in

the topic level, aiming at capturing topic dependencies with learned topic embeddings.
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Chapter 3 Models

This chapter proposes two different models for topic-specific influential documents mining and

efficient topic correlation and embedding learning, respectively. We present the model structure

in detail and derive the algorithm for inference.

3.1 Model for Heterogeneous Topic Web

In this part we describe the framework, generative process, and inference of MHT (Model

for Heterogeneous Topic web).

3.1.1 Model Structure

In classical topic models each document is seen as “bag of words” and associated with a

document specific topic distribution, which is used to draw a topic for each word in the generative

process. Note that the “topic” here actually represents WordTopic in our notation framework and

Table 3–1: Notations used in this thesis.

Symbol Description

D,K, V number of documents, latent topics, and vocabulary words
Nd, Ld number of words and references in document d

M embedding dimension of topic and document
uk embedding vector of topic k
ad embedding vector of document d
ηd (unnormalized) topic weight vector of document d

wdn the nth word in document d
zdn the topic assignment of word wdn

z′dl the DocTopic assignment of link ydl
tdl the transitive WordTopic assignment of reference ydl
πk Transitive DocTopic distribution of WordTopic k
ϕk word distribution of topic k
Ks number of non-zero entries of document’s topic proportion
Vs number of non-zero entries of topic word distribution
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Figure 3–1: Graphical model representation of MHT.

is distribution over words. Inspired by previous topic models, we adopt the assumption of “bag

of references” and produce a new “topic” which is distribution over references (documents),

where each document assigns DocTopics for its references from DocTopic distribution. Since

document specific WordTopic distribution and DocTopic distribution are totally different (e.g., a

paper about disease is likely to cite quite a lot biology-related papers), some transition procedure

between them is required to jointly model text and references.

Based on the discussion above, we employ a transition distribution π over DocTopics to

depict the relation between the two types of topics. Details for complete generative process of

our proposed model MHT are demonstrated in Algorithm 3–1 and Figure 3–1. Table 3–1 lists

key notations.

In Algorithm 3–1, Step 1 and Step 2 are the same as classical topic model to generate words.

A major distinction of MHT from other models is Step 3, where we employ a transitive latent

WordTopic t as an “intermediary” from WordTopic domain to DocTopic domain. Intuitively,

the WordTopics in a paper’s content reminds authors of related DocTopics and enables them

to locate references, it is therefore expected to design a “chain” from WordTopic to DocTopic

and then references in the generative process. The transitive WordTopic t is the head of this
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Algorithm 3–1 Generative Process of MHT
For each document d = 1, 2 · · · , D,
1. Generate WordTopic distribution: θd ∼ Dir(α)
2. For each word n = 1, 2, · · · , Nd,

(a) Draw the topic assignment zdn ∼ Multi(θd)
(b) Draw the word wdn ∼ Multi(ϕzdn)

3. For each link l = 1, · · · , Ld,
(a) Draw a transition topic tdl ∼ Multi(θd)
(b) Draw a DocTopic z′dl ∼ Multi(πtdl)
(c) Draw a linked document ydl ∼ Multi(Ωz′dl

)

“chain”, and serves as the reminder WordTopic. In transition stage, we introduce a transition

parameter π to express the connectivity strength between WordTopic and DocTopic so that the

generation of DocTopic is equivalent to drawing it from θπ. Thus π serves as a transition

matrix from θ to a “spurious” underlying mixed DocTopic distribution θ′ = θπ. Specifically,

for a given WordTopic k, the value of πkk′ indicates the probability for generating DocTopic k′,

i.e. p(z′ = k′|z = k) = πkk′ . With that in mind, we can see how π works on transforming

WordTopic domain into DocTopic domain.

3.1.2 Model Learning

To learn MHT, we resort to the mean-field variational EM inference method. For each

document d, we use a fully factorized variational distribution to approximate the posterior dis-

tribution:

q(θd, zd, td, z
′
d) = q(θd|τd)

∏
n
q(zdn|κdn)

×
∏

l
q(tdl|βνdl)

∏
l
q(z′dl|σdl),

(3–1)

where q(θd|τd) is Dirichlet distribution and q(zdn|κdn), q(tdl|νdl) and q(z′dl|σdl) are all multi-

nomial distributions. Then we will try to maximize the evidence lower bound (ELBO) defined

by:

ELBO =
∑

d
(Eq[log p(θd, zd, td, z

′
d,wd,yd|α,π,ϕ,Ω)]

− Eq[log q(θd, zd, td, z
′
d)]).

(3–2)
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Algorithm 3–2 Variational EM inference of MHT
1: Initialize variational parameters randomly. D denotes the dataset
2: repeat
3: for all d ∈ D do
4: repeat
5: update κd, τd,νd,σd with Eqs.(3–3), (3–4), (3–5), (3–6)
6: until convergence
7: update ϕ,π,Ω, α with Eqs.(3–7), (3–8), (3–9)
8: end for
9: until convergence

In the E-step, we update τ ,κ,ν and σ iteratively to approximate the posterior distribution.

Then, in the M-step, α,ϕ,π and Ω are renewed to maximize ELBO. Due to the limitation of

space, we only provide crucial equations here.

κdnk ∝ ϕkx exp(Ψ(τdk)). (3–3)

τdk = αk +
∑

n
κdnk +

∑
n
νdlk. (3–4)

νdlk ∝ exp(Ψ(τdk) +
∑

k′
σdlk′ log πkk′). (3–5)

σdlk′ ∝ Ωk′d exp(
∑

k
νdlk log πkk′). (3–6)

ϕkv ∝
∑

d,n
κdnk · 1(wdn = v). (3–7)

πkk′ ∝
∑

d,l
σdlk′νdlk. (3–8)

Ωk′i ∝
∑

d,l
σdlk′ · 1(ydl = i). (3–9)

Ψ(·) denotes the digmma function, 1() is the boolean operator. α is updated by Newton-Raphson
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Figure 3–2: Graphical model representation of topic embedding model. The left part
schematically shows our correlation modeling mechanism, where nearby topics tend to
have similar (either large or small) weights in a document.

algorithm, the interested readers may refer to [3]. We summarize our variational inference al-

gorithm in Algorithm 3–2.

3.2 Efficient Topic Embedding Model

This section proposes our topic embedding model for correlated topic modeling. We first

give an overview of our approach, and present the model structure in detail. We then derive an

efficient variational algorithm for inference.

