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Temporal Correlation of RSS Improves Accuracy of Fingerprinting Localization

基于无线信号时间相关性的室内定位技术研究

摘 要

近年来，利用无线信号强度的指纹室内定位方法是十分热门的研究课题。最近的一项研

究成果提出了一种计算指纹定位精度基本极限的方法：对于给定的定位精度，我们可以

利用似然概率计算出定位结果的可靠性。利用室内位置信息的智能系统拥有广阔的应

用价值，那么高精度的室内定位需求就成了亟待解决的核心问题。因此，一个自然的问

题就是：我们能否从根本上进一步提高指纹定位方法精度的极限呢？在本论文中，我们

从理论上证明了利用无线信号强度的时间相关性可以提高指纹定位方法的精度。特别

地，我们创建了一个广义的无线电波传播模型，加入信号时间相关因素后形成一个更为

完整的指纹定位理论框架，并基于此揭示了无线信号强度的时间相关性对定位可靠性

的影响。在此理论模型中，我们定义了定位系统中采样空间，物理空间及时间序列的映

射关系和数学表示，并从代数几何的角度详细讨论了信号时间相关性提高定位精度的

根本原因和物理意义。同时，我们还进一步探讨了定位可靠性积分区间在高维采样空间

中的转换方法和空间描述。通过搭建实际的室内定位系统，实验结果充分证实了理论分

析。我们不仅设计了利用时间相关信息的粗细粒度结合的定位算法，还做对照实验找到

了最合理的系统关键参数。最后的实验结果显示，合理利用信号的时间相关性可以将定

位精度提高达 13%。

关键词：指纹定位，理论建模，时间相关性
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TEMPORAL CORRELATION OF RSS IMPROVES
ACCURACY OF FINGERPRINTING LOCALIZATION

ABSTRACT

Indoor localization based on RSS fingerprinting approach has been attracting many research

efforts in the past decades. Recent study presents a fundamental limit of the fingerprinting

localization approach: given requirement of estimation accuracy, reliability of the user’s lo-

calization result can be derived. As highly accurate indoor localization is essential to enable

many location based services, a natural question to ask is: can we further improve the accu-

racy of the localization scheme fundamentally? In this paper, we theoretically show that the

temporal correlation of the RSS can improve accuracy of the RSS fingerprinting based indoor

localization. In particular, we construct a theoretical framework to evaluate how the temporal

correlation of the RSS can influence the reliability of location estimation, which is based on a

newly proposed radio propagation model considering the time-varying property of signals from

Wi-Fi APs. Such a theoretical framework is then applied to analyze localization in the one

dimensional physical space, which reveals the fundamental reason why performance improve-

ment of localization can be brought by temporal correlation of the RSS. We further extend our

analysis to high-dimensional scenarios and mathematically depict the boundaries in the RSS

sample space, which distinguish one physical location from another. Moreover, we develop an

algorithm to utilize temporal correlation of the RSS to improve the location estimation accu-

racy, where the process for choosing key design parameters are provided through experiments.

Experiment results show that the localization accuracy can be improved by up to 13% with

appropriate leveraging the RSS temporal correlation.

KEY WORDS: Fingerprinting Localization, Theoretical Modeling, Temporal Correlation
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Chapter 1 Introduction and Related Work

1.1 Introduction

Indoor localization based on Received Signal Strength (RSS) fingerprinting approach has

been attracting many research efforts in the past decades, where the basic idea is to first con-

struct RSS fingerprints database during the training phase, and then perform location estimation

by matching the user’s reported fingerprints in the database during the localization phase [1].

Indoor localization systems based on the approach have been developed with different flavors.

Embedded sensors of mobile devices are exploited to improve accuracy of the location estima-

tion [2, 3], crowdsourcing paradigm is used to reduce the cost of site survey in the training phase

[4], and machine learning algorithms are leveraged to shorten the delay of localization process

[5, 6, 7].

The spring-up of RSS fingerprinting based indoor localization systems promotes efforts to

study performance bounds of such systems both empirically and theoretically. Empirical stud-

ies evaluate performance of localization systems with comprehensive experiments. Liu et al.

present their experimental results showing that the location estimation error could be over 6m

[2]. Chandrasekaran et al. provide empirical quantification of accuracy limits of RSS local-

ization, which is based on extensive experimental results conducted over a uniform testbed [8].

Such results could be helpful references for system implementation but hardly provide insight

into the RSS fingerprinting approach. Some theoretical studies about localization performance

bound are based on Cramér-Rao Bound (CRB) analysis [9, 10, 11]; however, that framework is

based on the Log-Distance Path Loss (LDPL) radio propagation model [1, 8], which however

has been proved inaccurate in the indoor localization scenarios [12].

Recently, Wen et al. present a theoretical investigation on RSS fingerprinting based indoor

localization, which reveals fundamental limits of the localization methodology [13]. Specifi-
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cally, the work derives a close-form expression for calculating the probability that a user can be

correctly localized in a region of certain size, which is termed as localization reliability. The

basic idea of the derivation is to build a probability space induced from RSS samples obtained

from the training stage. The location determination process can be regarded as a mapping from

the sample space to the physical space; therefore, the probability a user can be correctly local-

ized in a certain region is equal to the probability that certain outcomes of RSS measurements

appear, so that the localization system can determine the user’s location to be in the region.

