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DE-ANONYMIZATION OF SOCIAL NETWORKS WITH COMMUNITIES

基于社区结构的社交网络去匿名化

摘 要

通过在跨领域社交网络间建立映射从而对社交网络进行去匿名化已经成为当前

的一个重要隐私问题。前人工作通常基于将社交网络建模为随机图来表示其中

的节点和节点间的关系，之后通过目标函数来刻画映射的质量。但是这些目标

函数的提出往往缺乏理论依据。另外，如何在算法层面上解决目标函数带来的

疑问，即寻找目标函数的最小值点，仍然是一个开放的问题。

我们通过更实际的基于社区的社交网络建模来解决上述问题，同时，社交

网络的社区信息也可作为去匿名化的辅助信息。通过最大后验估计，我们首先

提出了一个具有充分理论依据的新目标函数。此目标函数的优势在于其最小值

点与正确映射重合的概率最高。之后，我们首次从算法的角度探究此目标函数

的可行性，即目标函数引出的优化问题。我们证明优化问题在一般情况下的不

可近似性。尽管如此，我们仍提出了两个具有理论性能保证的近似算法，一个

具有 ϵ-加性近似最优特性，另一个具有条件最优性。我们之后通过实验验证了
理论结果的合理性。其中一个数据集提取自跨领域学术网络，它能够真实再现

社交网络去匿名化的实际场景。我们的理论和实验结果同时还佐证了社区信息

在隐私保护与推断中的重要性。

关键词：社交网络，隐私，算法，图论
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De-anonymization of Social Networks with
Communities

ABSTRACT

A crucial privacy-driven issue nowadays is re-identifying ano-nymized social networks
by mapping them to correlated cross-domain auxiliary networks. Prior works are typi-
cally based on modeling social networks as random graphs representing users and their
relations, and subsequently quantify the quality of mappings through cost functions that
are proposed without sufficient rationale. Also, it remains unknown how to algorith-
mically meet the demand of such quantifications, i.e., to find the minimizer of the cost
functions.

We address those concerns in a more realistic social network modeling param-
eterized by community structures that can be leveraged as side information for de-
anonymization. By Maximum A Posteriori (MAP) estimation, our first contribution is
new and well justified cost functions. The new cost function enjoy superiority to previ-
ous ones in finding the correct mapping with the highest probability. The feasibility of
the cost functions is then for the first time algorithmically characterized. While prov-
ing the general multiplicative inapproximability, we are able to propose two algorithms,
which, respectively, enjoy an ϵ-additive approximation and a conditional optimality in
carrying out successful user re-identification. Our theoretical findings are empirically
validated, with a notable dataset extracted from rare true cross-domain academic net-
works that reproduce genuine social network de-anonymization. Both theoretical and
empirical observations also manifest the importance of community information in en-
hancing privacy inferencing.

KEY WORDS: Social Networks,　 Privacy, Algorithms, Graph Theory
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Chapter 1 Introduction and Related Work

1.1 Introduction

The proliferation of social networks has led to generation of massive network
data. Although users can be anonymized in the released data through removing per-
sonal identifiers [1–4], with their underlying relations preserved, they may still be re-
identified by adversaries from correlated cross domain auxiliary networks where user
identities are known [5–7].

Such idea of unveiling hidden users by leveraging their information collected from
other domains, or alternatively called social network de-anonymization [7], is a fun-
damental privacy issue that has received considerable attention. Inspired by Pedarsani
and Grossglauser [8], a large body of existing de-anonymization work shares a basic
common paradigm: with an underlying network representing social relations between
users, both the published anonymized network and the auxiliary un-anonymized net-
work are generated from that network based on graph sampling that captures their cor-
relation, as observed in many real cross-domain networks. The equivalent node sets
they share are corresponded through an unknown correct mapping. With the availabil-
ity of only structural information, adversaries attempt to re-identify users by establish-
ing a mapping between networks. To quantify the quality of such mappings, several
global cost functions have been proposed [8–10] in favor of exploring the conditions
under which the correct matching can be unraveled from the mapping that minimizes
the cost function.

Despite those dedications to de-anonymization, it is still not entirely understood
how the privacy of anonymized social network can be guaranteed given that adversaries
have no access to side information other than network structure, primarily for three rea-
sons. First, the widely adopted Erdős-Rényi graph or Chung-Lu graph [11, 12] for the
modeling of underlying social networks [8–10], though facilitating analysis, falls short

1
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of well capturing the clustering effects that are prevalent in realistic social networks;
Second, the cost functions [8, 9] in measuring mapping qualities not only lack suffi-
cient rationale in analytical aspects, but most importantly, it remains unclear whether
the feasibility of minimizing such cost functions could be theoretically characterized
from an algorithmic aspect [13–15]; Last but not least, due to the rarity of true cross-
domain datasets, current empirical observations of social network de-anonymization
are either based on synthetic data, or real social networks with artificial sampling in
construction of correlated published and auxiliary networks, and consequently do not
well represent the genuine practical de-anonymization [13, 16, 17]. While a thorough
understanding of this issue may better inform us on user privacy protection, this paper
is particularly concerned about the following question: Is it possible to quantify de-
anonymization in a more realistic modeling, and meanwhile algorithmically meet
the demand brought by such quantifications?

The answer to this question entails appropriate modeling of social networks, well-
designed cost functions as metrics of mappings and elaborated algorithms of finding
the mapping that is optimal according to the metric, along with data collection that
can empirically validate the related claims. To present a more reasonable model of un-
derlying social network that incorporates the clustering effect, we adopt the stochastic
block model [18] where nodes are partitioned into disjoint sets representing different
communities [19]. Based on that, we investigate the problem following the paradigm,
as noted earlier, where the published and auxiliary networks serve as two sampled
subnetworks. Both of them inherit from the underlying network the community struc-
tures that can be leveraged as side structural information for adversaries. Similarly,
we assume that other than network structure, there is no additional availability of side
information to adversaries as it will only further benefit them. Varying the amount of
availability of community information, here we classify our de-anonymization prob-
lem into two categories, i.e., bilateral case, and its counterpart, unilateral case, literally
meaning that adversaries have access to community structure of both or only one net-
work. A more formal definition of the two cases information is deferred to Section 2.1.
Subsequently, we summarize, built on the model, our results on metrics, algorithms
and empirical validations into three aspects answering the question raised.

Analytical aspect: For both cases, our first contribution is to derive the cost func-

2
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tions as metrics quantifying the structural mismappings between networks based on
Maximum A Posteriori (MAP) estimation. The virtue of MAP estimation ensures the
superiority of our metrics to the previous ones in the sense that the minimizers of our
cost functions equal to the underlying correct mappings with the highest probability.
Also, as we will rigorously prove later, under fairly mild conditions on network density
and the closeness between communities, through minimizing the cost function we can
perfectly recover the correct mapping.

Algorithmic aspect: Following the derived quantifications, our next significant
contribution is to take a first algorithmic look into the demand imposed by the quan-
tifications, i.e., the optimization problems of minimizing such cost functions. We find
that opposed to the simplicity of the cost functions in form, the induced optimiza-
tion problems are computationally intractable and highly inapproximable. Therefore,
we circumvent pursing exact or multiplicative approximation algorithms, but instead
seek for algorithms with other types of guarantees. However, the issue is still made
particularly challenging by the intricate tension among cost function, mappings, net-
work topology as well as the super-exponentially large number of candidate mappings.
Our main idea to resolve the tension is converting the problems into equivalent for-
mulations that enable some relaxations, through bounding the influence of which, we
demonstrate that the proposed algorithms have their respective performance guaran-
tees. Specifically, one algorithm enjoys an ϵ-additive approximation guarantee in both
cases, while the other yields optimal solutions for bilateral de-anonymization when the
two sub-networks are highly structurally similar but fails to provide such guarantee for
the unilateral case due to its lack of sufficient community information. Further com-
parisons of algorithmic results between the two cases also manifest the importance of
community as side information in privacy inferencing.

Experimental aspect: Finally, we empirically verified all our theoretical findings
under both synthetic and real datasets. We remark that one dataset, as never appeared
in this context previously, is extracted from true cross-domain co-authorship networks
[20] serving as published and auxiliary networks. As a result, it leads to no prior work,
other than ours, that reproduces genuine scenarios of social network de-anonymization
without artificial modeling assumptions. The experimental results demonstrate the ef-
fectiveness of our algorithms as they correctly re-identify more than 40% of users even

3
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in the co-authorship networks that possess the largest deviation from our assumptions.
Also, it empirically consolidates our argument that community information can in-
crease the de-anonymization capability.

The rest of this paper is organized as follows: In Section 1.2 of Chapter 1, we
briefly survey the related works. In Chapter 2, we introduce our model for de-anonymization
problem of social networks with community structure and characterize the cases of bi-
lateral and unilateral information. In Chapter 3, we present our results on analytical
and algorithmic aspects of bilateral de-anonymization. Following the path of bilateral
case, we introduce our results on unilateral de-anonymization and make comparisons
between the two cases in Chapter 4. We present our experiments in Chapter 5 and
conclude the paper in Chapter 6.

1.2 Related Works

The issue of social network de-anonymization, which has received considerable
attention, was pioneeringly investigated by Narayanan and Shimatikov [7], who pro-
posed the idea that users in anonymized networks can be re-identified through utilizing
auxiliary networks with the same set of users from other domains. In that regard, they
designed practical de-anonymization schemes that rely on side information in the form
of a seed set of “pre-mapped” node pairs, i.e., a subset of nodes that are identified pri-
orly across the two networks. Then the mapping is generated incrementally, starting
from the seeds and percolating to the whole node sets.

Following this framework, Pedarsani and Grossglauser developed a succinct mod-
eling that is amiable to theoretical analysis and serves as the paradigm for a family of
subsequent related works on social network de-anonymization [8]. They assumed that
the published and auxiliary networks are two graphs that share the same node sets with
the edge sets resulted from independent samples of an underlying social network. Ad-
ditionally, they studied a more challenging but practical version of de-anonymization
that are free of prior seed information.

The two seminal works triggered a flurry of subsequent attempts that all fall into
the categories of either seeded or seedless de-anonymization, tuning the model of the

4
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underlying social networks. Specifically, in terms of seeded de-anonymization, current
literature focuses on designing efficient de-anonymization algorithms that are executed
by percolating the mapping to the whole node sets starting from the seed set. Yartseva
et al. [21], Kazemi et al. [22], and later Fabiana et al. [23] proposed percolation graph
matching algorithms for de-anonymization on Erdős-Rényi graph and scale-free net-
work, respectively. Assuming that the underlying social network is generated following
the preferential attachment model, Korula and Lattenzi [24] designed a correspnding
efficient de-anonymizaiton algorithm. Chiasserini et al. [25] characterized the impact
that clustering imposes on the performance of seeded de-anonymization. Under the
classification of both perfect and imperfect seeded de-anonymization, Ji et al. [16]
analyzed the two cases both qualitatively through theoretical characterization and em-
pirically through experiments on real and synthetic datasets.

While this type of seed-based de-anonymizing methods works well in analysis,
it is rather difficult or even impossible to acquire pre- identified user pairs across dif-
ferent networks as many real situations limit the access to user profiles. Therefore,
more often we are faced with adversaries without seeds as side information, which is
also the case considered in the present work. A natural alternative, under such circum-
stance, is to define a global cost function of mappings and unravel the correct mapping
through the minimizer of the cost function. For instance, Pedarsani and Grossglauer [8]
studied the seedless de-anonymization problem where the underlying social network
is an Erdős-Rényi graph, the results of which were further improved by Cullina and
Kiyavash [10]. Ji et al. analyzed perfect and partial de-anonymization on Chung-Lu
graph [19] in this seedless de-anonymization setting. Kazemi et al. [9] focused on the
case of de-anonymization problem on Erdős-Rényi graph where the published network
and auxiliary network exhibit partial overlapping. A very recent work that shares the
highest correlation with ours, belongs to that of Onaran et al. [15], who study the sit-
uation where there are only two communities in networks, a special case that can be
embodied in our bilateral de-anonymization case.