3.2.1 Model Overview

We aim to develop an expressive topic model that discovers latent topics and underlying

correlation structures. Despite this added representational power, we want to keep the model par-

simonious and efficient in order to scale to large text data. As discussed above (Chapter 2), CTM

captures correlations between topic pairs with a Gaussian covariance matrix, imposing O(K2)
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parameter size and O(K3) inference cost. In contrast, we adopt a new modeling scheme draw-

ing inspiration from recent work on distributed representations, such as word embeddings [44]

which learn low-dimensional word vectors and have shown to be effective in encoding word

semantic relatedness.

We induce continuous distributed representations for latent topics, and, as in word embed-

dings, expect topics with relevant semantics to be close to each other in the embedding space.

The contiguity of the embedding space enables us to capture topical co-occurrence patterns

conveniently—we further embed documents into the same vector space, and characterize docu-

ment’s topic proportions with its distances to the topics. Smaller distance indicates larger topic

weight. By the triangle inequality of distance metric, intuitively, a document vector will have

similar (either large or small) distances to the vectors of two semantically correlated topics which

are themselves nearby each other in the space, and thus tend to assign similar probability mass to

the two topics. Figure 3–2, left part, schematically illustrates the embedding based correlation

modeling.

We thus avoid expensive modeling of pairwise topic correlation matrix, and are enabled to

perform inference in the low-dimensional embedding space, leading to significant reduction in

model and inference complexity. We further exploit the intrinsic sparsity of topic occurrence,

and develop stochastic variational inference with fast sparsity-aware sampling to enable high

scalability. We derive the inference algorithm in section 3.2.3.

In contrast to word representation learning where word tokens are observed and embed-

dings can be induced directly from word collocation patterns, topics are hidden from the text,

posing additional inferential challenge. We resort to generative framework as in conventional

topic models by associating a word distribution with each topic. We also take into account

uncertainty of topic correlations for flexibility. Thus, in addition to the intuitive geometric in-

terpretation of our embedding based correlation scheme, the full Bayesian treatment also en-

dows connection to the classic CTM model, offering theoretical insights into our approach. We

present the model structure in the next section. (Table 3–1 lists key notations; Figure 3–2 shows

the graphical model representation of our model.)
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3.2.2 Model Structure

We first establish the notations. Let W = {wd}Dd=1 be a collection of documents. Each

document d contains Nd words wd = {wdn}Nd
n=1 from a vocabulary of size V .

We assume K topics underlying the corpus. As discussed above, for each topic k, we want

to learn a compact distributed representation uk ∈ RM with low dimensionality (M ≪ K).

Let U ∈ RK×M denote the topic vector collection with the kth row Uk· = uT
k . As a common

choice in word embedding methods, we use the vector inner product for measuring the closeness

between embedding vectors. In addition to topic embeddings, we also induce document vectors

in the same vector space. Let ad ∈ RM denote the embedding of document d. We now can

conveniently compute the affinity of a document d to a topic k through uT
kad. A topic k′ nearby,

and thus semantically correlated to topic k, will naturally have similar distance to the document,

as |uT
kad − uT

k′ad| ≤ ∥uk − uk′∥∥ad∥ and ∥uk − uk′∥ is small.

We express uncertainty of the affinity by modeling the actual topic weights ηd ∈ RK as

a Gaussian variable centered at the affinity vector, following ηd ∼ N (Uad, τ
−1I). Here τ

characterizes the uncertainty degree and is pre-specified for simplicity. As in logistic-normal

models, we project the topic weights into the probability simplex to obtain topic distribution

θd = softmax(ηd), from which we sample a topic zdn ∈ {1, . . . , K} for each word wdn in

the document. As in conventional topic models, each topic k is associated with a multinomial

distribution ϕk over the word vocabulary, and each observed word is drawn from respective

word distribution indicated by its topic assignment.

Putting everything together, the generative process of the proposed model is summarized

in Algorithm 3–3. A theoretically appealing property of our method is its intrinsic connection

to conventional logistic-normal models such as the CTM model. If we marginalize out the doc-

ument embedding variable ad, we obtain ηd ∼ N (0,UUT + τ−1I), recovering the pairwise

topic correlation matrix with low rank constraint, where each element is just the closeness of

respective topic embeddings, coherent to the above geometric intuitions. Such covariance de-

composition has been used in other context, such as sparse Gaussian processes [50] for efficient

approximation and Gaussian reparameterization [51] for differentiation and reduced variance.
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Algorithm 3–3 Generative Process of Topic Embedding Model
1. For each topic k = 1, 2, · · · , K,

• Draw the topic word distribution ϕk ∼ Dir(β)
• Draw the topic embedding uk ∼ N (0, α−1I)

2. For each document d = 1, 2, · · · , D,
• Draw the document embedding ad ∼ N (0, ρ−1I)
• Draw the document topic weight ηd ∼ N (Uad, τ

−1I)
• Derive the distribution over topics θd = softmax(ηd)
• For each word n = 1, 2, · · · , Nd,

(a) Draw the topic assignment zdn ∼ Multi(θd)
(b) Draw the word wdn ∼ Multi(ϕzdn)

Here we relate low-dimensional embedding learning with low-rank covariance decomposition

and estimation.

The low-dimensional representations of latent topics enable parsimonious correlation mod-

eling with parameter complexity of O(MK) (i.e., topic embedding parameters), which is effi-

cient in terms of topic number K. Moreover, we are allowed to perform efficient inference in

the embedding space, with inference cost linear in K, a huge advance compared to previous

cubic complexity of vanilla CTM [5] and quadratic of recent improved version [6]. We derive

our inference algorithm in the next section.

3.2.3 Model Inference

Posterior inference and parameter estimation is not analytically tractable due to the cou-

pling between latent variables and the non-conjugate logistic-normal prior. This makes the

learning difficult especially in our context of scaling to unprecedentedly large data and model

sizes. We develop a stochastic variational method that (1) involves only compact topic vectors

which are cheap to infer, and (2) includes a fast sampling strategy which tackles non-conjugacy

and exploits intrinsic sparsity of both the document topic occurrence and the topical words.

We first assume a mean-field family of variational distributions:

q(u,ϕ,a,η, z) =∏
k
q(uk)q(ϕk)

∏
d
q(ad)q(ηd)

∏
n
q(zdn).