As highly accurate indoor localization is essential to enable many location based services, a

natural question to ask is: can we further improve the performance of the localization scheme

fundamentally?

In this paper, we show that the temporal correlation of the RSS can improve accuracy of

RSS fingerprinting based indoor localization. We first construct a theoretical framework to ana-

lyze how the temporal correlation of the RSS can influence the accuracy of location estimation,

which is based on a newly proposed radio propagation model considering the time-varying prop-

erty of signals from given Wi-Fi Access Points (APs). Based on such a model, we build a new

sample space from the training phase, where each outcome in the space is extended with a new

temporal dimension. With such a framework, we can leverage new extra fingerprints to estimate

the user’s location, which are actually the temporal correlation of the RSSes observed from the

APs.

We then apply the theoretical framework to analyze the localization process in the one-

dimensional physical space, which reveals the fundamental reason why performance of local-

ization can be improved by leveraging temporal correlation of the RSS. An interesting finding is

that: the boundary in the sample space used to distinguish one physical location from another,

in fact should be one edge of hyperbola, instead of a line as believed in most of the work in

the literature; moreover, we find that the curvature of the hyperbola is related to the correlation

of the RSS in the sample space. Such finding can fundamentally improve accuracy of location

estimation of the RSS fingerprinting based system.

We extend our analysis to high-dimensional scenarios, where high temporal and sample

space dimensions, and two-dimensional physical space are taken into account. The major chal-
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lenge for the high-dimensional case is to deal with the complicated relationship between the lo-

cation in the physical space and the corresponding temporal correlation of the RSS in the sample

space. We firstly derive a transformation matrix, which represents the linear affine transforma-

tions in Euclidean space like translation, rotation, and shearing, to deal with the challenge. We

theoretically prove that the boundary in the sample space dividing two physical locations is a

high-dimensional hyperbolic plane. To be more precisely, we propose to approximate the co-

variance matrix of the RSS in a location with a simplified matrix, which enables finding the

boundaries that are asymptotically equivalent to the original ones. We then mathematically de-

pict the boundaries in the sample space that distinguish the one physical space from another in

the high temporal, sample space and physical space dimensions.

Further, we develop an algorithm to improve performance of the location estimation utiliz-

ing temporal correlation of the RSS. The basic idea is using the mean of the RSS to find a list of

candidate locations the user could be currently at, and then leveraging the temporal correlation

to choose the best estimation on the list. We conduct experiments to show the feasibility of the

algorithm and choose key design parameters for the algorithm. We also apply the algorithm in

the practical location estimation process, and the results show that the localization accuracy can

be improved by up to 13% with appropriate leveraging the RSS temporal correlation.

The remainder of the paper is organized as follows. Section 1.2 presents related work.

Chapter 2 illustrates the service model. Chapter 3 presents our analysis of localization with

one-dimensional physical space, sample space and two-dimensional temporal space. Chapter 4

shows how to extend our analysis to higher dimensional cases. Chapter 5 mathematically de-

picts boundaries in the sample space to distinguish one physical location from another. Chapter 6

presents a localization algorithm leveraging the temporal correlation to improve accuracy of lo-

cation estimation. Chapter 7 presents trace-driven simulations, system setups and experimental

results. The conclusion remarks and future work are provided in the Summary part.
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1.2 Related Work

Recently communication systems increasingly rely on Location-based Services (LBS),

such as healthcare monitoring [14], personalized information delivery [15] and so on. While

outdoor localization services are well served by Global Positioning System (GPS) for decades,

indoor localization still remains an open problem because of complicated indoor environments.

The reflections from indoor obstacles, the delay of signal readings, the non-line-of-sight (NLOS)

propagations all lead to a multi-path signal profile [16], which make the indoor positioning prob-

lem more challengeable than that in outdoor scenarios.

To tackle the indoor positioning task, many indoor localization techniques and sophisti-

cated schemes are developed utilizing deployed sensors [17], RFID [18], Bluetooth [19], in-

frared transceivers [20], etc. However, considering the deploying and maintaining costs, these

methods are inferior to the Wireless Local Area Networks (WLAN) positioning approaches.

Such WLAN localization technologies can roughly categorized into two groups: the determin-

istic methods – Angle of Arrival (AOA) [21], Time of Arrival (TOA) [22] or Time Difference

of Arrival (TDOA) [23], and the probabilistic methods – Fingerprinting method [6, 7, 9].

1.2.1 Overview of WLAN Fingerprinting Localization

Among all the aforementioned positioning schemes, fingerprinting method has gathered

much attention. The basic idea of fingerprinting approach can be described as two phases shown

as Fig. 1–1. First in the offline phase, we divide the physical area into grids and make them as

location Reference Points (RP). And then collect a number of RSSes of all detected WLAN

APs at each reference point to make the RSS profiles as radio map. On the other hand, the

online phase is to estimate the user’s location by matching the request measurement and radio

map. Typically, there are many positioning algorithms for the online localization phase, like

k-Nearest Neighbor (kNN), Machine Learning (ML), Compressive Sensing (CS), etc.