5
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Chapter 2 Models and Definitions

2.1 Network Models

In this section, we introduce the models and definitions of the social network de-
anonymization problem. We first present the network models and then formally define
the problem of social network de-anonymization. The network models consist of the
underlying social networks G, the published network G1 and the auxiliary network
G2 as incomplete observations of G. In reality, the edges of G, for example, might
represent the true relationships between a set of people, while G1 and G2 characterize
the observable interactions between these people such as communication records in
cell phones or “follow” relationships in online social networks such as Tweeter and
Facebook.

2.1.0.1 Underlying Social Network

To elaborate this, let G = (V,E,M )1 be the graph representing the underlying
social relationships between network nodes, where V is the set of nodes, E is the set of
edges and M 2 denotes the adjacency matrix of G. We treat G as an undirected graph
and define the number of nodes as |V | = n. We assume that G is generated according
to the stochastic block model [18]. Specifically, the model is interpreted as follows:
the set of nodes in V are partitioned into κ disjoint subsets denoted as C1, C2, . . . , Cκ

indicating their communities with |Ci| = ni and
∑

i ni = n. The edges between nodes
in different communities are drawn independently at random with certain probabilities.
Let c : V 7→ {1 . . . κ} be the community assignment function that assigns to each node

1For a matrix M , we use Mij to denote the element on its ith row and jth column and Mi to denote its ith row
vector.

2 Mij = 1 if (i, j) ∈ E and Mij = 0 otherwise.

6
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the label of the community it belongs to, we have

Pr{(u, v) ∈ E} = Pr{Muv = 1} = pc(u)c(v),

where affinity values {p}ab (1 ≤ a, b ≤ κ) are pre-defined parameters that indicate
the edge existence probabilities and capture the closeness between communities. It has
been shown that this model well captures the community structures in social networks
and can generate graphs with various degree distributions by tuning the community
affinity values {p} [26].

2.1.0.2 Published Network and Auxiliary Network

We define G1(V1, E1,A) as the graph representing the published network and
G2(V2, E2,B) as the graph representing the auxiliary network with E1, E2 denoting
their edge sets and A,B denoting their adjacency matrices respectively. In corre-
spondence to real situations, G1 represents the publicly available anonymized net-
work where user identities are removed for privacy concern. In contrast, G2 represents
the auxiliary cross-domain un-anonymized network where those users’ identities are
known, and can be collected by the adversary to re-identify the users in G1. Follow-
ing previous literature [8, 16], we assume the node sets in G1 and G2 are equivalent
and that the published network and the auxiliary network are independent samples ob-
tained from the underlying social network G with sampling probabilities s1 and s2,
respectively. Specifically, for i = 1, 2, we have

Pr{(u, v) ∈ Ei} =

{
si if (u, v) ∈ E,

0 otherwise.

Technically, G, G1 and G2 are defined as the random graph variables for the net-
works. However, for ease of representation, we will also use them to denote the re-
alizations of the random graph variables without loss of clearance. In the sequel, we
will also use θ as a shorthand of the set of parameters including affinity values {p} and
sampling probabilities s1, s2 in the models of G,G1, G2.

7
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Figure 2–1: An example of underlying social network (G), the published net-
work (G1) and the auxiliary network (G2) sampled from G. C1, C2, C3, C4 rep-
resent the four communities in the networks. The correct mapping π0 =
{(1, 1), (2, 3), (3, 2), (4, 4), (5, 6), (6, 5), (7, 9), (8, 7), (9, 8)}.

2.2 Social Network De-anonymization

Given the published network G1 and the auxiliary network G2, the problem of
social network de-anonymization aims to find a bijective mapping π : V1 7→ V2 that
reveals the correct correspondence of the nodes in the two networks. Equivalently, a
mapping π3 can be represented as a permutation matrix Π where Πij = 1 if π(i) = j

and Πij = 0 otherwise. We naturally extend the definition of mapping of node set to
the mapping of edge set, as π(e = (i, j)) = (π(i), π(j)).

We define π0 (or equivalently Π0) to be the correct mapping between the node
sets of G1 and G2. Note that we do not have access to π0 or the generator G of G1 and
G2. In other words, although the node sets of G1 and G2 are equivalent, the labeling
of the nodes does not reflect their underlying correspondence. We interpret this in
the way that the published network G1 has the same node labeling as the underlying
networkGwhile the node labeling ofG2 is permuted. Following this interpretation, the
community assignment function ofG1 equals to c. However the community assignment
function ofG2, which we further define as c′, may be different. We illustrate an example
of our network models in Figure 2–1.

The community assignment functions of the two networks may serve as important
3In this paper, all the mappings are assumed to be bijective. Hence, we simply refer to them as mappings for

brevity.

8
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structural side information for de-anonymization, which naturally divide the social net-
work de-anonymization problem into two types where the adversary possesses different
amount of information on the community assignment. In the first type, the adversary
possesses the community assignments of both G1 and G2. The corresponding problem
is formally defined as follows.

Definition 2.2.1. (De-anonymization with Bilateral Community Information) Given
the published network G1, the auxiliary network G2, the parameters θ, as well as the
community assignment function c for G1 and c′ for G2, the goal is to construct a map-
ping π that satisfies ∀i, c(i) = c′(π(i)) and is closest to the correct mapping π0.

Since in this case, we have the community assignment of G2, we can perform a re-
labeling on nodes inG2 to make its community assignment equals to that ofG1. Hence,
without loss of generality, for the case of de-anonymization with bilateral information,
we denote c as the community assignment function of both G1 and G2 in the sequel.

The second variant corresponds to the case where the adversary only possesses the
community assignment of the published network, which is formally stated as follows.

Definition 2.2.2. (De-anonymization with Unilateral Community Information) Given
the published network G1, the auxiliary network G2, parameters θ, as well as the com-
munity assignment function c for G1, the goal is to construct a mapping that is closest
to the correct mapping π0.

Intuitively, de-anonymization with unilateral information is harder than that with
bilateral information due to the lack of side information. We will validate this argu-
ment with subsequent theoretical analysis and experiments. In addition, for brevity,
we may refer to de-anonymization problem with bilateral community information and
with unilateral community information as bilateral de-anonymization and unilateral
de-anonymization respectively.

Remark: Till now, we have not given the quantifying metric of the closeness to the
correct mapping π0. A natural choice would be the mapping accuracy, i.e., percentage
of nodes that are mapped identically as in π0. However, as we have no knowledge
of π0, such ground-truth-based metrics do not apply. To tackle this, we leverage the
Maximum A Posteriori (MAP) estimator to construct cost functions for measuring the

9
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Table 2–1: Notions and Definitions

Notation Definition
G Underlying social network
G1, G2 Published and auxiliary networks
V, V1, V2 Vertex sets of graphs G, G1 and G2

E,E1, E2 Edge sets of graphs G, G1, G2

s1, s2 Edge sampling probabilities of graphs G1, G2

M,A,B Adjacency matrices of graphs G, G1, G2

c Community assignment function
Ci Vertex set of community i
n Total number of vertices
κ Total number of communities
ni Number of vertices in community i
pab Affinity value indicating the edge existence

probability between communities a and b
θ Set of parameters in the models

of G, G1 and G2

π0 Correct mapping between vertices in G1 and G2

π Mapping between vertices in G1 and G2

Π Permutation matrix of mapping π
∆π Cost function of the mappings
{w} Set of weights in the cost function

quality of mappings based solely on observable information. The main notations used
throughout the paper are summarized in Table 2–1.

10
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Chapter 3 Bilateral De-anonymization

3.1 Analytical Aspect of Bilateral De-anonymization

First, we investigate the de-anonymization problem with bilateral information,
starting with an appropriate metric measuring the quality of mappings. We define our
proposed metric in the form of a cost function that derived from Maximum A Posteriori
(MAP) estimation.

3.1.1 MAP-based Cost Function

According to the definition of MAP estimation, given the published network G1,
auxiliary network G2, parameters θ and the community assignment function c, the
MAP estimate π̂ of the correct mapping π0 is defined as:

π̂ = arg max
π∈Π

Pr(π0 = π | G1, G2, c,θ), (3–1)

where Π = {π : V1 7→ V2 | ∀i, c(i) = c(π(i))}, i.e. the set of bijective mappings that
observe the community assignment.

From the results in [15], the MAP estimator in Equation (3–1) can be computed
as

π̂ = arg min
π∈Π

n∑
i≤j

wij |1{(i, j) ∈ E1} − 1{(π(i), π(j)) ∈ E2}| (3–2)

≜ arg min
π∈Π

∆π,

where wij = log
(

1−pc(i)c(j)(s1+s2−s1s2)

pc(i)c(j)(1−s1)(1−s2)

)
. Based on Equation (3–2), we have our cost

function ∆π as the metric for the quality of mappings, which can also be interpreted as
weighted edge disagreements induced by mappings.

11
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3.1.2 Validity of the Cost Function

Since our cost function ∆π is derived using the MAP estimation, the minimizer
of ∆π, being the MAP estimate of π0, coincides with the correct mapping with the
highest probability [27, 28]. Aside from this, we proceed to justify the use of MAP
estimation in de-anonymization problem from another perspective. Specifically, we
prove that if the model parameters satisfy certain conditions, then the MAP estimate
π̂ asymptotically almost surely1 coincides with the correct mapping π0, which means
that we can perfectly recover the correct mapping through minimizing ∆π.

Theorem 3.1.1. Let α = minab pab, β = maxab pab, w = maxij wij and w = minij wij .
Assume that α, β → 0, s1, s2 do not go to 1 as n → ∞ and logα

logβ ≤ γ. Suppose that

α(1− β)2s21s
2
2 log(1/α)

s1 + s2
= Ω

(
γ log2 n

n

)
+ ω

(
1

n

)
2,

then π̂ = π0 holds almost surely as n → ∞.

Proof. Due to space limitations, here we only presenting an outline of the proof and
defer the details to Appendix A.1. Recall that for a mapping π, we define ∆π =∑n

i≤j wij|1{(i, j) ∈ E1}−1{π(i), π(j) ∈ E2}|. Also, we denote Πk as the set of
mappings that map k nodes incorrectly and Sk as a random variable representing the
the number of mappings π ∈ Πk with ∆π ≤ ∆π0 . We then define S =

∑n
k=2 Sk as

the total number of incorrect mappings π with ∆π ≤ ∆π0 and derive an upper bound
on the mean of S as E[S] ≤

∑n
k=2 n

k maxπ∈Πk
Pr{∆π −∆π0 ≤ 0}. We further show

that under the conditions stated in the theorem, this upper bound, and consequently the
value of E[S], go to 0 as n → ∞, which implies that π0 is the unique minimizer of ∆π

and concludes the proof.

Remark: We now present two further notes regarding Theorem 3.1.1. (i) Ap-
plicability of the Theorem: Recall that for a random Erdős-Rényi graph G(n, p) to be

1An event asymptotically almost surely happens if it happens with probability 1− o(1).
2We use standard Knuth’s notations in this paper.
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connected and free of isolated nodes with high probability, it must satisfy p = Ω( logn
n

)

[11], and the absence of isolated nodes is necessary for successful de-anonymization
since there is no way that we can distinguish the isolated nodes in G1 and G2. Conven-
tionally setting the sampling probabilities s1, s2 as constants, it is easy to verify that
the conditions in Theorem 3.1.1 only have constant gap from the graph connectivity
conditions even when the expected degree distributions (or equivalently, the closeness
between the communities) of G1 and G2 are non-uniform (e.g. power law distribution
where α/β = O(n) and logα/ log β = O(logn)). From this aspect, the conditions are
quite mild and thus make Theorem 3.1.1 fairly general; (ii) Extension of the Theorem:
The cost function we design is robust, in the sense that any approximate minimizer ∆π

can map most of the nodes correctly. We formally present the claim in Corollary 3.2.