(3–10)
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where the factors have the parametric forms:

q(uk) = N (uk|µk,Σ
(u)
k ), q(ad) = N (ad|γd,Σ

(a)
d ),

q(ϕk) = Dir(ϕk|λk), q(ηd) = N (ηd|ξd,Σ(η)
d ),

q(zdn) = Multi(zdn|κdn)

(3–11)

Variational algorithms aim to minimize KL divergence from q to the true posterior, which is

equivalent to tightening the evidence lower bound (ELBO):

L(q) =
∑

k
Eq

[
log

p(uk)p(ϕk)

q(uk)q(ϕk)

]
+∑

d,n
Eq

[
log

p(ad)p(ηd|ad,U)p(zdn|ηd)p(wdn|zdn,ϕ)
q(ad)q(ηd)q(zdn)

] (3–12)

We optimize L(q) via coordinate ascent, interleaving the update of the variational parameters at

each iteration. We employ stochastic variational inference which optimizes the parameters with

stochastic gradients estimated on data minibatchs. Due to the space limitations, here we only

describe key computation rules of the gradients (or closed-form solutions). These stochastically

estimated quantities are then used to update the variational parameters after scaled by a learning

rate.

Updating topic-word distribution q(ϕk). For each topic k, we isolate only the terms that

contain q(ϕk),

q(ϕk) ∝ exp
{
E−ϕk

(log
∏

v
ϕβ−1
kv ) + E−ϕk

(log
∏

d,n,v
ϕ
1(wdn=v)·1(zdn=k)
kv )

}
∝

∏
v
ϕ
β−1+

∑
d,n 1(wdn=v)·q(zdn=k)

kv .
(3–13)

Therefore,

q(ϕk) ∼ Dir(λk), (3–14)

λkv = β +
∑

d,n
1(wdn = v) · q(zdn = k). (3–15)

The cost for updating q(ϕ) is globally amortized across documents and words, and thus insignif-

icant compared with other local parameter update.
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Updating topic and document embeddings q(uk), q(ad). For each topic k, we isolate

only the terms that contain q(uk),

L(q(uk)) = Eq [log p(uk)] +
∑

d
Eq [log p(ηd|ad,U)]

− Eq [log q(uk)] .
(3–16)

Then the variational distribution q(uk) can be computed as:

q(uk) ∝ exp
{
E−uk

[log p(uk|α)] +
∑

d
E−uk

[log p(ηd|ad,u, τ)]
}
, (3–17)

E−uk
[log p(uk|α)] = E−uk

[
log

{ 1

(2π)
M
2 α−M

2

exp(−α

2
uT

kuk)
}]

∝ −α

2
uT

kuk,

(3–18)

E−uk
[log p(ηd|ad,u, τ)] = E−uk

[
log

{ 1

(2π)
M
2 τ−

M
2

exp(−τ

2
(ηd −Uad)

T (ηd −Uad))
}]

= −τ

2
uT

k

[∑
d
(Σ

(a)
d + γdγ

T
d )
]
uk + τ

∑
d
ξdkγ

T
d uk + C.

(3–19)

Therefore,

q(uk) ∝ exp
{
− 1

2
uT

k

[
αI +

∑
d
(τΣ

(a)
d + τγdγ

T
d )
]
uk + τ

∑
d
ξdkγ

T
d uk

}
, (3–20)

where Σ(a)
d is the covariance matrix of ad. From Eq.(3–20), we know q(uk) ∼ N (µk,Σ

(u)
k ).

µk = τΣ(u) · (
∑

d
ξdkγd),

Σ
(u)
k =

[
αI +

∑
d
(τΣ

(a)
d + τγdγ

T
d )
]−1

.
(3–21)

Notice that Σ(u)
k is unrelated to k, which means all topic embeddings share the same covariance

matrix, we denote it as Σ(u).
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Symmetrically,

γd = τΣ(a) · (
∑

k
ξdkµk),

Σ(a) =
[
γI + τKΣ(u) +

∑
k
τµkµ

T
k

]−1

.
(3–22)

Since Σ(a) is unrelated to d, we can rewrite equation(3–21) as

µk = τΣ(u) · (
∑

d
ξdkγd),

Σ(u) =
[
αI + τDΣ

(a)
d +

∑
d
τγdγ

T
d

]−1

.
(3–23)

where we have omitted the subscript k of the variational covariance matrix Σ(u) as it is indepen-

dent with k. Intuitively, the optimal variational topic embeddings are the centers of variational

document embeddings scaled by respective document topic weights and transformed by the

variational covariance matrix.

Learning low-dimensional topic and document embeddings is computationally cheap.

Specifically, by Eq.(3–23), updating the set of variational topic vector means {µk}Kk=1 imposes

complexity O(KM2), and updating the covariance Σ(u) requires only O(M3). Similarly, by

Eq.(3–22), the cost of optimizing γd and Σ(a) is O(KM) and O(KM2), respectively. Note that

Σ(a) is shared across all documents and does not need updates per document. We see that all

the updates cost only linearly w.r.t to the topic size K which is critical to scale to large-scale

practical applications.

Sparsity-aware topic sampling. We next consider the optimization of the variational

topic assignment q(zdn) for each word wdn. Letting wdn = v, the optimal solution is:

q(zdn = k) ∝ exp {ξdk} exp
{
Ψ(λkv)−Ψ

(∑
v′
λkv′

)}
, (3–24)

where Ψ(·) is the digamma function; and ξd and λk are the variational means of the document’s

topic weights and the variational word weights (Eq.(3–11)), respectively. Direct computation of

q(zdn) with Eq.(3–24) has complexity of O(K), which becomes prohibitive in the presence of

many latent topics. To address this, we exploit two aspects of intrinsic sparsity in the modeling:
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(1) Though a whole corpus can cover a large diverse set of topics, a single document in the

corpus is usually about only a small number of them. We thus only maintain the top Ks entries

in each ξd, where Ks ≪ K, making the complexity due to the first term in the right-hand

side of Eq.(3–24) only O(Ks) for all K topics in total; (2) A topic is typically characterized

by only a few words in the large vocabulary, we thus cut off the variational word weight vector

λk for each k by maintaining only its top Vs entries (Vs ≪ V ). Such sparse treatment helps

enhance the interpretability of learned topics, and allows cheap computation with on average

O(KVs/V ) cost for the second term1. With the above sparsity-aware updates, the resulting

complexity for Eq.(3–24) with K topics is brought down to O(Ks +KVs/V ), a great speedup

over the original O(K) cost. The top Ks entries of ξd are selected using a Min-heap data

structure, whose computational cost is amortized across all words in the document, imposing

O(K/Nd logKs) computation per word. The cost for finding the top Vs entries ofλk is similarly

amortized across documents and words, and becomes insignificant.