Take the Fig. 1–1 for a specific example. There are four reference points and three visible

WLAN access points in this office area. Notice that fingerprinting techniques do not rely on

known AP positions and do not attempt to get AP-to-user distances from RSS profiles. In the
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RSS at Location 1

Fingerprint 

Collection

Fingerprint 

Database

RSS at Location 2

RSS at Location 3 RSS at Location 4

(a) Offline Training Phase of Fingerprinting Localization System

Fingerprint 

Database

Fingerprint Location i
Location of User

RSS of User

(b) Online Localization Phase of Fingerprinting Localization System

Figure 1–1: Two Phases for Fingerprinting Localization Systems

offline phase, we can use smartphones to collect the RSS fingerprints at all reference locations.

And then send the fingerprint collection to the database. The raw RSS data would be prepro-

cessed to make a radio map, typically we use the mean value of the RSSes of each AP to fit

Gaussian distribution as the radio map. When a user wants to find where he is and send a re-

quest message with tested RSSes to the server, the RSS data will be compared with the database

and find the most probable one reference point. Finally the system sends back the position of

the proposed RP to the user.

There are many challenges for the fingerprint localization approach. First of all, as men-

tioned before, in such complicated indoor circumstance, the reflection, obstruction and non-

line-of-sight propagation lead to a multipath signal profile [16], which makes the user’s loca-

tion indirectly predictable from RSS data. Second, the signal strength of an AP fluctuate itself

randomly. In addition to the power control and frequency management policy, all of these make

their recognition and association with RPs more complex. Third, although mostly we assume

the RSS fingerprints is Gaussian or Multi-Gaussian distributed, the actual distribution is more

likely non-Gaussian, skewed, multimodal and time varying. What’s more, there are still some

other influential factors, like the different versions of users’ smartphones, the decay of reading
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signals, the motion of pedestrian, all of which make the RSS profile inconsistent.

To tackle the aforementioned challenges and improve the localization accuracy, increasing

number of studies focus on all kinds of problems in fingerprinting localization system. In order

to save the cost of arduous fingerprint collection and indoor map drawing jobs, someone use

robots to do it automatically. Rai et al. present Zee [24] to utilize crowdsourcing technology

to collect the training data without any explicit effort on the part of users. Some other works

exploit more from the supplemental sources of information, like the UnLoc system developed

by Wang et al. [25]. They use mobile devices to sense the identifiable signatures as natural

landmarks, like elevator. With the help of dead-reckoning schemes, they can realize unsuper-

vised indoor localization system with little deployment. Another exciting work of Kumar et al.

named Ubicarse [26], which enables handheld devices to emulate large antenna arrays using

a new formulation of Synthetic Aperture Radar (SAR) and make centimeter-level localization

accuracy with zero start-up cost.

Towards the WLAN positioning algorithms, Youssef et al. [27] proposed one of the earliest

fingerprinting schemes. They select a subset of the strongest APs and this is also common these

days. Kushki et al. [28] proposed a kernel-based WLAN positioning scheme utilizing spatiality

information to improved positioning results. Recently Compressive Sensing (CS) approach [29]

leveraging sparse signal processing techniques gets much more popular.

1.2.2 Fundamental Limits of RSS Fingerprinting Approach

Wen et al. present a theoretical investigation on RSS fingerprinting based indoor local-

ization, which reveals fundamental limits of the localization methodology [13]. Specifically as

Fig. 1–2, if a user’s real location is at Q, the work derives a close-form expression of the proba-

bilityR that the user can be localized in the δ neighborhood of Q, where δ and R are localization

accuracy and reliability, respectively.

With the RSS fingerprinting based localization approach, RSS fingerprints obtained from

the training stage form a sample space, based on which a user’s location in the physical space

can be estimated. The location determination process can be regarded as a mapping from the

sample space to the physical space. If outcomes of RSS measurements fall into the event region
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Figure 1–2: Graphical Illustration of Fundamental Limits Model.

E, then the localization system can correctly determine the location of the user to be in the δ

neighborhood ofQ; therefore, the localization reliability is equal to the probability that outcomes

of RSS measurements fall into the event region E. By constructing a general radio propagation

model based on field observations of real localization systems, probabilities for outcomes of

RSS measurements in a location can be presented, which turns out to be following Gaussian

distribution. Consequently, calculating the localization reliability is to first find the event region

E in the RSS sample space, and then perform integration over the region E for an Gaussian

probability density function (PDF).

Although utilizing a general radio propagation model, the study in [13] is distinguishable

from the model based localization because the radio propagation model is not used to derive

geometric relationships between signal transmitters and receivers, such as distance, time of ar-

rival (ToA), time difference of arrival (TDoA) or angle of arrival (AoA) [1]. That is why the

radio propagation model used in [13] only assumes that the mean of RSS readings varies with

respect to locations but does not specify how the mean will vary. This is in contrast to the Log-

Distance Path Lose (LDPL) model used in the model based localization and CRB analysis [9,

10, 11], where the mean varies with respect to locations logarithmically. Moreover, interesting

findings about the shape of the event region E are presented in [13], where skillful mathematical

techniques are demonstrated. We note that efforts have been made to estimate the user’s loca-

tion with channel state information (CSI) [30, 31, 26]; however, this category of work is highly

dependent on the device [32] that provides the CSI. In practice, the CSI is still not provided by

most if not all of manufacturers to the best of our knowledge.

Our study constructs a new radio propagation model considering the temporal correlation
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of the RSS, which is not taken into account in [13]. The later discussions are to reveal that the

boundary distinguishing one location from another in the sample space is different from that

shown in [13], and the new boundary provides a more accurate location estimation. Compared

with the pure theoretical analysis presented in [13], we present experimental results to validate

our theoretical analysis.