Corollary 3.2. Let α, β, w, w be the same parameters defined in Theorem 3.1.1. As-
sume that α, β, s1, s2 do not go to 0 and logα

logβ ≤ γ. Additionally, let δ, ϵ be two real
numbers with 0 ≤ δ, ϵ ≤ 1 with ϵ = O(δ − δ2

2
)α(1− β)s1s2 log(1/α). If

α(1− β)2s21s
2
2 log(1/α)

s1 + s2
= Ω

(
γ log2 n

(1− δ/2)n

)
+ ω

(
1

n

)
,

then for all π∗ with ∆π∗ − minπ∈Π ∆π ≤ ϵn2, π∗ is guaranteed to map at least
(1− δ)n nodes correctly as n → ∞.

Proof. The proof is similar to that of Theorem 3.1.1. Instead of bounding
∑n

k=2

∑
π∈Πk

Pr{∆π − ∆π0 ≤ 0}, we upper bound
∑n

k=δn

∑
π∈Πk

Pr{∆π − ∆π0 ≤ ϵn2}. Using
similar technique as in Theorem 3.1.1, we have that under the conditions stated in the
corollary,

∑n
k=δn

∑
π∈Πk

Pr{∆π − ∆π0 ≤ ϵn2} → 0 as n → ∞. Therefore, for a
mapping π∗ with ∆π∗ −∆π0 ≤ ϵn2, it maps at most k = δn nodes incorrectly. Since
∆π0 ≥ arg minπ∈Π ∆π, we conclude that all π∗ with ∆π∗ − minπ∈Π ∆π ≤ ϵn2 are
guaranteed to map at least (1− δ)n nodes correctly as n → ∞.

3.2 Algorithmic Aspect of Bilateral De-anonymization

The quantification in Section 3.1 justified that, under mild conditions, we can un-
ravel the correct mapping through computing its MAP estimate, i.e., the minimizer

13
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of ∆π. This naturally puts forward the optimization problem of computing the min-
imizer of ∆π, which reasonably serves as the instantiation of the social network de-
anonymization problem (Definition 3.1). To meet the demand of the quantification, in
this section, we formally define and investigate this optimization problem, presenting
a first look into the algorithmic aspect of social network de-anonymization.

3.2.1 The Bilateral MAP-ESTIMATE Problem

Naturally, with some previously defined notations inherited, the optimization prob-
lem induced by the cost function can be formulated as follows.

Definition 3.2.1. (The BI-MAP-ESTIMATE Problem) Given two graphsG1(V1, E1,A)

and G2(V2, E2,B), community assignment function c and a set of weights {w}, the
goal is to compute a mapping π̂ : V1 7→ V2 that satisfies

P1 : π̂ = arg min
π∈Π

n∑
i≤j

wij |1{(i, j) ∈ E1} − 1{π(i), π(j) ∈ E2}|

≜ arg min
π∈Π

∆π,

where Π = {π | ∀i, c(i) = c(π(i))}.

Note that we require the weights {w} to be induced by implicit and well-defined
community affinity values and sampling probabilities. Also, the BI-MAP-ESTIMATE
Problem denoted as P1 above has several equivalent formulations, which will be pre-
sented later.

The BI-MAP-ESTIMATE seems to be easy at first glance due to the simplicity of
its objective function ∆π, but as justified by the following proposition, it is not only
computationally intractable but also highly inapproximable.

Proposition 3.3. BI-MAP-ESTIMATE problem is NP-hard. And there is no polynomial
time (pseudo-polynomial time) approximation algorithm for BI-MAP-ESTIMATE with
any multiplicative approximation guarantee unlessGI ∈ P (GI ∈ DTIME(npolylogn)).3

3GI denotes the complexity class Graph Isomorphsim. DTIME(T (n)) denotes the set of problems that are
solvable by deterministic Turing machine in O(T (n)) steps.

14



DE-ANONYMIZATION OF SOCIAL NETWORKS WITH COMMUNITIES

Proof. The proof can be easily constructed by reduction from the graph isomoprhism
problem. The reduction is completed by just setting the two graphs in the instance of
the graph isomorphism as G1 and G2, as well as assigning all wij = 1 and c(v) = 1

for all v ∈ V1, V2. Obviously, if the two graphs are isomorphic, the value ∆π̂ of the
optimal mapping π̂ will be zero. Therefore, in this case, any algorithm with multi-
plicative approximation guarantee must find a mapping π with ∆π = 0. Furthermore,
if G1 and G2 are not isomorphic, then any mapping π must induce a ∆π strictly larger
than 0. Hence, a polynomial time approximation algorithm for BI-MAP-ESTIMATE
with multiplicative guarantee implies a polynomial time algorithm for the graph iso-
morphism problem. Note that the result can be further extended as there is no pseudo-
polynomial time algorithm with multiplicative approximation guarantee unless GI ∈
DTIME(npolylogn).

3.2.2 Approximation Algorithms

As demonstrated above, the BI-MAP-ESTIMATE problem bears high computa-
tional complexity and approximation hardness. It is thus unrealistic to pursue exact
or even multiplicative approximation algorithms. To circumvent this obstacle and still
find solutions with provable theoretical properties, we propose two algorithms with
their respective advantages: one has an ϵ-additive approximation guarantee and the
other has lower time complexity and yields optimal solutions under certain conditions.
The main idea behind them is to convert P1 to equivalent formulations which are more
amenable to relaxation techniques.

3.2.2.1 Additive Approximation Algorithm

The additive approximation algorithm we propose is based on the following quadratic
assignment formulation of the BI-MAP-ESTIMATE Problem which we denote as P2.

P2 : maximize
∑

i,j,k,l qijklxikxjl (3–3)
s.t.

∑
i xij = 1, ∀i ∈ V1 (3–4)∑
j xij = 1, ∀j ∈ V2 (3–5)

xij ∈ {0, 1} (3–6)

15



DE-ANONYMIZATION OF SOCIAL NETWORKS WITH COMMUNITIES

The coefficients {q}ijkl of P2 are defined as:

qijkl =



wij, if (i, j) ∈ E1, (k, l) ∈ E2 and

c(i) = c(k), c(j) = c(l),

−1 if c(i) ̸= c(k) or c(j) ̸= c(l),

0 otherwise.

The solutions to P2 are a set of integers {x}. We will refer to the value of∑
i,j,k,l qijklxikxkl as the value of {x}. Based on a solution {x}, we can construct

its equivalent mapping for the BI-MAP-ESTIMATE problem by setting π(i) = j iff
xij = 1. The following proposition shows the correspondence between P1 and P2.

Proposition 3.3. Given G1, G2, c and {w}, the optimal solutions of P1 and P2 are
equivalent.

Proof. We write the equivalent set of integers {x} of a mapping π as {xπ}. First, we
prove that the optimal solution {x∗} to P2 must observe the community assignment,
i.e., if x∗

ij = 1, then c(i) = c(j). Indeed, for a solution {x} having some xi0i1 = 1 but
c(i0) ̸= c(i1), we can find a “cycle of community assignment violations” starting from
i with xi0i1 = xi′1i2

= xi′2i3
= . . . xi′ρi

′
0

and c(i0) = c(i′0), c(i1) = c(i′1), . . . , c(iρ) =

c(i′ρ). Due to the special structure of the coefficients {q}, this cycle only contributes
negative value to the objective function of P2. Therefore, by “reversing” the cycle, we
obtain a new solution {x′} from {x} with x′

i0i′0
= x′

i′1i1
= x′

i′2i2
= . . . = x′

i′ρiρ
= 1 and∑

i,j,k,l qijklx
′
ijx

′
kl >

∑
i,j,k,l qijklxijxkl.The process of reversing cycles of community

assignment violations is demonstrated in Figure 2. If follows that the optimal solution
to P2 must observe the community assignment. Then, we proceed to show that the
optimal solution to P1 is equivalent to the optimal solution to P2. Notice that for all
{xπ} that observe the community assignment, we have

∑
ij wij =

∑
ijkl qijklx

π
ikx

π
jl +

∆π. Therefore, the corresponding {xπ̂} of the optimal solution π̂ to P1 is also optimal
for P2 and vice versa.

The proof of Proposition 3.3 also provides the two main stages in our additive
approximation algorithm: (i) Convert the instance of the BI-MAP-ESTIMATE prob-

16



DE-ANONYMIZATION OF SOCIAL NETWORKS WITH COMMUNITIES

1C

2C

3C

1C

2C

3C

Cρ Cρ

1C

2C

3C

1C

2C

3C

Cρ Cρ

( )a ( )b

Figure 3–1: Illustration of the reversal of a cycle of community assignment viola-
tions: (a) a cycle of community assignment violations in a mapping; (b) reversal
of the cycle of violations.

lem into its corresponding quadratic assignment formulation P2 where the solution is
then computed. (ii) Reverse all the “cycles of community assignment violations” in
the solution and construct the desired mapping based on it.

For the first stage, we adopt the relaxing-rounding based algorithm proposed by
Arora at al. [29] as a sub-procedure referred to as “QA-Rounding” to solve the con-
verted instances of P2. QA-Rounding has additive approximation guarantee when the
instances have coefficients {q} that do not scale with the size of the problem [29]. Note
that the requirement for the coefficients to be independent of the size of the problem is
one of the key factors for the seemingly unnatural formulation of P2. For the sake of
completeness, we state in the following lemma the related result from [29].

Lemma 3.4. (Theorem 3 in [29]) Given an instance of P2 with −C ≤ qijkl ≤ C for
all i, j, k, l ∈ {1 . . . n} where C is a constant that is independent of n, then for any
ϵ > 0, QA-Rounding finds a solution {x} with

∑
i,j,k,l

qijklxikxjl ≥
∑
ijkl

qijklx
∗
ijkl − ϵn2

in nO(logn/ϵ2) time, where {x∗} is the optimal solution.

The second stage can be completed by repeatedly traversing the solution {x} to
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identify all the cycles of community assignment violations and reversing them. Algo-
rithm 1 illustrates a whole diagram of our proposed additive approximation algorithm.

Approximation Guarantee: By Lemma 3.4, QA-Rounding yields a solution
whose value has a gap of less than ϵn2 from the optimal. Combined with the equality∑

i,j wij = ∆π +
∑

i,j,k,l qijklxikxjl and the fact that the reversal of all the cycles of
community assignment violations only incurs an increase on the value of the computed
solution {x}, we have that the mapping π given by Algorithm 1 has an ϵ-additive ap-
proximation guarantee and satisfies c(i) = c(π(i)) for all i. Moreover, by Corollary
3.2, we know that when ϵ, δ satisfy the conditions in the corollary, the mappings yielded
by Algorithm 1 map at least (1− δ)n nodes correctly.

Input: Graphs G1, G2, weights {w},
community assignment function c.

Output: mapping π.
Initialize: π = ∅, ∀i, j, k, l ∈ {1 . . . n}, xijkl = 0, i′, j′ = 0
Compute the set of coefficients {q}ijkl and
form an instance I of P2.
{x} :=QA-Rounding(I).
for i = 1 to n do

for j = 1 to n do
if xij = 1 and c(i) ̸= c(j) then

xij := 0.
while c(j′) ̸= c(i) do

Find i′, j′ with xi′j′ = 1 and c(i′) = c(j).
xi′j′ := 0, xi′j := 1, j := j′.

end
xij′ := 1.

end
end

end
Construct π based on {x}.
Return π

Algorithm 1: The Additive Approximation Algorithm

Time Complexity: The QA-Rounding has a time complexity of nO(logn/ϵ2). The
reversal of all the cycles can be completed in O(n2) time when {x} is represented in
the form of an adjacency list-like structure. Based on those, the time complexity of
Algorithm 1 is O(nO(logn/ϵ2) + n2).
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3.2.2.2 Convex Optimization-Based Heuristic

Beside the algorithm that provides additive approximation guarantee under gen-
eral case, it is also useful to pursue algorithms that have stronger guarantee in special
cases. In this section, we present one such algorithm that can find the optimal solution
in the cases where the structural similarity between the two networks are higher than
certain threshold.