Updating the remaining variational parameters will frequently involve computation of vari-

ational expectations under q(zdn). It is thus crucial to speedup this operation. To this end, we

employ sparse approximation by sampling from q(zdn) a single indicator z̃dn, and use the “hard”

sparse distribution q̃(zdn = k) := 1(z̃dn = k) to estimate the expectations. Note that the sam-

pling operation is cheap, having the same complexity with computing q(zdn) as above. As shown

shortly, such sparse computation will significantly reduce our running cost. Though stochastic

expectation approximation is commonly used for tackling intractability [52, 53], here we instead

apply the technique for fast estimation of tractable expectations.

We next optimize the variational topic weights q(ηd|ξd,Σ(η)
d ). Extracting only the terms in

L(q) involving q(ηd), we get:

L(q(ηd)) = Eq [log p(ηd|ad,U)] + Eq [log p(zd|ηd)]

− Eq [log q(ηd)] ,
(3–25)

1In practice we also set a threshold s such that each word v needs to have at least s non-zero entries in {λk}Kk=1. Thus the
exact complexity of the second term is O(max{KVs/V, s}).
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where the second term

Eq [log p(zd|ηd)] =
∑

k,n
q(zdn = k)Eq [log(softmaxk(ηd))]

involves variational expectations of the logistic transformation which does not have an analytic

form. We construct a fast Monto Carlo estimator for approximation. Particularly, we employ

reparameterization trick by first assuming a diagonal covariance matrix Σ
(η)
d = diag(σ2

d) as is

commonly used in previous work [5, 54], where σd denotes the vector of standard deviations,

resulting in the following sampling procedure:

η
(t)
d = ξd + σd ⊙ ϵ(t); ϵ(t) ∼ N (0, I), (3–26)

where ⊙ is the element-wise multiplication. With T samples of ηd, we can estimate the vari-

ational lower bound and the derivatives ∇L w.r.t the variational parameters {ξd,σd}. For in-

stance,

∇ξdEq [log p(zd|ηd)]

≈
∑

k,n
q(zdn = k)ek − (Nd/T )

∑T

t=1
softmax

(
η
(t)
d

)
≈

∑
k,n

1(z̃dn = k)ek − (Nd/T )
∑T

t=1
softmax

(
η
(t)
d

) (3–27)

where ek is an indicator vector with the kth element being 1 and the rest 0. In practice T = 1

is usually sufficient for effective inference. The second equation applies the hard topic sample

mentioned above, which reduces the time complexity O(KNd) of the original standard com-

putation (the first equation) to O(Nd + K) (i.e., O(Nd) for the first term and O(K) for the

second).

The first term in Eq.(3–25) depends on the topic and document embeddings to encode topic

correlations in document’s topic weights. The derivative w.r.t to the variational parameter ξd is

computed as:

∇ξdEq [log p(ηd|U ,ad)] = τ(Ũγd − ξd). (3–28)
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Algorithm 3–4 Stochastic variational inference of topic embedding model
1: Initialize variational parameters randomly
2: repeat
3: compute learning rate ιiter = 1/(1 + iter)0.9
4: sample a minibatch of documents B
5: for all d ∈ B do
6: repeat
7: update q(zd) with Eq.(3–24) and sample z̃d

8: update γd with Eq.(3–22)
9: update q(ηd) using respective gradients computed with Eqs.(3–27),(3–28).

10: until convergence
11: compute stochastic optimal values µ∗,Σ(u)∗ with Eq.(3–23)
12: compute stochastic optimal values λ∗ with Eq.(3–29)
13: update x = (1− ιiter)x+ ιiterx

∗ with x ∈ {µ,Σ(u),λ}
14: update Σ(a) with Eq.(3–22)
15: end for
16: until convergence

Here Ũ is the collection of variational means of topic embeddings where the kth row Ũk· = µT
k .

We see that, with low-dimensional topic and document vector representations, inferring topic

correlations is of low cost O(KM) which grows only linearly w.r.t to the topic size. The com-

plexity of the remaining terms in Eq.(3–25), as well as respective derivatives w.r.t the variational

parameters, has complexity of O(KM) (Please see the supplements [55] for more details). In

summary, the cost of updating q(ηd) for each document d is O(KM +K +Nd).

Finally, the optimal solution of the variational topic word distribution q(ϕk|λk) is given

by:

λkv = β +
∑

d,n
1(wdn = v)1(z̃dn = k). (3–29)

Algorithm summarization. We summarize our variational inference in Algorithm 3–4.

As analyzed above, the time complexity of our variational method isO(KM2+M3) for inferring

topic embeddings q(ud). The cost per document is O(KM) for computing q(ad), O(KM)

for updating q(ηd), and O((Ks + KVs/V )Nd) for maintaining q(zd). The overall complexity

for each document is thus O(KM + (Ks + KVs/V )Nd), which is linear to model size (K),
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comparable to the LDA model while greatly improving over previous correlation methods with

cubic or quadratic complexity.

The variational inference algorithm endows rich independence structures between the

variational parameters, allowing straightforward parallel computing. In our implementation,

updates of variational topic embeddings {µk} (Eq.(3–23)), topic word distributions {λk}

(Eq.(3–29)), and document embeddings {γd} (Eq.(3–22)) for a data minibatch, are all com-

puted in parallel across multiple CPU cores.
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Chapter 4 Experiments

4.1 Evaluation of MHT

In this section, we first describe the experiment setups such as dataset selection and param-

eter settings. Then, we show how to construct the heterogeneous topic web for TopicAtlas, and

present some qualitative analysis of the constructed network. Besides, the demo system Topi-

cAtlas is displayed as well. Finally, we validate the effectiveness of MHT, the backbone method

for TopicAtlas, as a topic model for text network. Compared with some representative baseline

methods, MHT achieves the best averaged performance in terms of topic interpretability and

generalizability.

4.1.1 Setup

Dataset. We use the following two datasets in our experiments:

ACL Anthology Network (AAN). AAN [56] is a public scientific literature dataset in the

Natural Language Processing (NLP) field with 20, 989 abstracts of papers and 125, 934 citations.

CiteseerX. CiteseerX1 is a well-known scientific literature digital library that primarily

focuses on the literature in computer and information science. We collect a subset of CiteseerX

dataset, which includes the abstracts of 716, 800 documents and 1, 760, 574 links.

Parameter setting. On the task of exploring heterogeneous topic web, we first need to

select a reasonable topic number, which is a non-trivial task in topic models. To achieve this,

we first preprocess the data using classical LDA model with varying topic numbers and evaluate

the topic interpretability in terms of the topic coherence score [57]. Among the candidate topic

numbers 50, 70, 90, 110, 130, and 150, topic number 70 leads to the highest topic coherence

score for both AAN and CiteseerX. For simplicity, we set the topic number of WordTopic and

1http://citeseer.ist.psu.edu/oai.html
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DocTopic equal. Therefore, we implement MHT with 70 WordTopics and 70 DocTopics to

explore the text networks in the two datasets. In addition, we follow the convention of [58] and

initialize α = 0.01. The parameters π, ϕ and Ω are randomly initialized since we do not have

any prior knowledge.