1.2.3 Temporal Information of RSS Utilized for Localization

Kaemarungsi et al. study properties of the RSS for fingerprinting based localization using

Wi-Fi [33]. Comprehensive experiment results reveal two important features of the RSS: First,

the mean and variance of the RSS in one location basically remain the same over time; second,

the auto-covariance function of the RSS in one location has the same shape for separate time-

series. Based on such two observations, our work in this paper models the RSS observed in one

location as a stationary process. Youssef et al. found in [34] that the autocorrelation between

consecutive samples from the same access point can be as high as 0.9. Their Horus system

shows that the average system accuracy is increased by more than 50%, and wrong assump-

tion of independence of samples from the same access point can lead to degraded performance.

Fang et al. propose a localization approach based on the dynamic system and machine learning

technique[6]. Such an approach estimates the user’s location by the state consisting of RSSes

observed in different times and locations. However, the simple combination of spatial and tem-

poral information does not reveal the essence how the temporal information can be utilized for

localization, where the RSS observed in different times can be considered as multiple measure-

ments of fingerprints.

Most of the current studies for utilizing temporal information of the RSS for localization are

in a machine-learning based manner [5, 7], where the convincing explanation how the temporal

information can influence the performance of the localization process is still unavailable. In this

paper, we initiate the theoretical study on this issue.
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Chapter 2 Theoretical Model of Location Estimation

Consider an indoor space, which can be modeled as one or two dimensional Cartesian space

denoted by L ⊂ R or L ⊂ R2, respectively. Examples of one dimensional model include

hallway and corridor. A user’s location in the physical space S can be denoted by r⃗ = r1 or

r⃗ = (r1, r2) with corresponding dimensions. Based on the localization database constructed in

the training phase, a sample space of fingerprints can be induced, which is denoted by Ωn and n

is the number of access points (APs) can be sensed in the physical space. In the training phase,

the site surveyor collects fingerprints of APs in a one-by-one manner at a given location. For an

AP, the surveyor samples the observed RSS at certain frequency. Consequently, if there are n

APs and each AP is sampled w times, then a point x in the RSS sample space is in the following

form: 
x1,1 x1,2 . . . x1,w

x2,1 x2,2 . . . x2,w

... ... . . . ...

xn,1 xn,2 . . . xn,w


, where xi,j means the RSS observed with respect to APi at jth time point. We say this is an

n-dimensional sample space and the temporal dimension of sampling is w.

As the radio propagation in the indoor environment is influenced by many factors such as

path loss, shadowing, fading and multi-path effect, the signal can be observed in a location is

usually modeled as a random process, which can be denoted as

X(r⃗, t⃗) = S(r⃗) + σY (r⃗, t⃗), (2–1)

where r⃗ is the location of the observation and t⃗ represents the vector of time points at which

RSSes are observed. S(r⃗) is the trend model of the signal with respect to position r⃗ in the
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Figure 2–1: Theoretical localization model.

perspective of stochastic processes, and σ is the amplitude of noise. Y (r⃗, t⃗) is the joint Gaussian

distribution of temporal noise series at location r⃗.

According to extensive experimental results and theoretical analysis [35, 36, 12], the mean

and variance of the RSS in one location basically remain the same over time and the auto-

covariance function of the RSS in one location has the same shape for separate time-series,

such a random process can be stationary and ergodic, with

S(r⃗′) ≈ S(r⃗) +▽S(r⃗)(r⃗′ − r⃗) (2–2)

In the localization phase, a user reports observed RSSes to the localization server, which

then estimates the corresponding location by matching the reported fingerprints in the finger-

prints database. Such a process can be modeled as a mapping from the sample space to the

physical space:

M : Ωn → L, r′ = M(X(r⃗, t⃗)), (2–3)

where r⃗′ is the estimated location of the user. This process is illustrated in Fig. 2–1. The user’s

actual location is at r⃗ and the estimated location is at r⃗′, which incurs the localization error

denoted by δ⃗.

Due to estimation errors, the result of the localization is that the user’s location is estimated

to be in the δ neighborhood of r, which is denoted by Q. To reduce the error of localization
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is equivalent to mitigating the norm of δ⃗. Since the basis of the estimation is the reported

fingerprint by the user, the ideal case is that the user’s submitted fingerprints happen to make

the system believe that the location of the user is in Q. We use E to denote such a region in

the sample space, so that the user’s location can be estimated to be in Q as long as the reported

RSSes fall in E.

The probability that the reported RSS fingerprints can fall into the region of E depends on

the model of radio signal propagation, which in fact fundamentally determines the performance

of the RSS fingerprinting based approach. The model proposed in [13] considers the observed

RSS at one location as a random variable, where temporal correlation of the signal is not taken

into account. According to the site survey practice, it is more practical to model the signal

as a random process as in this paper, where the temporal correlation can be leveraged. Our

investigation in the rest of the paper is to show that such a seemingly slight change in the radio

signal propagation modeling brings about not only much higher difficulties in mathematical

analysis, but also interesting findings of the RSS fingerprinting based approach, which have

never been revealed.
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Chapter 3 Analysis of 2-D Temporal Correlation for 1-D
Physical Space Localization

This chapter examines a concrete scenario of localization, where both the physical space and the

sample space are one dimensional and the temporal dimension of sampling is two. The purpose

of the examination is to find how likely the user can be localized in Q with given δ. It is easier

to reveal essence of the fingerprinting approach by analyzing a simple case, where the results

could be inspiring for analyzing more complicated scenarios.