The algorithm is based on convex optimization, which relies on a matrix formu-
lation of the BI-MAP-ESTIMATE problem. The main idea is to first solve a convex-
relaxed version of the matrix formulation and then convert the solution back to a legit-
imate one. Specifically, the matrix formulation of the BI-MAP-ESTIMATE problem,
which we denote by P3, is formally stated as follows:

P3 : mininize ∥W ◦ (A−ΠTBΠ)∥2F + µ∥Πm−m∥2F
s.t. ∀i ∈ V1,

∑
i Πij = 1 (3–7)

∀j ∈ V2,
∑

j Πij = 1 (3–8)
∀i, j, Πij ∈{0, 1}, (3–9)

where W is a symmetric matrix with Wij = Wji =
√
wij , m represents the commu-

nity assignment vector (c(1), . . . , c(n))T, µ is a positive constant that is large enough, ◦
denotes the matrix Hadamard product with (W ◦A)ij = Wij ·Aij and ∥·∥F represents
the Frobenius norm.

Note that P3 is equivalent to P1 from the perspective of the relation between a
mapping and its corresponding permutation matrix. The claim is formally stated and
proved in the following proposition.

Proposition 3.3. Given G1, G2, c and {w}, the optimal solution of P1 and P3 are
equivalent.

Proof. The proof is similar to that of Proposition 3.3. First, due to the existence of the
penalty factor µ∥Πm −m∥2F, we have that the optimal solution of P3 must observe
the community assignment. Second, as for all the permutation matrices Π’s and their
corresponding mappings π’s that observe the community assignment, it is easy to show
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that ∆π = ∥W ◦ (A −ΠTBΠ)∥2F + µ∥Πm −m∥2F (the second term equals to 0 in
this case). Hence, the optimal solution of P1 and P3 are equivalent.

Before introducing the algorithm, we further transform the objective function of
P3 into an equivalent but more tractable form. Lemma 3.4 gives the main idea of the
transformation.

Lemma 3.4. Let Ã = W ◦A and B̃ = W ◦B be the weighted adjacency matrices of
G1 and G2 respectively, then for all permutation matrices that observe the community
assignment4,the following equality holds:

∥W ◦ (A−ΠTBΠ)∥F = ∥ΠÃ−BΠ̃∥F.

Proof. We prove the lemma by repeatedly using the symmetry of A and B and special
properties of W and Π. The detailed steps are presented as follows:

∥W ◦ (A−ΠTBΠ)∥F = ∥W ◦ (Π(A−ΠTBΠ))∥F (3–10)
= ∥W ◦ (ΠA−BΠ)∥F (3–11)
= ∥W ◦ (ΠA)−W ◦ (BΠ)∥F (3–12)
= ∥Π(W ◦A)− (W ◦B)Π∥F (3–13)
= ∥(ΠÃ− B̃Π)∥F. (3–14)

Note that Equation (3–10) holds because multiplying by a permutation matrix does
not change the value of element-wise Frobenius norm. Equations (3–11), (3–12) and
(3–14) hold due to the definition of Hadamard product and Ã, B̃. The validity of
Equation (3–13) is less straightforward and can be interpreted in the following way: For
the weight wij of a node pair (i, j), it is determined only by parameters pc(i)c(j), s1, s2.
Therefore, if c(i) = c(j), c(k) = c(l) for some nodes i, j, k, l, then we have Wik =

Wjl, i.e., the weight is invariant within communities. This crucial property, combined
with the fact that Π is permutation matrix that observes the community assignment,
makes the Hadamard products and normal matrix multiplication in Equation (3–13)
interchangeable, which concludes the proof.

4A permutation matrix Π observes community assignment if for all Πij = 1, c(i) = c(j).
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Based on Lemma 3.4, we can rewrite the objective function of P3 as ∥(ΠÃ −
B̃Π)∥2F + µ∥Πm−m∥2F. Then, we further relax constraints (3–8) and (3–9) in P3

and obtain the optimization problem P3′ that can be formulated as:

P3′ minimize ∥(ΠÃ− B̃Π)∥2F + µ∥Πm−m∥2F
s.t. ∀i,

∑
i∈V1

Πij = 1

Obviously the objective function and the set of feasible solutions are both convex. Im-
mediately we can conclude that P3′ is a convex-relaxed version of P3, which is stated
in the following lemma.

Lemma 3.5. P3′ is a convex optimization problem.

With all the prerequisites above, we are now ready to present our second convex
optimization-based algorithm, which firstly solves for a fractional optimal solution of
P3′ and then projects that fractional solution into an integral permutation matrix (and
its corresponding mapping). During the projection process, we use an n-dimensional
array Mapped to record the projected nodes and a set Legali for each node i to record
the remaining legitimate nodes to which it can be mapped. The details are illustrated
in Algorithm 2.

Performance Guarantee: Generally, Algorithm 2 can not yield the optimal so-
lution to the BI-MAP-ESTIMATE problem and the gap between its solution and the
optimal one may be large. However, we will demonstrate that when the similarity be-
tween G1 and G2 are high enough, or equivalently, the difference between the weighted
adjacency matrices Ã and B̃ is sufficiently small, Algorithm 2 is guaranteed to find
the optimal mapping.

Theorem 3.5.1. Let B̃′ be a symmetric matrix that is related with Ã by a unique Π̂ that
observes the community assignment, i.e., B̃′ = Π̂AΠ̂

T
. Denote B̃′ = UΛUT as its

unitary eigen-decomposition with ϵ2 ≤
∑

j |Uij| ≤ ϵ1 for all i. Define λ1, λ2, . . . , λn

as the eigenvalues of B̃′ with σ = maxi |λi| and δ ≤ |λi − λj| for all i, j. Assume that
there exists a matrix R that satisfies B̃ = B̃′ + R. We denote E = URUT with
∥E∥F = ξ and M = mTm with ∥M∥F = M . Let Πp be the solution obtained by
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Input: Graphs G1, G2, weights {w},
community assignment function c.

Output: mapping π.
Initialize: Mapped[i] = 0. Legali = ∅ for all i,

π = ∅, Πp,Πf = 0.
Compute the weight matrix W and
form an instance I of P3.
Relax I into an instance I ′ of P3′. Πf := the optimal (fractional) solution to (I ′).
for i = 1 to n do

Legali := {k | Mapped[k] = 0 and c(k) = c(i)} j := arg maxk∈Legali Π
f
ik.

Πp
ij := 1. Mapped[j]:=1.

end
Construct π based on Πp.
Return π

Algorithm 2: Convex Optimization-Based Algorithm

Algorithm 2 and Π∗ be the optimal solution. If

(σ2 + 1)ξ2 + µ2M2 ≤
[

δ2

(2
√
n+ 1)(1 +

√
nϵ1/ϵ2)(1 + 2ϵ1/ϵ2)

]2
,

then Πp = Π∗.

Proof. The proof is divided into three steps: (i) First, similar to the argument in [30],
by constructing the Lagrangian function of P3′ and setting its gradient to 0, we obtain
the necessary conditions that the optimal fractional solution Πf to P3′ must satisfy;
(ii) Then, combining these with the conditions stated in the theorem and the projection
fromΠf toΠp, we show thatΠp = Π̂; (iii) Finally, we prove that in this case Π̂ = Π∗,
which concludes the proof.

1. Derivation of the Necessary Conditions: We start the first step with rewriting
P3′ as an optimization problem with respect to Q = ΠΠ̂

T
. Since

ΠÃ− B̃Π = (ΠΠ̂
T
B̃′ − B̃ΠΠ̂

T
)Π̂ = (QB̃′ − B̃Q)Π̂,

and Πm − m = (Qm − m)Π̂, we can reformulate the objective function of P3′

with Q as variable and divide it by two for ease of further manipulation as 1
2
∥QB̃ −

BQ∥2F +
µ
2
∥Qm−m∥2F. The constraint

∑
j Πij for all i can be expressed as Q1 = 1.

The solution of the reformulated version can be associated with the original one by
Π = QΠ̂. Next, by introducing multiplier α for the equality constraint of P3′, we
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construct its Lagrangian function as

L(Q,α) =
1

2
∥QB̃ −BQ∥2F +

µ

2
∥Qm−m∥2F + tr(Q1− 1)αT.

The key element of the proof of the lemma is the sufficient conditions for Q to be
the optimal (fractional) solution to P3′. To yield the sufficient conditions, we take the
gradient of L(Q,α) with respect to Q and set it as 0. Then we have

▽QL(Q,α) = QB2 + B̃2Q− 2B̃QB +α1T + µ(QM −M) = 0.

Multiplying UT to the left side of ▽QL(Q,α) and U to the right side we get

(FΛ2 +Λ2F − 2ΛFΛ) + (FEΛ+ FΛE − 2ΛFE)

+ γvT + FG+ µFM ′ − µM ′ = 0,

where F = UTQU , v = UT1, γ = UTα, G = E2 and M ′ = UTMU .

Rewriting the equation coordinate-wise, we have

Fij(λi − λj)
2 + vjγi − µM ′

ij

+
∑

k Fik(Ekj(λj + λk − 2λi) +Gkj + µM ′
kj) = 0

Substituting i = j into the above equation and plugging the results back to eliminate
variables γi’s, it follows that

Fijvi(λi−λj)
2 +

∑
k Fik(viGkj − vjGki + µviM

′
kj − µvjM

′
ki)

+
∑

k Fik(vi Ekj(λj + λk − 2λi)− vjEkj(λk − λi))

+ µ(vjM
′
ii − viM

′
ij) = 0
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We further define the following variables

rij =
µ

(λi − λj)2
(vjM

′
ii − viM

′
ij)

sijk =
1

(λi − λj)2

(
Ekj(λj + λk − 2λi)−

vj

vi

Eki(λk − λi)

)
tijk =

1

(λi − λj)2

(
Gkj −

vj

vi

Gki

)
wi

jk =
µ

(λi − λj)2

(
M ′

kj −
vj

vi

M ′
ki

)
,

for i ̸= j. And sjik = tjik = wi
jk = rij = 0 for i = j. Then, we arrive at the following

linear system

Fij +
∑

k Fik(s
i
jk + tijk + wi

jk +
rij
n
) = 0, i ̸= j (3–15)∑

k Fikvk = vi, (3–16)

where the second set of equations come from the constraint Q1 = 1. Equations (3–15)
and (3–16) represent conditions that the optimal solution Q (or equivalently F ) needs
to satisfy.

2. The Equivalence of Πp and Π̂: Based on the conditions above, we move on
to the second step. Recall that in this step our goal is to prove that Πp, which is a
projection of the optimal fractional solution Πf , equals to Π̂. We formalize this notion
in Lemma 3.6, the proof of which carries on the main idea of the second step.

Lemma 3.6. Let Πp be the solution computed by Algorithm 2 and Π̂ be defined as in
Theorem 3.5.1. Under the conditions stated in the theorem, Πp = Π̂.

Proof. As the optimal fractional solution Πf = QΠ̂, we first show that Q (or F ) is
sufficiently close to the identity matrix I , from which using the property of the pro-
jection process we obtain that Πp is identical to Π̂. We achieve this by treating linear
system consisting of Equations (3–15) and (3–16) as a perturbed version of

Fij = 0, i ̸= j (3–17)∑
k Fikvk = vi, (3–18)
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the solution of which is clearly I . Then using the results from stability of perturbed
linear system [31] that is presented in Lemma 3.7 below and the conditions in Theorem
3.5.1, we can bound the difference between F and I .

Lemma 3.7. (Theorem 1 in [31]) Let ∥ · ∥ be any p-norm. For two linear systems
Dx = b and D̃x = b̃, let x0 and x be their solutions, if ∥D − D̃∥∥D−1∥ < 1, then
we have

∥x− x0∥
∥x0∥

≤ ∥D∥∥D−1∥
1− ∥D − D̃∥∥D−1∥

{
∥D − D̃∥

∥D∥
+

∥b− b̃∥
b

}
.