Furthermore, as discussed above, we use variational EM inference to learn the parameters

in MHT. In our experiments, for both datasets the inner variational inference loop terminates

when the fractional increase of ELBO is less than 10−9 in two successive iterations, or the

number of iterations exceeds 100. For the outer EM loop, we stop it when the relative increment

ratio is less than 10−4, or the number of iterations exceeds 50.

4.1.2 Heterogeneous Topic Web Construction

We use co-occurrence probability to quantify the strength of the three types of relations

in heterogeneous topic web, and thus our goal is to figure out p(z1 = k1, z2 = k2|D), p(z′1 =

k′
1, z

′
2 = k′

2|D) and p(z = k, z′ = k′|D).

Word-Word Relation Strength. Since we assume the generation of WordTopics is inde-

pendent with each other given document d, the Word-Word relation strength can be calculated

as follows:

p(z1 = k1, z2 = k2|D) =
∑

d,z′
p(z′|D)p(d|z′)

× p(z1 = k1|d)

× p(z2 = k2|d),

(4–1)

where p(z|d) and p(d|z′) can be obtained from θ and Ω respectively. Posterior expectation of

θ is given by:

θik =
#(d = i, z = k) + αk∑Kw

k∗=1(#(d = i, z = k∗) + αk∗)
, (4–2)

where #(d = i, z = k) represents the number of words assigned with WordTopic k in document

i and the assignment can be obtained from κ. Kw is the number of WordTopics.
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In addition, the empirical posterior distribution over DocTopics can be computed as:

p(z′ = k′|D) =
#(z′ = k′)∑
k∗ #(z′ = k∗)

, (4–3)

where #(z′ = k′) represents the number of references assigned with DocTopic k′ and can be

obtained from σ.

Doc-Doc Relation Strength. Based on the assumption that DocTopics are generated in-

dependently given a WordTopic, we can compute Doc-Doc relation strength as:

p(z′1 = k′
1, z

′
2 = k′

2|D) =
∑

z
p(z|D)p(z′1 = k′

1|z;D)

× p(z′2 = k′
2|z;D).

(4–4)

π represents p(z′|z;D) and similarly the empirical posterior distribution over WordTopics is

given by:

p(z = k|D) =
#(z = k)∑
k∗ #(z = k∗)

. (4–5)

Word-Doc Relation Strength. Word-Doc relation strength can be easily computed by

Bayes’ theorem:

p(z = k, z′ = k′|D) = p(z′ = k′|z = k;D)p(z = k|D). (4–6)

Summarizing DocTopic. While top words are able to represent WordTopic explicitly,

on the document side there are only distributions over documents to express DocTopics, yet

generally it would be preferable to summarize topics with a few words [59]. Therefore, we

leverage the words in abstracts to summarize DocTopics. Specifically, for a given DocTopic k′,

we compute the expectancy of word w as:

E(w|z′ = k′) =
∑

d
Ωk′d · #(w, d). (4–7)

Then the words with high expectancy are selected as indicative words of this DocTopic, which

will be displayed in our demo system TopicAtlas.
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Figure 4–1: An overview of TopicAtlas. Different colors represent different types of topics,
and the vertex size expresses the dominance of corresponding topic. Thickness of edges is
proportionate to relation strength (best seen in color).

4.1.3 TopicAtlas

We design TopicAtlas based on the constructed heterogeneous topic web. An overview of

TopicAtlas on CiteseerX dataset is displayed in Figure 4–1, and the TopicAtlas demo is avail-

able for public1. Aiming to help users navigate in an unfamiliar academic citation network,

TopicAtlas has the following features:

Topic Landscape Exhibition. We display top 10 keywords for each WordTopic, and top 5

representative documents and top 10 indicative words for each DocTopic. The diameters of topic

vertices express their corresponding topic dominance or topic importance, which is computed

by p(z|D) for each WordTopic and p(z′|D) for each DocTopic. With TopicAtlas, we are able

to answer the questions of “what is there” and “what is important” in an academic document

collections.

Accurate Relationship. The three types of relations correspond to three types of edges in

1https://jxhe.github.io/demo/TopicAtlas/CiteseerX.html
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Figure 4–2: Subgraphs of heterogeneous topic web: (a) Word-Word Subgraph and (b)
Doc-Doc Subgraph (best seen in color). The yellow vertices in the Word-Word subgraph
represent WordTopics and the red vertices in the Doc-Doc subgraph represent DocTopics

the graph. The weights of these edges are the ratio of the co-occurrence probability calculated

to the prior probability of a random edge (0.0002). The thickness of the edges is proportionate

to these values and we remove those whose weights are negligible. The edges provide us with

the connectivity between different topics, allowing us to track topic correlation and locate topic

specific influential documents, and enabling alternatively navigating big scholarly data on word

and document level.

Topic Community Identification. As shown in Figure 4–1, while some topics are rela-

tively isolated, other topics hold strong connections between each other and form topic com-

munities. Several related topics are able to represent more general parent topic (e.g., topics

about disease, medicine, virus are heavily correlated and can represent parent topic “medical

science”). Therefore, we can explore topic hierarchy structures from TopicAtlas.

4.1.4 Text Network Exploration via Heterogeneous Topic Web

In this part, we engage in an in-depth exploration of the heterogeneous topic web. To facil-

itate the analytic reasoning, three auxiliary subgraphs of TopicAtlas are presented here: Word-
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Figure 4–3: WordTopic “Distributed system” example and DocTopic “Multicast routing in
network example. These topics are labeled manually.

Word subgraph, Doc-Doc subgraph and Word-Doc subgraph. As the name suggests, Word-Word

subgraph only includes the edges between WordTopics, Doc-Doc subgraph contains merely the

edges between DocTopics, and Word-Doc subgraph displays edges between WordTopics and

DocTopics. Due to the limitation of the space, we only give analysis for CiteseerX here and

interested readers can refer to the public demo for the AAN TopicAtlas.

Word-Word Relation. As shown in Figure 4–2(a), 62.87% of WordTopic nodes have no

connection with other WordTopic nodes, which implies that one paper mainly focuses on one

WordTopic. This phenomenon agrees with our intuition: most of high quality scientific papers

show clear themes.