3.1 Finding Region E

Let us first find out what kind of RSSes can be observed at the location r. The one-

dimensional physical space can be regarded as an one-dimensional horizontal axis, where the

origin of the axis is the location of the AP, and the location of each point can be identified by a

scalar r. Based on our proposed radio signal propagation model, the probability density function

(PDF) of RSS readings can be observed follows the Multivariate Gaussian Distribution, which

is denoted by

fr(x1, x2) =
1

2πσ2
√
1− ρ2

e−
1
2
∆2

, (3–1)

where x1, x2 are variables representing the RSSes at time points t1 and t2 separated by a duration

of τ . Figure 3–1 illustrates fr(x1, x2). Since the random process representing the signal is

stationary, the following analysis is oblivious to the specific value of t1 and t1 as long as they

are separated by τ . Symbols µ and σ are the mean and standard variance of the RSS joint

distribution at position r, respectively; ρ is the autocorrelation coefficient of fr(x1, x2). The
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x1

x2

fr (x1,x2)

 

 

y1

y2

u1

u2

Figure 3–1: Joint Gaussian PDF of RSS(t) and RSS(t+ τ) at position r

Mahalanobis distance is denoted as ∆, where

∆2 =
1

σ2(1− ρ2)
[(x1 − µ)2 + (x2 − µ)2 − 2ρ(x1 − µ)(x2 − µ)]. (3–2)

Since x1 and x2 are both observed at r, the corresponding marginal distributions with re-

spect to x1 and x2 are the same, according to our signal propagation model, and the correspond-

ing means and standard variances of the two marginal distributions are the same as well. This

also complies with the conclusion in [13]. Consequently, the covariance matrix of fr(x1, x2) is

real, positive and symmetric, where

Σ = σ2

1 ρ

ρ 1

 . (3–3)

With the same reason, the major axis of the elliptical surface representing fr(x1, x2) should be

the angular bisector of the Cartesian coordinates with slope 1.

In order to facilitate our analysis, we put the image of fr(x1, x2) in a new coordinates system

with axes y1 and y2. We let the major axis of the elliptical surface align to y1 and the origin of

the new coordinates system be (µ(r), µ(r)) in the old system. Then the PDF in the new system
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Figure 3–2: Joint Gaussian PDFs at Different Locations.

is

fr(y1, y2) =
1

2πσ2
√
λ1λ2

e
− 1

2σ2 (
y21
λ1

+
y22
λ2

)
, (3–4)

where

λ1 =

√
2(1 + ρ)

2
, λ2 =

√
2(1− ρ)

2
. (3–5)

We now start to find the region E in this scenario. Refer to Fig. 3–2, the value of fr(y1, y2)

in fact means how likely the user can observe [y1, y2] at location r. If the reported RSSes [y1, y2]

indicate that the user’s location is in a small neighborhood of r, then fr(y1, y2) should be higher

than fr±δ(y1, y2), where r ± δ are boundaries of r’s neighborhood in the physical space. That

is, if the user is localized in the neighborhood of r, the corresponding submitted fingerprints

should have fallen into the region

E = {x|fr(y|µ(r),Σ(r)) ≥ fr±δ(y|µ(r ± δ),Σ(r ± δ))}. (3–6)

The profile of E is sketched in Fig. 3–2, which is the space between the two regions in dark

color. The two dark-colored regions themselves represent boundaries of intersected neighboring

dome-like bodies. Observe marginal PDFs with respect to x2 for the three locations r − δ, r
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and r + δ, which are presented by three Gaussian PDF curves on the x2 − f(x1, x2) plane

with means µ(r − δ), µ(r) and µ(r + δ), respectively. It is worth mentioning that shapes of

the three curves are the same, which is determined by the variance of Gaussian noise. This is

because Gaussian noise at different locations in a small neighborhood of the physical space are

presenting indistinguishable randomness, which have been acknowledged by extensive studies

[33, 13]. Due to symmetry of the dome-like bodies, the same thing happens to the marginal

PDFs with respect to x1.

If the temporal correlation of the RSS is not considered, fingerprints can be observed at

different time points with respect to the same AP are independent at each location; therefore,

the randomness of the RSS can only be characterized in a 2-D curve of the marginal PDF as

shown in Fig. 3–2. Using such randomness to evaluate the performance limit of fingerprinting

localization is the basic idea in [13].

Our work in this paper characterizes randomness of the RSS with the dome-like bodies as

shown in Fig. 3–2, where the temporal correlation of the signal is taken into account. We can

see that our model presents a more accurate description of the randomness of the RSS, where a

straightforward observation is the increase of a dimension. Such a model of the RSS provides

more distinguishable characteristics of a location compared with that in [13], thus provides

criteria of finer-granularity for localization. This is the fundamental reason why the accuracy

performance bound of localization derived in [13] can be further improved if the RSS temporal

correlation is taken into account.