Denoting by f = (F11, . . . ,F1n, . . . ,Fn1, . . . ,Fnn)
T the row stack vector repre-

sentation ofF , we can rewrite the perturbed system as (D+N)f = b, and the original
unperturbed system asDf = b,withD = diag{D1, . . . ,Dn} being an n2×n2 block-
diagonal matrix, where each Di is an n × n block consisting of identity matrix with
the ith row replaced by vector vT. N is also an n2×n2 block-diagonal matrix with the
n× n blocks Ni being a matrix with elements (Ni)jk = sijk + tijk +wi

jk + rij/n. And
b is an n2× 1 vector with the [(i− 1)(n+1)+1]-st element as vi and other element as
0. Using Lemma 3.7 on the perturbed system and the unperturbed one with ∥ · ∥ taken
as 2-norm (Euclidean norm), we obtain that

∥f − f0∥ ≤ ∥f0∥
∥D−1∥∥N∥

1− ∥D−1∥∥N∥
, (3–19)

where f0 is the row stack vector representation of I . Therefore, to derive the upper
bound for the difference between F and I , we need to further upper bound the RHS
of Inequality (3–19). The technique we use here is harnessing the special structure of
D and N so that we can derive bounds for ∥D−1∥ and ∥N∥, which are represented in
functions of variables {s}, {t}, {w} and {r}. By further associating the variables with
the spectral parameters δ, ϵ1, ϵ2, etc. defined in the theorem, we yield an upper bound
for the RHS of Inequality (3–19) that depends on those spectral parameters. For ease
of illustration, we defer the detailed derivation of the upper bound to Appendix A.3.

Based on the upper bound, we have that if the conditions in the theorem are satis-
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fied, then

∥F − I∥F = ∥f − f0∥ ≤ 1

2
.

Since ∥Πf−Π̂∥F = ∥QΠ̂−Π̂∥F = ∥(Q−I)Π̂∥F = ∥Q−I∥F = ∥F−I∥F ≤ 1/2,
the entry-wise difference between Πf and Π̂ is less than 1/2. Thus, the projection
process in Algorithm 2 is bound to project Πf as Π̂, which concludes the second step,
i.e., the proof of Lemma 3.6.

3. Optimality of Π̂: Now we proceed to the final step and prove that Π̂ = Π∗ by
contradiction. If there exists some permutation matrixΠ′ ̸= Π̂with ∥Π′Ã−Π′B̃∥F <

∥Π̂Ã − Π̂B̃∥F. Then, we consider B̃ = B0 +R′ with B0 = Π′TAΠ′. Obviously,
R′ satisfies the conditions in Theorem 3.5.1. Hence, by Lemma 3.6, we should have
that the the solution Πp computed by Algorithm 2 equals to Π′. However, we also
have Πp = Π̂, which leads to a contradiction. Thus, Π̂ is the optimal solution to P3,
which finishes the proof of the theorem.

Time Complexity: In the first stage of Algorithm 2, we use the primal interior
point algorithm proposed in [32] to solve the instance of P3′, which has a time com-
plexity of O(N3) = O(n6) where N = n2 is the number of variables in the instance.
The projection process of the second stage can be implemented in O(n2) time. Thus,
the total time complexity of Algorithm 2 is O(n6). Note that the result only represents
the running time of the algorithm in the worst case and the average time complexity of
Algorithm 2 is much lower [32].
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Chapter 4 Unilateral De-anonymization

In this chapter, we investigate the de-anonymization problem with unilateral com-
munity information, i.e., when the adversary only possesses the community assign-
ment function of the published network G1. Following the path of the bilateral de-
anonymization in Sections 3.1 and 3.2, we will give the corresponding results we ob-
tain for the unilateral case. Through comparisons of these results and illustration in our
later experiments, we demonstrate that de-anonymization with only unilateral commu-
nity information is harder than that with bilateral community information, which shows
the importance of community assignment as side information.

4.1 Analytical Aspect

Following the roadmap, we first present the results on the analytical aspect of the
unilateral de-anonymization problem.

4.1.1 MAP-based Cost Function

We first derive our cost function in the unilateral case. Again, according to the
definition of MAP estimation, given the published network G1, auxiliary network G2,
parameters θ and the community assignment function c of G1, the MAP estimate π̂ of
the correct mapping π0 is defined as:

π̂ = arg max
π∈Π

Pr(π0 = π | G1, G2, c,θ), (4–1)

where Π denotes the set of all bijective mappings from V1 to V2. Note that in the
unilateral case we have no prior knowledge of the community assignment of G2. Con-
sequently, we can not restrict Π to the set of mappings that observe the community
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assignment constraints.

Due to the space limit, we omit the processing of the MAP estimator (4–1) and
present the detailed steps in Appendix A.4. After a sequence of manipulations, we
arrive at the following equation for calculation of the MAP estimate.

π̂ = arg min
π∈Π

{
n∑

i<j

wij(1{(i, j) /∈ E1, (π(i), π(j) ∈ E2)})

}
≜ arg min

π∈Π
∆π,

where wij = log
(

1−pc(i)c(j)(s1+s2−s1s2)

pc(i)c(j)(1−s1)(1−s2)

)
. Note that different from the bilateral case,

the cost function in the unilateral case is equivalent to a single-sided weighted edge
disagreement induced by a mapping. This subtle difference has crucial implications to
our analysis on the algorithmic aspect of unilateral de-anonymization.

4.1.2 Validity of the Cost Function

Following the same thread of thought, we proceed to justify the MAP estimation
used in unilateral de-anonymization. Using similar proof technique, we derive the same
result for the cost function in unilateral case as in bilateral one.

Theorem 4.1.1. Let α = minab pab, β = maxab pab, w = maxij wij and w = minij wij .
Assume that α, β → 0, s1, s2 do not go to 1 as n → ∞ and logα

logβ ≤ γ. Furthermore,
suppose that

α(1− β)2s21s
2
2 log(1/α)

s1 + s2
= Ω

(
γ log2 n

n

)
+ ω

(
1

n

)
,

then the MAP estimate π̂ in the unilateral case almost surely equals to the correct
mapping π0 as n → ∞.

Proof. The proof is basically identical to the proof of Theorem 3.1.1. The only differ-
ence here is that we redefine Xij as a Bernoulli random variable with mean pijs1(1−
pπ(i)π(j)s2) and Yij as a Bernoulli random variable with mean pijs1(1− s2). Then, by
using the same bounding technique for Pr{Xπ−Yπ ≤ 0}, we conclude the same result
for the cost function in unilateral case.
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Theorems 3.1.1 and 4.1.1 show that the cost function based on MAP estimation
is equally effective in de-anonymization with bilateral and unilateral community infor-
mation. However, as we will show in the sequel, the feasibility of the cost function in
unilateral case is weaker than in bilateral case.

4.2 Algorithmic Aspect

In this section, we investigate the algorithmic aspect of de-anonymization with
unilateral community information and propose corresponding algorithms as in the bi-
lateral case.

4.2.1 The Unilateral MAP-ESTIMATE Problem

We first formally introduce the combinatorial optimization problem induced by
minimizing the cost function in unilateral de-anonymization.

Definition 4.2.1. (The UNI-MAP-ESTIMATE Problem) Given two graphsG1(V,E1,A)

and G2(V,E2,B), community assignment function c of G1 and weights {w}, the goal
is to compute a mapping π̂ : V1 7→ V2 that satisfies

π̂ = arg min
π∈Π

{
n∑

i<j

wij(1{(i, j) /∈ E1, (π(i), π(j)) ∈ E2)}

}
≜ arg min

π∈Π
∆π,

where Π = {π : V1 7→ V2}.

Similar to the bilateral de-anonymization, we require the weights {w} to be in-
duced by well-defined community affinity values {p}, s1 and s2, though the latter ones
are not explicitly given. Due to the asymmetry of ∆π in unilateral de-anonymization,
intuitively, the UNI-MAP-ESTIMATE problem may bear higher approximation hard-
ness than the BI-MAP-ESTIMATE problem in bilateral de-anonymization. The propo-
sition we present below consolidates this intuition.
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Proposition 4.3. UNI-MAP-ESTIMATE problem is NP-hard. Moreover, there is no
polynomial time (pseudo polynomial time) approximation algorithm for UNI-MAP-
ESTIMATE with any multiplicative approximation guarantee unless P = NP (NP ∈
DTIME(npolylogn)).

Proof. The proof is done by reduction from k-CLIQUE problem. Given a graph
G(V,E), the k-CLIQUE problem asks whether there exists a clique of size no smaller
than k in G. The main idea of the reduction is that: Given an instance of k-CLIQUE
with G(V,E) and k, we set G1 as G and G2 as a graph consisting of a clique of size
k and (|V | − k) additional nodes. Setting wij = 1 and c(v) = 1 for all v in G1, we
have an instance of UNI-MAP-ESTIMATE. Obviously, if the G contains a clique of
size no less than k, the value ∆π̂ of the optimal mapping π̂ in UNI-MAP-ESTIMATE
will be zero. Therefore, in this case, any algorithm with multiplicative approximation
guarantee must find a mapping π with ∆π = 0. Furthermore, if G does not con-
tain a clique of size no smaller than k, then any mapping π must satisfy ∆π > 0.
Hence, a polynomial (pseudo-polynomial) time approximation algorithm for BI-MAP-
ESTIMATE with multiplicative guarantee implies a polynomial (pseudo-polynomial)
time algorithm for k-CLIQUE. Since k-CLIQUE problem is NP-Complete, we justify
the approximation hardness of UNI-MAP-ESTIMATE as stated in the proposition.

Note that the graph isomorphism problem is at least as hard as the problems in
P , which implies that the approximation hardness result for UNI-MAP-ESTIMATE is
stronger than that for BI-MAP-ESTIMATE.

4.2.2 Approximation Algorithms

4.2.2.1 Additive Approximation Algorithm

We design a similar approximation algorithm with an ϵ-additive approximation
guarantee as in the bilateral case, by formulating the UNI-MAP-ESTIMATE problem
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in quadratic assignment fashion as follows

minimize
∑

i,j,k,l qijklxikxjl (4–2)
s.t.

∑
i xij = 1, ∀i ∈ V1 (4–3)∑
j xij = 1, ∀j ∈ V2 (4–4)

xij ∈ {0, 1} (4–5)

with the coefficients {q}ijkl of the formulation defined as:

qijkl =

wij, if (i, j) ̸∈ E1, (k, l) ∈ E2

0 otherwise.

Note that due to the absence of community assignment constraints, we can directly for-
mulate the problem as a minimization one and omit the penalty factor as in bilateral
de-anonymization. By invoking the same QA-Rounding procedure on the formulated
instance and convert the resulting solution {x} to its equivalent mapping π. Using simi-
lar analysis technique as in Section 3.2.2.1, we have that the algorithm obtains solutions
that have a gap of at most ϵn2 to the optimal ones in time O(nO(logn/ϵ2)+n2). Although
the QAP formulation of unilateral de-anonymization is less complicated in form, this
does not imply that unilateral de-anonymization is easier than its bilateral counterpart,
as the performance of the approximation algorithms proposed are the same. Actually, in
the following, we conceptually show that the opposite, i.e., unilateral de-anonymization
is harder than bilateral one, is true.
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4.2.2.2 Convex Optimization Based Heuristic

We now proceed to present the heursitc based on convex optimization for the UNI-
MAP-ESTIMATE problem, which relies on the following matrix formulation.

mininize ∥W ◦ (ΠA−BΠ)∥2⌊F⌋
s.t. ∀i ∈ V1,

∑
i Πij = 1 (4–6)

∀j ∈ V2,
∑

j Πij = 1 (4–7)
∀i, j, Πij ∈{0, 1}, (4–8)

where W and ◦ share the same definitions as those in P3 and ∥ · ∥⌊F⌋ is defined to be a
variant of Frobenius norm. Specifically, ∥M∥⌊F⌋ =

√∑n
i=1

∑n
j=1(1{Mij ≤ 0}M 2

ij)

for a matrix M , where only negative elements contribute to the value of the norm1.
By relaxing the integral constraint (4–8), we again arrive at an optimization problem,
which is shown to be convex in Appendix A.5. Our second algorithm for unilateral
de-anonymization is to first solve the relaxed version of the matrix formulation of UNI-
MAP-ESTIMATE and then project the fractional solution to an integral one. Unfor-
tunately, due to the asymmetry of the operator ∥ · ∥⌊F⌋, it is difficult to derive closed
form expression for the gradient of the Lagrangian function of UNI-MAP-ESTIMATE.
Thus, we cannot prove conditional optimality of the algorithm as we did in bilateral
case.