Though the connection between WordTopics is not strong, there are still a few nodes which

link to multiple WordTopics worth investigating. On the basis of previous recognition that the

content of documents is generally “pure”, we believe that those WordTopics which enjoy high

co-occurrence probability with various other WordTopics are foundation of certain scientific

fields. In Figure 4–2(a), WordTopic w45 (degree: 9), w44(degree: 6), w16 (degree: 5), and

w25 (degree: 5) have the highest degrees. The corresponding WordTopics are “distributed sys-

tem”, “programming language” , “software design”, and “semantic reasoning”. Obviously they

are all general and basic. Take “distributed system” as an example, distributed system achieves
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efficiency improvement of solving computational problems and therefore has broad applica-

tions in different fields such as telephone networks, routing algorithms, network file system,

etc. As a case study, we show WordTopic w45 “distributed system” and its related WordTopics

in Figure 4–3(a), from which we can see our word-word edges successfully capture the relation

between WordTopics.

Doc-Doc Relation. The DocTopics are closely connected as shown in Figure 4–2(b), which

indicates that authors tend to cover multiple DocTopics in the reference list. It is coherent with

our intuition since a comprehensive reference section is desirable for most authors. Furthermore,

since ubiquitous techniques are likely to be cited in a variety of distinct domains, we expect nodes

with high degrees in the Doc-Doc subgraph represent DocTopics about universal principle and

method. In Figure 4–2(b), the top four highest-degree nodes are DocTopic d63 (degree: 11),

d28 (degree:7), d21 (degree:7), d17 (degree:7) and they represent “linear system method”, “logic

programming”, “model checking” and “conservation law” respectively. Unsurprisingly, these

DocTopics are basic techniques and laws.

In addition to examining DocTopics from a global perspective, inspecting details of spe-

cific DocTopic provides insight into an academic citation network on the document level. The

DocTopic allows us to assess topic-aware impact of papers given that the top documents in one

DocTopic are generally the most popular and representative ones. In Figure 4–3(b) we list top

5 documents in the most dominant DocTopic d35 and its neighbours d41, d56, d61. We also

give the document citation numbers for reference, in which while top ranked papers in our Doc-

Topics generally enjoy high citations, the influence ranking of papers does not exactly follows

the order of citation number. Such phenomenon derives from the topic-awareness in our model

scheme. Specifically, high citation number of a paper might come from citations from various

fields or topics, thus the influence ranking within one specific topic is not completely reflected

by citation numbers.

Word-Doc Relation. We summarize the contributions of Word-Doc relation from three

perspectives. These examples are illustrated in Figure 4–4.

Connect WordTopic and DocTopic reasonably. As Figure 4–4 suggests, the DocTopic d17

is about “conservation law”, and its neighbouring WordTopics are w54 “particle phase energy”,
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Figure 4–4: Word-Doc Subgraph and some instances. The red nodes represent DocTopics
and the orange nodes indicate WordTopics. Only the edges between WordTopics and Doc-
Topics are displayed. Doctopic 11 and Doctopic 17 are expressed by indicative words.

w1 “quantum theory” and w55 “equations and solutions”. These topics cover some basic com-

ponents of quantum mechanics. In addition, WordTopic w36 is about “shared memory pro-

cessor”, and it has a strong link with DocTopic d44 “shared memory system” and d67 “cache

performance”. Also, it connects with DocTopic d20 “power analysis of design” through a edge

weighting about 15 since energy reduction plays an important role in shared memory processor.

Besides, WordTopic w57 “mobile robot navigation” is connected with DocTopic d49 “mobile

robot localization” and d26 “motion planning”. These connections expose the main structure of

“mobile navigation”. There are a lot of other examples in our heterogeneous topic web, readers

can check them in our demo TopicAtlas.

Link WordTopics indirectly. The missing co-occurrence phenomenon between WordTopics

results in difficulty in spotting relevant WordTopics. However, DocTopics can serve as inter-

mediaries between WordTopics and uncover the hidden relationship. More specifically, if two

WordTopics co-occur frequently with the same DocTopic, then we can say the two WordTopics

are related. For example, WordTopic w43 “image wavelet filter” is connected with WordTopics

w13 “dimensional curve reconstruction”, w20 “volume rendering” and w31 “visual motion

tracking” through DocTopic d11 “image based algorithm”, which agrees with the fact that many

volume rendering and visual motion tracking models are wavelet-based. There are other exam-
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ples: WordTopic w1 “quantum theory”, w54 “particle phase energy” and w55 “equations and

solutions” are connected through DocTopic d17 “conservation law”, WordTopic w41 “random

number set”, w64 “numerical method”, w66 “matrix factorization”, w52 “dynamical model

simulation” and w55 “equations and solutions” are connected by the general and dominant

DocTopic d63 “linear system algorithm”.

Locate Relevant Documents. Through establishing connection between DocTopics and

WordTopics, users can investigate relevant documents for WordTopics. Note that instead of

simply recognizing all related documents for WordTopics, TopicAtlas organizes the relevant

documents according to DocTopics and allows for inspecting them in different aspects . If a

researcher aims to find relevant documents for WordTopic w45 “distributed system”, he can

locate papers about the implementation of distributed file or network system in d56, exam-

ine distributed system architecture stuff in d40, get to know some data management or toolkit

documents in distributed system from d54, or explore papers about distribution application in

real-time system from d3. With the relevant documents sorted, the researcher is less prone to

be swamped by the flood of information.

4.1.5 Topic Modeling

Since we aim to obtain effective heterogeneous topic web, it is important to ensure that the

introduction of the transition parameter has not come at the expense of the semantic quality of

topics and the generalizability of the topic model.

Baselines. We compare our method MHT with mixed-membership model (MM) [13],

Link-PLSA-LDA [31] and RTM [16], all of which are joint models for both text and links.

Mixed membership model is proposed by Erosheva et al. to classify documents [13]. Nallapati

et al. [31] propose two well-known joint topic models Pairwise-Link-LDA and Link-PLSA-

LDA. Pairwise-Link-LDA models the presence and absence of links in a pairwise manner while

Link-PLSA-LDA views links as “link tokens”. Since Link-PLSA-LDA outperforms Pairwise-

Link-LDA with respect to heldout likelihood and recall, we only include Link-PLSA-LDA in

our baseline methods. The core idea of RTM is that topic relations directly account for the

presence of links. To guarantee the justness, all these models are inferred through variational
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Figure 4–5: Topic coherence for WordTopic and DocTopic in two datasets (higher is bet-
ter).

EM algorithm and parameters are initialized with the same way as MHT.