3.2 Analysis on Region E

Since the location estimation is performed based on fingerprints reported by the user, study-

ing properties of E can help reveal how the system estimates the user’s location. Intuitively, if

we project the image in Fig. 3–2 onto the y1 − y2 coordinates system, the resulted image should

be that as shown in Fig. 3–3. The region in yellow should be the projection of the space E, and

the two curves in yellow should be boundaries of the region. Consequently, if a user’s reported

fingerprints fall into the area left to E, the user is more likely at the location r−δ; if the reported
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Figure 3–3: Graphical illustration of region E

fingerprints fall into the area right to E, the user is more likely at the location r + δ. We are to

reveal that the boundaries of E are in the shape of hyperbolic curve with interesting properties,

and then reveal challenges for accurately describing the region E with corresponding analysis

provisioned.

3.2.1 Boundaries of Region E

Substituting Eq. (3–4) into Eq. (3–6), we obtain the following inequality:

1√
λ1λ2

e−
1

2σ2 (
y2
1

λ1
+

y2
2

λ2
) ≥ 1√

λ±
1 λ

±
2

e
− 1

2σ2 (
(y1±

√
2δ▽µ)2

λ
±
1

+
y2
2

λ
±
2

)
, (3–7)

where λ1, λ2 are scaling factors of ellipse axes for Gaussian PDF at position r, and λ±
1 , λ

±
2 are

scaling factors at adjacent positions r ± δ. Specifically,

λ1 =

√
2(1 + ρ)

2
, λ2 =

√
2(1− ρ)

2
;

λ±
1 =

√
2(1 + ρ±)

2
, λ±

2 =

√
2(1− ρ±)

2
.

(3–8)
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Symbols ρ, ρ± are the autocorrelation coefficients for the Gaussian distribution at r and r ± δ,

respectively. After simplification, they are equivalent to:
(
y21
λ1

+
y22
λ2

)− (
(y1 +

√
2δ ▽ µ)2

λ+
1

+
y22
λ+
2

) ≤ ln
λ1λ2

λ+
1 λ

+
2

;

(
y21
λ1

+
y22
λ2

)− (
(y1 −

√
2δ ▽ µ)2

λ−
1

+
y22
λ−
2

) ≤ ln
λ1λ2

λ−
1 λ

−
2

,

(3–9)

which is the specific expression of E in the sample space. The boundaries of E can be obtained

when the equality holds.

In order to better understand properties of the boundaries, we transform the expressions in

inequalities (3–9) into a general form

Ay21 +By1y2 + Cy22 +Dy1 + Ey2 + F = 0, (3–10)

where the discriminant ∆ equals to

∆ = B2 − 4AC, (3–11)

and A = 1
λ1

− 1
λ±
1

, C = 1
λ2

− 1
λ±
2

. Since B = 0, AC < 0, then ∆ > 0. This means that the two

boundaries of E are in the shape of the hyperbolic curve, where the two foci are on axis y1.

Note that if A = C and B = 0, both of the boundaries are straight lines in parallel. A = C

and B = 0 also mean that λ1 = λ2, λ±
1 = λ±

2 , which is to say that measurements with respect

to the same AP at different time points are totally independent. This is a degenerated scenario

without considering temporal correlation as shown in [13]. The resulted straight-line boundaries

are the same as corresponding boundaries ofE in [13]. This is actually corroborating our current

result about the shape of boundaries.

3.2.2 Accurate Description of E

Although we have a basic idea about boundaries of E, it is still non-trivial to theoretically

prove that the region E is the same as the intuition as shown in Fig. 3–3. Imagine the detailed
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x1

x2

fr (x1,x2)

y1

l1 l2

Figure 3–4: Intersection of two Gaussian PDFs.

scenario that two surfaces representing two joint Gaussian PDFs are intersecting with each other.

There are actually two curves of intersection, as the two curves l1 and l2 illustrated in Fig. 3–

4. This can be mathematically proved through simple derivation by constructing an equation

between the two joint Gaussian PDFs.

It is slightly tricky to understand Fig. 3–2 and Fig. 3–4. Projections of those domes on

planes x1-f(x1, x2) and x2-f(x1, x2) are the same in profile, because this is actually ignoring the

temporal correlation of the RSS. Mathematically, the covariance matrix of fr(x1, x2) becomes

variance σ2 as the autocorrelation coefficient ρ = 0. However, those joint Gaussian PDFs

factually have different autocorrelation coefficients denoted by ρ and ρ±, as shown in Fig. 3–2;

therefore, if we project those domes on the plane y1-f(x1, x2), the resulted image is just that

illustrated in Fig. 3–4.

In the perspective of engineering, the system considers that observing fingerprints around

the l1 is with very low probability if the user is at r, thus it is more meaningful to consider

the boundary represented by l2, in order to ensure an expected localization reliability as high

as possible. It is worth mentioning that fingerprints such as those around l1 indeed can be

observed in practice. In this case, the system will estimate the location of the user is at r′, where

fr′(y1, y2) has a higher value, although the user is factually at r. Such errors can not be avoided

in the fingerprinting based approach, since small probability events do happen.

We can see that the opening orientation of the boundaries illustrated in Fig. 3–2 is to the

left. Refer to equalities 3–9, if ρ− < ρ < ρ+, the physical meaning of the inequalities 3–9 is

that: all points with the distance differences between r − δ to r and r to r + δ are less than a
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constant. The opening orientation is to the left, according to the definition of the hyperbola. If

ρ− > ρ > ρ+, the physical meaning of the inequalities 3–9 is that: all points with the distance

differences between r to r − δ and r + δ to r are less than a constant. The opening orientation

is to the right. For convenience of presentation, we here abuse the coordinate in the physical

space and use the coordinate to represent the corresponding RSS values in the y1 axis.