We provide a summary of the differences existing in bilateral and unilateral de-
anonymizations from a higher level as follows.

• The extra knowledge on the community assignment function in bilateral de-
anonymization enables us to restrict the feasible mappings to the ones that ob-
serve the community assignment, thus decreases the number of possible candi-
dates and makes the problem intuitively easier than unilateral one.

• The community assignment as side information is the main reason behind the
difference of the posterior distribution of the optimal mapping, which leads to
different MAP estimates, and thus different cost functions in the two cases. Note

1It is easy to verify that operator ∥ · ∥⌊F⌋ satisfies the definition of norm.
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that the cost function for bilateral de-anonymization cannot be calculated in uni-
lateral case since we have no knowledge on the community assignment of G2.

• Although under similar conditions, minimizing the cost function asymptotically
almost surely recovers the correct mapping in both cases, the lack of community
assignment in unilateral de-anonymization impose asymmetry in its cost function
and render the cost function harder to (approximately) minimize, as justified by
our stronger complexity-theoretic result.

• In terms of the proposed algorithms, the additive approximation algorithms for
both bilateral and unilateral de-anonymization share the same guarantee. How-
ever, the convex optimization-based algorithm has been shown to yield condi-
tionally yield optimal solutions only for bilateral de-anonymization.

• The empirical results demonstrate that in all the contexts, our algorithms success-
fully de-anonymize larger portion of users when provided with bilateral commu-
nity information.
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Chapter 5 Experiments

5.1 Experiments

In this section, we present our experimental validation of our theoretical results
and the performances of the proposed algorithms. We first introduce our experimental
settings and provide detailed results subsequently.

5.1.1 Experimental Settings

5.1.1.1 Experiment Datasets

Recall that the two key assumptions made in the modeling are that the underlying
social network is generated by the stochastic block model and that the published and
the auxiliary networks are sampled from the underlying network. To validate our the-
oretical findings and meanwhile evaluate the proposed algorithms in real contexts, we
conduct experiments on three different types of data sets, with each one closer to the
practical situations than the last one by gradually relaxing the assumptions.

(i) Synthetic Dataset: Following the stochastic block model, we generate three
sets of networks with Poisson, power law and exponential expected degree distributions
respectively by properly assigning the community affinity values {p}. The size of each
community is determined by adding a slight variation to the average community size,
which equals to the number of nodes divided by the number of communities. For each
set of networks, we take the sampling probabilities of the published and the auxiliary
networks as s1 = s2 ranging from 0.3 to 0.9. As this dataset strictly observes the
assumptions of our models, it provides direct validations to our theoretical results.

(ii) Sampled Social Networks: The underlying social networks are extracted
from LiveJournal online social network [33], with the communities following from
the ground-truth communities in LiveJournal and the affinity values assigned to be
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proportional to the ratio of the edges between the communities over the number nodes
in the communities. The published and the auxiliary networks are sampled from the
underlying networks, again, with the sampling probabilities s1 = s2 ranging from 0.3
to 0.9. This “semi-artificial” dataset lies in the middle of synthetic datasets and true
cross-domain networks, which enables us to measure the robustness of our theoretical
results against the restrictions imposed on the underlying social network.

(iii) Co-authorship Networks: We extract four co-authorship networks in differ-
ent areas from Microsoft Academic Graph (MAG) [20]. From those, we construct a
group of networks with equivalent sets of nodes (2053 nodes in each set) and set up the
correspondence of nodes as ground-truth based on the unique identifiers of authors in
MAG. The communities are assigned based on the institution information of the authors
(the affinity values in this case are assigned as in Sampled Social Networks). The four
networks are then combined into six pairs, in which one is set as the published network
and the other as the auxiliary network. Without relying on any artificial assumptions
on how the published and auxiliary networks are generated, these procedures enable
us to construct most genuine scenarios of de-anonymization from cross-domain social
networks. This key feature renders the dataset a touchstone for the applicability of our
proposed algorithms.

(iv) Xinzhe’s Ego Networks: We extract two small ego networks of 29 users from
Xinzhe Fu’s (The First Author) Wechat and Weibo data. The edges in both networks
represent “friend” relation (two-way following in the case of Weibo). We partition the
users into four communities based on prior knowledge such as high school classmates,
college classmates, labmates, etc. The data were collected under the consent of the
involved users and do not violate the users’ privacy. The networks are encoded as
undirected graphs. The Weibo network has 29 nodes and 42 edges while the Wechat
network has 29 nodes and 107 edges.

Note that our empirical results in the first two datasets are respectively obtained
by taking the average from 50 repetitive experiments. The statistics of the first three
datasets are summarized in Table 5–1.
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Dataset Degree Distribution Source # of Nodes # of Edges # of Communities

Synthetic Networks
power law synthetic 500-2000 ≈500-100000 10-40
Poisson synthetic 500-2000 ≈500-100000 10-40

exponential synthetic 500-2000 ≈500-100000 10-40

Sampled Social Networks SNAP[1] 500-2000 ≈1000-40000 10-40

Co-authorship Networks MAG[20] ≈ 2000 ≈ 8000 ≈ 60

Table 5–1: Summary of datasets in experiments

5.1.1.2 Algorithms Involved in Comparisons

For both bilateral and unilateral de-anonymization, we run genetic algorithm (GA-
BI,GA-UNI) in hope of finding exact minimizer of our cost functions, i.e., the opti-
mal solution of BI-MAP-ESTIMATE and UNI-MAP-ESTIMATE problems. In both
de-anonymization cases, we also evaluate the performance of our two proposed al-
gorithms: the additive approximation algorithm (AA-BI,AA-UNI) and the convex
optimization-based algorithm (CO-BI,CO-UNI).

5.1.1.3 Performance Metrics

The two performance metrics we calculate in the experiments are the accuracy of
the mappings yielded by the algorithms and the values of the cost function ∆π of the
mappings. The accuracy of a mapping π is defined as the portion of the nodes that π
maps correctly (as the ground-truth correct mapping) over the total number of nodes.
Since we are not interested in the absolute values of the cost function of the mapping, we
calculate the relative value with respect to the cost function of the mappings produced
by GA, i.e., for a mapping π and the mapping πGA produced by GA, π’s relative value
is computed as (∆π−∆πGA

)/∆πGA
. Due to space limitations, we defer all the graphical

representations of results on the mappings’ cost function to Appendix 5.2.

5.1.2 Experiment Results

5.1.1.1 Synthetic Networks

We plot the performance of the aforementioned algorithms on synthetic networks
with {500, 1000, 1500, 2000} number of nodes in Figures 5–1 and 5–4, based on which

36



DE-ANONYMIZATION OF SOCIAL NETWORKS WITH COMMUNITIES

we have the following observations: (i) Both GA-BI and GA-UNI exhibit good perfor-
mance, achieving a de-anonymization accuracy close to 1 when the sampling probabil-
ity is large in networks with Poisson and power law degree distribution; (ii) The relative
value of the correct mapping (TRUE-BI,TRUE-UNI) is fairly small. Hence, we con-
clude that, when the sampling probability is large, the cost function based on MAP
estimation is an effective metric in both bilateral and unilateral de-anonymization, and
is applicable to a wide range of degree distribution, which justify our theoretical results
on the validity of the MAP estimate. However, when the sampling probability is small
(e.g. s = 0.3, 0.4) or the expected degree distribution has large variation (exponen-
tial distribution), the accuracy of GA degrades substantially, only achieving a value of
less than 0.4. This can be attributed to the fact that when the sampling probability be-
comes small, the published and the auxiliary networks have lower degree of structural
similarity and the parameters deviate from the conditions in our theoretical results.

In terms of the two algorithms we propose, we can see that they obtain good per-
formance with respect to both approximately minimizing the cost function and un-
raveling the correct mapping, with AA superior than CO especially in low-sampling-
probability area. Note that although the relative value of the two algorithms is large
in high-sampling-probability area, this does not imply the poor performance of the
algorithms but is mainly due to the optimal ∆π becoming considerably small as the
similarity of G1 and G2 grows high.

5.1.1.2 Sampled Social Networks

Figures 5–2 and 5–5 plot our empirical results on the second datasets where the
published and auxiliary networks are sampled from real social networks with the num-
ber of nodes set as {500, 1000, 1500, 2000}.

As demonstrated by Figures 5–2 and 5–5, although in this case the underlying
social networks do not follow the stochastic block model, through minimizing the cost
function we can still reveal a large proportion (up to 80%) of the correct mapping,
which demonstrates the robustness of the cost function we proposed. Furthermore, the
two algorithms AA and CO still achieve reasonable accuracy of up to 0.7, which is
not surprising due to that the cost function they seek to minimize is still effective in
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Figure 5–1: The accuracy of the algorithms on synthetic datasets with different
degree distributions.
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this case. However, a little defect is that the accuracy of AA can be higher than GA at
some points. This reflects that the deviation of the real life social networks from the
stochastic block model more or less influences the quality of the MAP estimate.
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Figure 5–2: The accuracy of the algorithms on Sampled Social Networks

5.1.1.3 Cross-domain Co-authorship Networks

As stated in experimental setup, we extract four groups of cross-domain co-authorship
networks named as Networks A, B, C, D and thus construct six scenarios for social
network de-anonymization1. We evaluate the performance of the algorithms on the six
scenarios and show the results in Figures 5–3 and 5–6. The figures present several
observations and implications: (i) the proposed cost functions still serve as meaning-
ful media for recovering the correct mapping even in realistic scenarios as the relative
value of the correct mapping is close to zero and GA achieves an average accuracy
of 67.3% in bilateral case and 59.0% in unilateral case; (ii) The two proposed algo-

1We do not distinguish the interchange of the published and auxiliary networks as different scenarios.
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rithms still enjoy reasonable accuracy, with AA successfully de-anonymizing 60.8%
of nodes in bilateral case and 51.5% of nodes in unilateral case, and CO successfully
de-anonymizing 44.4% of nodes in bilateral case and 35.9% of nodes in unilateral case.
Therefore, the two algorithms can be qualified as effective methods for seedless so-
cial network de-anonymization, which implies that the privacy of current anonymized
networks still suffers from attacks of adversaries even when pre-mapped seeds are un-
available; (iii) The performance of CO is most susceptible to the structure of networks
among all three algorithms as the standard deviation of its accuracy on the six scenarios
are above 3.5% (3.51% for CO-BI, 3.81% for CO-UNI) while the counterparts of the
other two algorithms are below 3.0%.

5.1.1.4 Xinzhe’s Ego Networks

According to our experiment results, it turns out that on this set of practical but
small datasets, the proposed de-anonymization algorithms has non-trivial mapping ac-
curacy. The accuracies of GA, AA and CO are 27.6%, 20.6%, 13.7% respectively,
which are much higher than random guessing. However, the accuracies are much lower
than previous ones, which is mainly due to the peculiarity and sparsity of Xinzhe’s ego
network. An important implication is that we can actually use the proposed algorithm
to construct correspondence between a user’s Wechat account and Weibo account, rais-
ing privacy issues and also interesting side-effects.

5.1.1.5 Significance of Community Information

A notable phenomenon from all the experiments is that the accuracy of the algo-
rithms in bilateral de-anonymization is higher than that in unilateral de-anonymization,
especially for AA and CO. According to the experimental results, the gap is at least
3.5% in each setting and can reach up to 15% in the worst case. This, from an empiri-
cal point of view, demonstrates the importance of the community information on social
network de-anonymization.
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Figure 5–3: The accuracy of the algorithms on Cross-domain Co-authorship Net-
works
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5.2 Supplementary Experiment Results

In this section we present graphical results on the relative value of the cost function
of the mappings produced by the algorithms. Recall that for a mapping π and the
mapping πGA produced by GA algorithm, the relative value of the cost function of π
equals to (∆π −∆πGA

)/∆πGA
.