Topic Interpretability. There are some metrics for evaluating topic interpretability such

as PMI [60], word intrusion [59], and topic coherence [57]. We adopt topic coherence in our

experiment. For one thing, while word intrusion needs expert annotations, topic coherence

is an automated evaluation metric and does not rely on human annotators. For another, topic

coherence does not reference collections outside the training data as PMI dose. Also, topic

coherence is proven more closely associated with the expert annotations than PMI [57].

Letting D(w) be the document frequency of word type w and D(w,w′) be co-document

frequency of word types w and w′, topic coherence is defined as

C(k;W (k)) =
M∑

m=2

m−1∑
n=1

log
D(w

(k)
m , w

(k)
n ) + 1

D(w
(k)
n )

(4–8)

where W (k) = (w
(k)
1 , · · · , w(k)

M ) is a list of the M most probable words in topic k. In our

experiment, we choose M = 10.
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Although it is originally designed for WordTopics, by using the indicative words as key-

words, we can also calculate the topic coherence for DocTopics. To distinguish the two different

topic coherence score, we denote them as WordTopic coherence and DocTopic coherence.

We compare the topic coherence score of different methods for all topics, and the averaged

results are illustrated in Figure 4–5. As RTM does not produce DocTopics, it is not included in

the DocTopic coherence comparison. Obviously, our model achieves superior topic qualities to

the baseline methods.

Held-Out Log Likelihood. Held-out Log Likelihood is a well-accepted metric to measure

the generalizability and predictive power of topic models. To ease the favor for text and obtain

a convincing result, we filter out the documents with less than 3 links and 8 links for AAN and

CiteseerX respectively, and get a collection of AAN with 16, 350 documents and CiteseerX with

61, 901 documents.
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Figure 4–6: Held-out log likelihood for both text and links on two datasets. (higher is
better)

Our experimental set-up is as follows. We randomly split data into five folds and repeat

the experiment for five times, for each time we use one fold for test, four folds for training,

and we report the averaged values in Figure 4–6. The performance of MHT is better than the

baseline methods. Note that we exclude RTM in this part since held-out log likelihood favors

RTM significantly due to its pairwise manner. More Specifically, if links are generated without

any training stages and prior knowledge (i.e. links are generated uniformly), the probability for
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generating a link in RTM (0.5) is much larger than other models (0.00006 in AAN and 0.00002

in CiteseerX).

4.2 Evaluation of Topic Embedding Model

We demonstrate the efficacy of our approach with extensive experiments. (1) We evaluate

the extraction quality in the tasks of document classification and retrieval, in which our model

achieves similar or better performance than existing correlated topic models, significantly im-

proving over simple LDA. (2) For scalability, our approach scales comparably with LDA, and

handles massive problem sizes orders-of-magnitude larger than previously reported correlation

results. (3) Qualitatively, our model reveals very meaningful topic correlation structures.

4.2.1 Setup

Datasets. We use three public corpora provided in the UCI repository1 for the evaluation:

20Newsgroups is a collection of news documents partitioned (nearly) evenly across 20 different

newsgroups. Each article is associated with a category label, serving as ground truth in the tasks

of document classification and retrieval; NYTimes is a widely-used large corpus of New York

Times news articles; and PubMed is a large collection of academic medical paper abstracts. The

detailed statistics of the datasets are listed in Table 4–1. We removed a standard list of 174 stop

words and performed stemming. For NYTimes and Pubmed, we kept the top 10K frequent words

in vocabulary, and selected 10% documents uniformly at random as test sets, respectively. For

20Newsgroups, we followed the standard training/test splitting, and performed the widely-used

pre-processing2 by removing indicative meta text such as headers and footers so that document

classification is forced to be based on the semantics of plain text.

Baselines. We compare the proposed model with a set of carefully selected competitors:

• Latent Dirichlet Allocation (LDA) [3] uses conjugate Dirichlet priors and thus scales

linearly w.r.t the topic size but fails to capture topic correlations. Inference is based on

1http://archive.ics.uci.edu/ml
2http://scikit-learn.org/stable/datasets/twenty_newsgroups.html
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Table 4–1: Statistics of the three datasets, including the number of documents (D), vocab-
ulary size (V ), and average number of words in each document.

Dataset #doc (D) vocab size (V ) doc length

20Newsgroups 18K 30K 130
NYTimes 1.8M 10K 284
PubMed 8.2M 10K 77

the stochastic variational algorithm [61]. When evaluating scalability, we leverage the

same sparsity assumptions as in our model for speeding up.

• Correlated Topic Model (CTM) [5] employs standard logistic-normal prior which cap-

tures pairwise topic correlations. The model uses stochastic variational inference with

O(K3) time complexity.

• Scalable CTM (S-CTM) [6] developed a scalable sparse Gibbs sampler for CTM infer-

ence with time complexity of O(K2). Using distributed inference on 40 machines, the

method discovers 1K topics from millions of documents, which to our knowledge is the

largest automatically learned topic correlation structures so far.

Parameter Setting. Throughout the experiments, we set the embedding dimension to

M = 50, and sparseness parameters to Ks = 50 and Vs = 100. We found our modeling quality

is robust to these parameters. The hyper-parameters are fixed to β = 1/K,α = 0.1, ρ = 0.1,

and τ = 1.

All experiments were performed on a Linux machine with 24 4.0GHz CPU cores and

128GB RAM. All models are implemented using C/C++, and parallelized whenever possible

using the OpenMP library.

4.2.2 Document Classification

We first evaluate the performance of document classification based on the learned doc-

ument representations. We evaluate on the 20Newsgroups dataset where ground truth class

labels are available. We compare our proposed model with LDA and CTM. For LDA and CTM,

a multi-class SVM classifier with linear kernel1 is trained for each of them based on the topic

1https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
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distributions of the training documents, while for the proposed model, the SVM classifier takes

the document embedding vectors as input. Generally, more accurate modeling of topic corre-

lations enables better document modeling and representations, resulting in improved document

classification accuracy.

Figure 4–7 shows the classification accuracy as the number of topics varies. We see that

the proposed model performs best in most of the cases, indicating that our method can discover

high-quality latent topics and correlations. Both CTM and our model significantly outperforms

LDA which treats latent topics independently, validating the importance of topic correlation for

accurate text semantic modeling. Compared to CTM, our method achieves better or competi-

tive accuracy as K varies, which indicates that our model, though orders-of-magnitude faster

(as shown in the next), does not sacrifice modeling power compared to the complicated and

computationally demanding CTM model.
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Figure 4–7: Classification accuracy on 20newsgroup.