This means that the opening orientation of boundaries are actually determined by the degree

of temporal correlation of the RSS at different locations. Moreover, no matter the relationship

among ρ and ρ±, the inequalities of 3–9 show that the area of E is in the middle of the two

boundaries. As a matter of fact, if we specifically consider the real situation under study, it

should be the case ρ− < ρ < ρ+. Recall our 1-D physical model, where the AP is located at

the origin of an 1-D coordinate axis and r − δ, r and r + δ are distance to the AP. The farther

the location is from the AP, the stronger the temporal correlation of the observed RSS will be;

consequently, the orientations of the two boundaries should be to the left as shown in Fig. 3–3.

3.3 Influence of Temporal Correlation on Accuracy of Localization

We can further verify our theory by examining the expected localization result given special

fingerprints. The point (−
√
2δ∇µ, 0) in Fig. 4 is special, which makes fr−δ(−

√
2δ∇µ, 0) to

achieve the maximum value. This means that if a user reports fingerprints (−
√
2δ∇µ, 0), the sys-

tem definitely should estimate the user’s location to be at r− δ. Substituting (−
√
2δ∇µ, 0) into

the first inequality of (12), A natural consequence is supposed to be that the point (−
√
2δ∇µ,

0) is definitely to the left of the left boundary of E. However, we are surprised to find that it

is possible for the point (−
√
2δ∇µ, 0) to be within the region E. That is, the point (−

√
2δ∇µ,

0) is to the right of the left boundary of E. This can happen if we set δ to be very small and

the difference between ρ− and ρ to be very large. The grey curve shown in Fig. 4 is the re-

sulted boundary if we choose special values of δ and ρ. This event can lead to errors of location

estimation, because a user definitely should be localized at r − δ is in fact localized at r.

The root cause of the phenomenon is that the choice of δ and ρ in a theoretical perspective

may not comply with the real situation. In the real world, the temporal correlation in a small

19/56



Temporal Correlation of RSS Improves Accuracy of Fingerprinting Localization

neighborhood with respect to the same AP should be varying smoothly. Consequently, if δ is

small, the difference between ρ− and ρ is supposed to be insignificant.

We now compare localization results yielded by considering and ignoring the temporal

correlation of the RSS. Recall the study in [13] ignores the temporal correlation of the RSS. The

region E in this case is the region between the two dashed lines as shown in Fig. 4. Consider

shadowed areas B covered with solid lines. If the user’s reported fingerprints fall into such

areas, it means that the user supposed to be localized at r is mistakenly localized at r− δ, or the

user supposed to be localized at r + δ is mistakenly localized at r. Similarly, consider the grey

areas A. If the user’s reported fingerprints fall into such areas, it means that the user supposed

to be localized at r − δ is mistakenly localized at r, or the user supposed to be localized at

r is mistakenly localized at r + δ. That is, considering temporal correlation can improve the

accuracy of location estimation by providing more accurate criteria for making judgement.

Theoretically, the reliability of the localization is the probability that the user’s reported

fingerprints fall within the region E, so that the user is localized at δ neighborhood of r. Denote

the area between the two dashed lines as T . The reliability of the case where temporal correlation

is now considered is

R(δ, r, σ) =

∫
T

f(Y)d(Y) =

∫ 1
2
δ▽µ

− 1
2
δ▽µ

f(Y)d(Y), (3–12)

where f(Y) is the joint Gaussian PDF with respect to fingerprints Y. Consequently, the relia-

bility improvement by the temporal correlation is

∆R(δ, r, σ, ρ) =

∫
T ′−T

f(Y)d(Y), (3–13)

where we use T ′ to denote the area between the two hyperbolas.
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Chapter 4 High-Dimensional Extensions for Localization

4.1 High-Dimensional Temporal Correlation

We now extend our analysis to high-dimensional temporal correlation for localization. In

this case, the corresponding multivariate Gaussian distribution is with high dimension and co-

variance matrix Σ is with high rank. Suppose that we consider the temporal correlation of m

dimension, then

fr(x|µ,Σ) =
1

(2πΣ)
m
2 |Σ| 12

e−
1
2
∆2

, (4–1)

where the Mahalanobis distance ∆ is now as:

∆2 = (x − µ)TΣ−1(x − µ). (4–2)

Similar to the analysis procedure for the 2-dimensional temporal correlation, we can always find

orthogonal eigenvectors ui using Gram Schmidt Orthogonallization (GSO) method such that

Σ =
m∑
i=1

λiuiuT
i , Σ−1 =

m∑
i=1

1

λi

uiuT
i , (4–3)

Let y = U(x − µ), where U = [u1,u2, . . . , um]
T and UUT = I. Then the coordinate x can

be shifted and rotated to y with Jocobian Matrix J and J = UT . The multivariate Gaussian

distribution in y coordinate is expressed as:

fr(y|µ,Σ) =
1

(2π)
m
2 (
∏m

i=1 λi)
1
2

e
− 1

2

∑m
i=1

1
λi

yiyT
i . (4–4)
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The probability of r′ ∈ Q or observation x ∈ E are the same as equation (3–6). After simplifi-

cation, it is equal to

m∑
i=1

y2i
λi

− [
(yi +

√
2δ ▽ µ)2

λ+
i

+
m∑
i=2

y2i
λ+
i

] ≤ ln
m∏
i=1

λi

λ+
i

,

m∑
i=1

y2i
λi

− [
(yi −

√
2δ ▽ µ)2

λ−
i

+
m∑
i=2

y2i
λ−
i

] ≤ ln
m∏
i=1

λi

λ−
i

.