Figures 5–4, 5–5 and 5–6 demonstrate the results on the relative value of cost
function produced by mappings in the synthetic datasets, sampled social networks and
cross-domain co-authorship networks respectively.
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Figure 5–4: The relative value of the cost function of the mappings produced by
the algorithms on synthetic datasets with different degree distributions.
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Figure 5–5: The relative value of the cost function of the mappings produced by
the algorithms on Sampled Social Networks
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Figure 5–6: The relative value of the cost function of the mappings produced by
the algorithms on Cross-domain Co-authorship Networks
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Chapter 6 Conclusion

In this paper, we have presented a comprehensive study of the community-structured
social network de-anonymization problem. Integrating the clustering effect of underly-
ing social network in our models, we have derived a well-justified cost function based
on MAP estimation. To further consolidate the validity of such cost function, we have
shown that under certain mild conditions, the minimizer of the cost function indeed
coincides with the correct mapping. Subsequently, we have investigated the feasibility
of the cost function algorithmically by first proving the approximation hardness of the
optimization problem induced by the cost function and then proposing two algorithms
with their respective performance guarantee by resolving the interweaving of cost func-
tion, network topology and candidate mappings through relaxation techniques. All our
theoretical findings have been empirically validated through both synthetic and real
datasets, with a notable dataset being a set of rare true cross-domain networks that
reconstruct a genuine context of social network de-anonymization.
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Appendix A Supplementary Technical Materials

A.1 Proof of Theorem 4.1

The method we use here is similar to that in [8]. Recall that for a mapping π, we
define ∆π =

∑n
i≤j wij|1{(i, j) ∈ E1}−1{π(i), π(j) ∈ E2}|. Then the proof can be

briefly divided into two major steps. The first one is to derive an upper bound for the
expectation of the number of (incorrect) mappings π’s with ∆π ≤ ∆π0 . The second
one is to show that the derived upper bound converges to 0 under the conditions stated
in the theorem, as n → ∞. Based on that, the proof can be concluded as the number
of π’s with ∆π ≤ ∆π0 goes to 0, i.e., the correct mapping π0 is th unique minimizer
for ∆π as n → ∞. Now we turn to the first step as follows:

1. Derivation of the Upper Bound: We define Πk as the set of all the map-
pings in Π that map k nodes incorrectly. Obviously, Π0 = {π0}. Now we have
|Πk| ≤

(
n
k

) (
k!
2

)
≤ nk. We subsequently define Sk as a random variable represent-

ing the number of incorrect mappings in Πk whose value of cost function is no larger
than ∆π0 . Formally, Sk is given by Sk =

∑
π∈Πk

1{∆π ≤ ∆π0}. Summing over all
k, we denote S =

∑n
k=2 Sk as the total number of incorrect mappings that induce no

larger cost function than the correct mapping π0. The mean of S can be calculated as:

E[S] =
n∑

k=2

E[Sk] =
n∑

k=2

∑
π∈Πk

E[1{∆π ≤ ∆π0}]

=
n∑

k=2

∑
π∈Πk

Pr{∆π −∆π0 ≤ 0}

≤
n∑

k=2

nk max
π∈Πk

Pr{∆π −∆π0 ≤ 0}. (A–1)

For a mapping π, let Vπ be the set of vertices that it maps incorrectly. Then,
we define Eπ = Vπ × V , i.e., the set of node pairs with one or two vertices mapped
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incorrectly under π. For a π ∈ Πk, we have |Eπ| = nk − k2

2
− k

2
. As every node pair

in V × V − Eπ is mapped identically in π and π0, they contribute equally to ∆π0 and
∆π respectively. Next, we define two random variables for π as

Xπ =
∑

(i,j)∈Eπ

wij|1{(i, j) ∈ E1} − 1{(π(i), π(j) ∈ E2}|,

Yπ =
∑

(i,j)∈Eπ

wij|1{(i, j) ∈ E1} − 1{(i, j) ∈ E2}|.

It is easy to verify that ∆π − ∆π0 = Xπ − Yπ for all π, where Yπ is the value of cost
function contributed by node pairs in Eπ under the correct permutation. For a node
pair (i, j), the probability that it contributes to Yπ equals to pc(i)c(j)(s1 + s2 − 2s1s2).
Therefore, Yπ is the weighted sum of independent Bernoulli random variables.

For Xπ, assume that π has ϕ ≥ 0 transpositions1, then each transposition induces
one invariant node pair in Eπ. The remaining node pairs are not invariant under π,
i.e., they are mapped incorrectly under π. Each node pair (i, j) contributes wij to Xπ

if (i, j) ∈ E1 and (π(i), π(j)) /∈ E2 or vice versa. This happens with probability
pc(i)c(j)(s1 + s2 − 2pc(i)c(j)s1s2). Note that the random variable for each node pair is
not independent. As in [8], we conservatively ignore the positive correlation and get
a lower bound of Xπ, which is the weighted sum of independent random Bernoulli
variables. Also, since transpositions in π can only occur in nodes in Vπ, we have that
ϕ ≤ k/2. Now, denote Xij as a Bernoulli random variable with mean pc(i)c(j)(s1+s2−
2pc(i)c(j)s1s2) and Yij as a Bernoulli random variable with mean pc(i)c(j)(s1+s2−2s1s2)

as Yij . Based on the above manipulations, we can get a lower bound ofXπ and an upper
bound of Yπ as follows:

Xπ

(stoch.)2

≥
∑

(i,j)∈Eπ\ϕ

wijXij ≜ X ′
π

Yπ

(stoch.)
≤

∑
(i,j)∈Eπ

wijYij ≜ Y ′
π.

1If a mapping π has a transposition on i, j, it means that π(i) = j and π(j) = i.
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Therefore, we can use the probability of event {Xπ′ − Yπ′} ≤ 0 to upper bound
the probability of event {Xπ − Yπ} ≤ 0. Denoting λX as the expectation of X ′

π and
λY as the expectation of Y ′

π, the bound we use for Pr{Xπ − Yπ ≤ 0} is summarized
in the following lemma.

Lemma A.2. For all mapping π, random variables Xπ and Yπ satisfy that

Pr{Xπ − Yπ ≤ 0} ≤ 2 exp
(
−(λX − λY )

2

12(λX + λY )

)
(A–2)

Proof. First, we have that for all π

Pr{Xπ−Yπ ≤ 0} ≤ Pr{X ′
π − Y ′

π ≤ 0}

≤ Pr
{
Y ′
π ≥ λX + λY

2

}
+ Pr

{
X ′

π ≤ λX + λY

2

}
Then we invoke Lemma A.3 (Theorems 1 and 2 in [36]), which presents Chernoff-

type bounds for weighted sum of independent Bernoulli variables.

Lemma A.3. (Theorems 1 and 2 in [36]) Let a1, a2, . . . , ar be positive real numbers
and let X1, . . . , Xn be independent Bernoulli trials with E[Xj] = pj . Defining random
variable Ψ =

∑r
j=1 ajXj with E[Ψ] =

∑r
j=1 ajpj = m, we have

Pr{Ψ ≥ (1 + δ)m} ≤ exp
(
−mδ2/3

)
,

P r{Ψ ≤ (1− δ)m} ≤ exp
(
−mδ2/2

)
.

Using Lemma A.3 by treating X ′
π and Y ′

π as the weighted (wij) sum of random
variables Xij (Yij), we obtain that

Pr
{
Y ′
π ≥ λX + λY

2

}
≤ exp

(
−(λX − λY )

2/12(λX + λY )
)
,

P r
{
X ′

π ≤ λX + λY

2

}
≤ exp

(
−(λX − λY )

2/8(λX + λY )
)
.

2
(stoch.)

≥ denotes stochastic domination
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Hence, we have

Pr{Xπ − Yπ ≤ 0} ≤ 2 exp
(
−(λX − λY )

2

12(λX + λY )

)
.

We now proceed to derive lower bound for the numerator and upper bound for the
denominator in the exponent of the RHS of Inequality (A–2) to obtain the upper bound
of the RHS. By standard calculation, we have

(λX − λY )
2

≥

2
∑

(i,j)∈Eπ\ϕ

wijpc(i)c(j)(1− pc(i)c(j))s1s2 −
kwβ(s1 + s2 − 2s1s2)

2

2

≥k2

4

[
4

(
n− k

2
− 1

)
wα(1− β)s1s2 − wβ(s1 + s2 − 2s1s2)

]2
,

and

λX + λY

≤
∑

(i,j)∈Eπ

[wijpc(i)c(j)(s1 + s2 − 2s1s2)

+ wijpc(i)c(j)(s1 + s2 − 2pc(i)c(j)s1s2)]

≤2
∑

(i,j)∈Eπ

wijpc(i)c(j)(s1 + s2)

≤2

(
nk − k2

2
− k

)
wα(s1 + s2).

Therefore, by Lemma A.2, Pr{Xπ − Yπ ≤ 0} can be upper bounded by
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Pr{Xπ − Yπ ≤ 0} ≤ 2 exp
[
−(λX − λY )

2/12(λX + λY )
]

≤2 exp

{
−

k2
[
4(2n−k+2

2
)wα(1− β)s1s2 − wβ(s1 + s2 − 2s1s2)

]2
96(nk − k2

2
− k)wα(s1 + s2)

}
(A–3)

≤ exp

{
−

k2
[
(n− k

2
− 1)wα(1− β)s1s2

]2
6(nk − k2

2
− k)wα(s1 + s2)

}
, (A–4)

where Inequality (A–4) follows from the conditions stated in the theorem.

2. Convergence of the Upper Bound: Now, we further show that the derived
upper bound converges to 0 as n → ∞. Due to the monotonicity of wij with respect to
pc(i)c(j), we easily obtain thatw = log

(
1−α(s1+s2−2s1s2)

α(1−s1)(1−s2)

)
andw = log

(
1−β(s1+s2−2s1s2)

β(1−s1)(1−s2)

)
.

Hence, w and w can be determined by α, β, s1, s2.

Plugging Inequality (A–4) into Inequality (A–1), we have

E[S] ≤ 2
n∑

k=2

nk · exp

(
−
k2
[
(n− k

2
− 1)wα(1− β)s1s2

]2
6(nk − k2

2
− k)wα(s1 + s2)

)

≤
∞∑
k=2

exp

{
k

(
−
[
(n− k

2
− 1)wα(1− β)s1s2

]2
6(n− k

2
− 1)wα(s1 + s2)

+ logn

)}

≤
∞∑
k=2

exp

{
k

(
−
[
(n− k

2
− 1)w2α2(1− β)2s21s

2
2

]
6wα(s1 + s2)

+ logn

)}

Since α, β → 0, logα
logβ ≤ γ, we also have w

w
≤ γ′ = Θ(γ) and w = Θ(log 1

α
) where

γ′ may be a function of γ. Hence, we have for some constant C,

E[S] ≤
∞∑
k=2

exp

{
k

(
−
[
Cnα2(1− β)2s21s

2
2 log 1

α

]
γ′2α(s1 + s2)

+ logn

)}
.

Therefore, if α(1−β)2s21s
2
2 log(1/α)

s1+s2
= Ω(γ log2 n

n
) + ω( 1

n
), the sum of the above geo-

metric series goes to zero as n goes to infinity. Therefore, E[S] → 0. Hence, with the
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above conditions in Theorem 3.1.1 satisfied, the MAP estimate π̂ coincides with the
correct mapping π0 with probability goes to 1 as n goes to infinity.

A.2 Superiority of Our Cost Function

In this section, we compare our cost functions over previous ones proposed in the
literature. Specifically, we demonstrate the superiority of our cost function in bilateral
case over the most similar previous cost function proposed by Pedarsani et al. [8].
Recall that the cost function derived in [8], which we denoted as ∆′

π, is

∆′
π =

n∑
i≤j

|1{(i, j) ∈ E1} − 1{(π(i), π(j)) ∈ E2}| .