4.2.3 Document Retrieval

We further evaluate the topic modeling quality by measuring the performance of document

retrieval [62]. We use the 20Newsgroups dataset. A retrieved document is relevant to the query

document when they have the same class label. For LDA and CTM, document similarity is
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Figure 4–8: Precision-Recall curves on 20Newsgroups. Left: #topic K = 20. Middle:
K = 60. Right: K = 100.

measured as the inner product of topic distributions, and for our model we use the inner product

of document embedding vectors.

Figure 4–8 shows the retrieval results with varying number of topics, where we use the

test set as query documents to retrieve similar documents from the training set, and the results

are averaged over all possible queries. We observe similar patterns as in the document clas-

sification task. Our model obtains competitive performance with CTM, both of which capture

topic correlations and greatly improve over LDA. This again validates our goal that the proposed

method has lower modeling complexity while at the same time is as accurate and powerful as

previous complicated correlation models. In addition to efficient model inference and learn-

ing, our approach based on compact document embedding vectors also enables faster document

retrieval compared to conventional topic models which are based on topic distribution vectors

(i.e., M ≪ K).

4.2.4 Scalability

We now investigate the efficiency and scalability of the proposed model. Compared to

topic extraction quality in which our model achieves similar or better level of performance as

the conventional complicated correlated topic model, here we want our approach to tackle large

problem sizes which are impossible for existing correlation methods, and to scale as efficiently

as the lightweight LDA, for practical deployment.

Table 4–2 compares the total running time of model training with different sized datasets
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Figure 4–9: Left: Convergence on NYTimes with 1K topics. Middle: Total training time
on 20Newsgroups. Right: Runtime of one inference iteration on a minibatch of 500 NY-
Times articles, where the result points of CTM and S-CTM on large K are omitted as they
fail to finish one iteration within 2 hours.

Table 4–2: Total training time on various datasets with different number of topics K.
Entries marked with “–” indicates model training is too slow to be finished in 2 days.

Dataset K
Running Time

LDA CTM S-CTM Ours

20Newsgroups 100 11 min 60 min 22 min 20 min

NYTimes
100 2.5 hr – 6.4 hr 3.5 hr
1K 5.6 hr – – 5.7 hr

10K 8.4 hr – – 9.2 hr

PubMed 100K 16.7 hr – – 19.9 hr

and models. As a common practice [61], we determine convergence of training when the dif-

ference between the test set per-word log-likelihoods of two consecutive iterations is smaller

than some threshold. On small dataset like 20Newsgroups (thousands of documents) and small

model (hundreds of topics), all approaches finish training in a reasonable time. However, with

increasing number of documents and latent topics, we see that the vanilla CTM model (with

O(K3) inference complexity) and its scalable version S-CTM (with O(K2) inference com-

plexity) quickly becomes impractical, limiting their deployment in real-world scale tasks. Our

proposed topic embedding method, by contrast, scales linearly with the topic size, and is capa-

ble of handling 100K topics on over 8M documents (PubMed)—a problem size several orders

of magnitude larger than previously reported largest results [6] (1K topics on millions of doc-

uments). Notably, even with added model power and increased extraction performance com-
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pared to LDA (as has been shown in sections 4.2.2-4.2.3), our model only imposes negligible

additional training time, showing strong potential of our method for practical deployment of

real-world large-scale applications as LDA does.

Figure 4–9, left panel, shows the convergence curves on NYTimes as training goes. Using

similar time, our model converges to a better point (higher test likelihood) than LDA does, while

S-CTM is much slower, failing to arrive convergence within the time frame.

Figure 4–9, middle panel, measures the total training time with varying number of topics.

We use the small 20Newsgroups dataset since on larger data (e.g., NYTimes and PubMed) the

CTM and S-CTM models are usually too slow to converge in a reasonable time. We see that

the training time of CTM increases quickly as more topics are used. S-CTM works well in this

small data and model scale, but, as have been shown above, it is incapable of tackling larger

problems. In contrast, our approach scales as efficiently as the simpler LDA model. Figure 4–9,

right panel, evaluates the runtime of one inference iteration on a minibatch of 500 documents.

when the topic size grows to a large number, CTM and S-CTM fail to finish one iteration in 2

hours. Our model, by contrast, keeps as scalable as LDA and considerably speeds up over CTM

and S-CTM.

4.2.5 Topic Correlation Visualization and Analysis

We qualitatively evaluate our approach by visualizing and exploring the extracted latent

topics and correlation patterns.

Figure 4–10 visualizes the topic correlation graph inferred from the 20Newsgroups dataset.

We can see many topics are strongly correlated to each other and exhibit clear correlation struc-

ture. For instance, the set of topics in the right upper region are mainly about astronomy and are

interrelated closely, while their connections to information security topics shown in the lower

part are weak. Figure 4–11 shows 100K topic embeddings and their correlations on the PubMed

dataset. Related topics are close to each other in the embedding space, revealing diverse sub-

structures of themes in the collection. Our model discovers very meaningful structures, provid-

ing insights into the semantics underlying the large text corpora and facilitating understanding

of the large collection of topics.
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Summary

In this thesis, we focus on two problems of existing topic analysis approaches for big scholarly

data: (1) Previous topic models lack comprehensive insights for scholarly data on document

level; (2) Existing correlated topic models cannot scale up to accommodate industry needs. We

propose two different models to address them respectively.

First, we introduce a new type of topic DocTopic, which is distribution over documents, to

compensate for the inadequate expressiveness of classical WordTopic. Then we present MHT,

short for Model for Heterogeneous Topic Web, a unified generative model involving two types

of topics. The relationships between the two types of topics, Word-Word relation, Doc-Doc

relation and Word-Doc relation, are quantified, based on which we construct the heterogeneous

web of topics. In the experiment, we build the heterogeneous topic web of AAN and CiteseerX

collection and develop a corresponding prototype demo system, called TopicAtlas to exhibit

the heterogeneous topic web and assist users’ exploration. Qualitative analyses are presented

to demonstrate the efficacy of TopicAtlas. Besides, MHT shows good performance as a topic

model with respect to topic interpretability and held-out log likelihood.

Second, we have developed a new correlated topic model which induces distributed vector

representations of latent topics, and characterizes correlations with the closeness of topic vec-

tors in the embedding space. Such modeling scheme, along with the sparsity-aware sampling

in inference, enables highly efficient model training with linear time complexity in terms of

the model size. Our approach scales to unprecedentedly large data and models, while achieving

strong performance in document classification and retrieval. The proposed correlation method is

generally applicable to other context, such as modeling word dependencies for improved topical

coherence. We are also interested in further speedup of the model inference, e.g., by incorpo-

rating variational neural Bayes techniques [54] for shared global variational updates across data

examples.
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