The advantages of our cost function is two-fold. First, ∆′
π, as an unweighted ver-

sion of our proposed∆π, corresponds to the MAP estimator in bilateral de-anonymization
when the underlying social network is an Erdős-Rényi graph. Therefore, our cost func-
tion in a sense, subsumes the cost function in [8] as a special case in bilateral de-
anonymization, and has more generality when the underlying network is non-uniform
or the adversary only possesses unilateral community information. Second, we show
that in certain cases, the correct mapping π0 is the unique minimizer of ∆π, while it
is not the unique minimizer of ∆′

π. Indeed, when the underlying social network is as
shown in Figure A–1, and the sampling probabilities s1 = s2 ≤ γ′

2
, with γ′ defined as

in the proof of Theorem 3.1.1, we have that the unique minimizer of ∆π asymptotically
almost surely coincides with π0 by Theorem 3.1.1. However, as ∆′

π does not count the
weight of node pairs, in each realization of G1 and G2, there exists a mapping π′ that
permutes π0 = arg minπ∈Π ∆π on some nodes in C3 with ∆′

π′ ≤ ∆π0 . Therefore, in
this case, the minimizer of ∆′

π does not equals to π0, which demonstrates that ∆π has
wider application.
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1C 2C

3C

Figure A–1: An example demonstrating the superiority of our cost function: the
sizes of the communities |C1|, |C2| equal to some constant C and |C3| = n − 2C,
the affinity values p11 = p22 = p33 = p12 = p23 = 5 logn/n, p13 = logn/

√
n, the

sampling probabilities s1 = s2 = 2/3

A.3 Upper Bound of Inequality (19)

To present the upper bound of Inequality (3–19), we begin with bounding ∥D−1∥
and ∥N∥. First, by the special block-diagonal structure of D, we readily have that D−1

is also block diagonal with each n × n diagonal block as D−1
i , which is the identity

matrix with the ith row replaced by 1
vi (−v1, . . . ,−vi−1, 1,−vi+1, . . . ,−vn). We have

∥D−1
i ∥ ≤ 1 +

√
nϵ1
ϵ2

, for all i.

Hence we have,

∥D−1∥ ≤ max
i=1...n

∥D−1
i ∥ ≤ 1 +

√
nϵ1
ϵ2

. (A–5)
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Similarly, we obtain

∥N∥2 ≤ max
i,j=1...n

∥Ni∥2F = max
i=1...n

∑
jk

(sijk + tijk + wi
jk +

rij
n
)2

≤ 4

(
max
i=1...n

∑
k

(
sijk
)2

+ max
i,j=1...n

∑
jk

(
tijk
)2

+ max
i,j=1...n

∑
k

(
wi

jk

)2
+ max

i,j=1...n

∑
k

(rij
n

)2)2

.

Next, we bound these the sum of the square of terms sijk, tijk, wi
jk and rij one by one

using the following inequalities.

max
i=1...n

∑
jk

(
sijk
)2

= max
i=1...n

∑
k

1

(λi − λj)4

·
(

Ekj(λj + λk − 2λi)−
vj
vi

Eki(λk − λi)

)2

≤ max
i=1...n

1

δ4

(
4σ
∑
jk

|Ekj|+ 2σ
ϵ1
ϵ2

∑
kj

|Ekj|

)2

≤4σ2

δ4

(
1 + 2

ϵ1
ϵ2

)2

ξ2
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max
i=1...n

∑
jk

(
tijk
)2

= max
i=1...n

∑
jk

1

(λi − λj)4

(
Gkj −

vj
vi

Gki

)2

≤
∑
jk

1

δ4

(
Gkj + 2

ϵ1
ϵ2

Gki

)2

≤ 1

δ4

(
1 + 2

ϵ1
ϵ2

)2

∥G∥2F

≤ 1

δ4

(
1 + 2

ϵ1
ϵ2

)2

ξ4.

max
i=1...n

∑
jk

(
wi

jk

)2
= max

i=1...n

∑
jk

µ2

(λi − λj)4

(
M′

kj −
vj

vi

M′
ki

)2

≤µ2

δ4
max
i=1...n

∑
jk

(∑
k

M′
kj + 2

ϵ1
ϵ2

∑
k

M′
ki

)2

≤µ2

δ4

(
1 + 2

ϵ1
ϵ2

)2

∥M′∥2F

≤µ2

δ4

(
1 + 2

ϵ1
ϵ2

)
M2. (by the orthonomality of U)

max
i,j=1...n

∑
k

(rij
n

)2
= max

i,j=1...n

µ2

n(λi − λj)4
(
vjM′

ii − viM′
ij

)2
≤4ϵ21µ

2

nδ4
∥M′∥2F

≤4ϵ21µ
2

nδ4
M2.

From the above manipulations, we have
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1
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1G 2G

*Gπ

Figure A–2: An example of G∗
π that has the minimum number of edges in Gπ,

which is the set of all realizations of G that are consistent with G1, G2, π. In this
case π = π0.

∥N∥2 ≤ 4

[(
1 + 2

ϵ1
ϵ2

)2(
σ2

δ4
ξ2 +

1

δ4
ξ4 +

µ2

δ4
M2

)
+

4ϵ21µ
2M2

nδ4

]

≤ 5

[(
1 + 2

ϵ1
ϵ2

)2(
σ2

δ4
ξ2 +

1

δ4
ξ4 +

µ2

δ4
M2

)]
, (A–6)

for sufficiently large n. Substituting Inequalities (A–5) and A–6 into (3–19), it
follows that

∥F − I∥F = ∥f − f0∥ ≤

√
n

1−
(
1 +

√
nϵ1
ϵ2

)√
5
δ4

[(
1 + 2 ϵ1

ϵ2

)2
(σ2ξ2 + ξ4 + µ2M2)

]
(
1 +

√
nϵ1
ϵ2

)√
5
δ4

[(
1 + 2 ϵ1

ϵ2

)2
(σ2ξ2 + ξ4 + µ2M2)

] .
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A.4 MAP estimation of Unilateral De-anonymization

In this section, we derive the MAP estimator for unilateral de-anonymization. Re-
call that given G1, G2, c, θ, the MAP estimate π̂ of the correct mapping π0 is defined
as follows

π̂ = arg max
π∈Π

Pr(π0 = π | G1, G2, c,θ), (A–7)

The MAP estimator can be further written as:

π̂ = arg max
π∈Π

∑
G∈Gπ

p(G, π | G1, G2, c,θ), (A–8)

where Gπ is the set of all realizations of the underlying social network that are consistent
with G1, G2 and π. By Bayesian rule, we have

arg max
π∈Π

∑
G∈Gπ

p(G, π | G1, G2, c,θ)

= arg max
π∈Π

∑
G∈Gπ

p(G1, G2 | G, π)p(G, π)

p(G1, G2)

= arg max
π∈Π

∑
G∈Gπ

p(G1, G2 | G, π)p(G)p(π)

= arg max
π∈Π

∑
G∈Gπ

p(G1 | G)p(G2 | G, π)p(G).

Note that we drop parameters c and θ for brevity since their values are fixed. From the
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definitions of the models, we have:

arg max
π∈Π

∑
G∈Gπ

p(G1 | G = g)p(G2 | G, π)p(G)

= arg max
π∈Π

∑
G∈Gπ

n∏
i<j

(1− s1)
|Eij |−|Eij

1 |s
|Eij

1 |
1

·
n∏

i<j

(1− s2)
|Eij |−|Eπ(i)π(j)

2 |s
|Eπ(i)π(j)

2 |
2 ·

n∏
i<j

p
|Eij |
c(i)c(j)(1− pc(i)c(j))

1−|Eij |

= arg max
π∈Π

(
n∏

i<j

(
s1

1− s1

)|Eij
1 |(

s2
1− s2

)|Eπ(i)π(j)
2 |

)

·

(∑
g∈Gπ

k∏
i<j

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

)|Eij |
)

= arg max
π∈Π

n∏
i<j

(
s2

1− s2

)|Eπ(i)π(j)
2 |

·
∑
g∈Gπ

k∏
i<j

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

)|Eij |

=
∑
g∈Gπ

k∏
i<j

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

)|Eij |

,

where |Eij|, |E1|ij, |Eij
2 | take value 0 or 1 indicating whether there exists an edge be-

tween nodes i and j in G,G1, G2 respectively. Note that in the above manipulations,
we frequently eliminate the terms that do not depend on π. Particularly, in the last

step, although the term
(

s2
1−s2

)|Eπ(i)π(j)
2 |

depends on π, the value of the whole product∏n
i<j

(
s2

1−s2

)|Eπ(i)π(j)
2 |

is independent of π itself since it is a bijective mapping.

Now, let G∗
π be the graph having the smallest number of edges in Gπ, which is

equivalent to that G∗
π = (V,E1 ∪ π(E1)). An illustration of G∗

π is provided in Figure
A–2. Denote the set of edges in Gπ∗ as Eπ∗ , with |Eij

π∗ | indicating the number of edges
between i and j. By the definition we have that in Gπ, all the graphs have edge sets that
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are supersets of G∗
π. By summing over all the graphs in Gπ, we have that

π̂ = arg max
π∈Π

n∏
i<j

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

)|Eij
π∗ |

·
n∏

i<j

(
1 +

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

))1−|Eij
π∗ |

,

where the above equality follows from that

∑
g∈Gπ

n∏
i<j

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

)|Eij |−|Eij
π∗ |

=
∑

0≤kij≤1−|Eij
π∗ |

n∏
i<j

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

)kij

=
n∏

i<j

(
1 +

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)

))1−|Eij
π∗ |

.

Then, from the above equation we can further write the MAP estimator as:

arg max
π∈Π

n∏
i<j

(
pc(i)c(j)(1− s1)(1− s2)

1− pc(i)c(j)(s1 + s2 − s1s2)

)|Eij
π∗ |

= arg min
π∈Π

n∏
i<j

(
1− pc(i)c(j)(s1 + s2 − s1s2)

pc(i)c(j)(1− s1)(1− s2)

)|Eij
π∗ |

= arg min
π∈Π

[
|Eij

π∗| log
(
1− pc(i)c(j)(s1 + s2 − s1s2)

pc(i)c(j)(1− s1)(1− s2)

)]
.

Next, by the definition of gπ∗ , we notice that

|Eij
π∗| = ⌈(|E

ij
1 |+ |Eπ(i)π(j)

2 |)
2

⌉.

Hence, by setting wij = log
(

1−pc(i)c(j)(s1+s2−s1s2)

pc(i)c(j)(1−s1)(1−s2)

)
we have
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π̂ = arg min
π∈Π

(
n∑

i<j

wij(1{(i, j) /∈ E1, (π(i), π(j)) ∈ E2}

)

Note that the MAP estimator is not symmetric with regard to G1 and G2. This
stems from the fact that the adversary in this case only has knowledge on the community
assignment function of G1.

A.5 Convexity of the Relaxed UNI-MAP-ESTIMATE

In this section, we prove that the relaxed matrix formulation of the optimization
problem UNI-MAP-ESTIMATE is a convex optimization problem. The relaxed for-
mulation is presented as follows:

mininize ∥W ◦ (�A−B�)∥2⌊F⌋
s.t. ∀i,

∑
i

�ij = 1 (A–9)

∀j,
∑
j

�ij = 1 (A–10)

Obviously, the set of feasible solutions defined by Constraints (A–9) and (A–10) is a
convex set. Then, for the objective function ∥W ◦ (�A − B�)∥2⌊F⌋, according to the def-
inition of operator ∥ · ∥⌊F⌋ it can be interpreted as weighted summation of truncated
quadratic functions of each element of Π with the weights being positive real numbers.
Each truncated function is equivalent to the square of a linear function of an element of
Πwith the part where the elements take positive values truncated. Therefore, each trun-
cated function is convex. It follows that the whole objective function, being a weighted
combination of convex functions, is convex. Thus, we conclude that the relaxed UNI-
MAP-ESTIMATE is a convex optimization problem, the global optima of which can
be found in O(n6) time using the same algorithm as in the bilateral case.
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