(4–5)

We define vectors h1, h2,h3 as

h1 = [
y1√
λ1

,
y2√
λ2

, . . . ,
ym√
λm

],

h2 = [
y1 +

√
2δ ▽ µ√
λ+
1

,
y2√
λ+
2

, . . . ,
ym√
λ+
m

],

h3 = [
y1 −

√
2δ ▽ µ√
λ−
1

,
y2√
λ−
2

, . . . ,
ym√
λ−
m

].

(4–6)

The inequality sets (4–5) can be put as
||h1||2 − ||h2||2 ≤

m∑
i=1

ln
λi

λ+
i

,

||h1||2 − ||h3||2 ≤
m∑
i=1

ln
λi

λ−
i

.

(4–7)

It can be seen that the boundaries of E in this case is a high-dimensional hyperbola.

4.2 High-Dimensional Sample Space

Based on Maximum Likelihood Estimation (MLE), suppose the measurements for different

n APs are independent and considering the temporal correlation of m dimension. Then the

region E should be:
n∏

i=1

fr(y|µ,Σ) ≥
n∏

i=1

fr±δ(y|µ,Σ). (4–8)
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Denote yi,j as the measurement of ith AP at the mth time points. Similar meaning to λi,j .
Applying the Eq. (4–4), we have

n∑
i=1

m∑
j=1

y2i,j
λi,j

−
n∑

i=1

[
(yi,1 ±

√
2δ ▽ µi)

2

λ±
i,1

+
m∑
j=2

y2i,j
λ±
i,j

] ≤
n∑

i=1

ln
|Σi|
|Σ±

i |
. (4–9)

We here construct new vectors z1, z2, z3 with transformation matrix as following:

z1 =



z11

z12
...

z1m

z21
...

znm


=



1√
λ11

0 ... 0 0 ... 0

0 1√
λ12

... 0 0 ... 0

...
... . . . ...

... . . . ...
0 0 ... 1√

λ1m
0 ... 0

0 0 ... 0 1√
λ21

... 0

...
... . . . ...

... . . . ...
0 0 ... 0 0 ... 1√

λnm





y11

y12
...

y1m

y21
...

ynm


(4–10)

and build up transformation matrix T2 as

T2 =



1√
λ
+
11

0 ... 0 0 ... 0
δ▽µ1√

λ
+
11

0 1√
λ
+
12

... 0 0 ... 0 0

...
... . . . ...

... . . . ...
...

0 0 ... 1√
λ
+
1m

0 ... 0 0

0 0 ... 0 1√
λ
+
21

... 0
δ▽µ2√

λ
+
21

...
... . . . ...

... . . . ...
...

0 0 ... 0 0 ... 1√
λ
+
nm

0

0 0 ... 0 0 ... 0 1.


(4–11)

Then the second vector z2 can be expressed as

z2 =


z11
...

znm

1

 = T2


y11
...

ynm

1

 (4–12)

Similarly, define z3 to be the position (r− δ⃗) as z2 to be the position (r+ δ⃗). Applying the
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vectors z1, z2, z3 to inequality (4–9), we can get
||z1||2 − ||z2||2 ≤

n∑
i=1

ln
|Σi|
|Σ+

i |

||z1||2 − ||z3||2 ≤
n∑

i=1

ln
|Σi|
|Σ−

i |

(4–13)

These inequations indicate that the difference of distance to two different points is a con-

stant. By the definition of hyperbola, the boundaries of E are in the shape of high-dimensional

hyperbola with shearing in different dimensions.

4.3 Two-Dimensional Physical Space

We define a location in this case as a two-dimensional vector r⃗ as shown in Fig. 1, and

the joint Gaussian PDF after correlation rotation is still the multivariate Gaussian function as in

Eq. (4–4). Then the probability of r⃗′ ∈ Q or x ∈ E is

E = {x|
n∏

i=1

fr⃗(y|µ,Σ) ≥
n∏

i=1

fr⃗+δ⃗(y|µ,Σ)}, (4–14)

where δ⃗ is the difference of the user’s real location r⃗ and estimated location r⃗′, i.e., δ⃗ = r⃗ − r⃗′.

We use θ to denote the angle between r⃗ and δ⃗ ranging from 0 to 2π, as shown in Fig. 1.

Substituting the Eq. (4–4) into Eq. (4–14), we rewrite the detailed expression of E as:

n∑
i=1

m∑
j=1

yi
2

λi,j(
−→r )

−
n∑

i=1

[
(y1 +

√
2δ∇ cos θ)2

λi,1(
−→
r′ )

+
m∑
j=2

yi
2

λi,j(
−→
r′ )

] ≤
n∑

i=1

ln
|Σ(−→r )|
|Σ(

−→
r′ )|

(4–15)

As the temporal correlation of the RSS is relatively stable in a small neighborhood, we can

use▽ρ(r⃗) to denote its gradient at position r⃗. Refer to Fig. 2–1, a circle in the 2-D physical space

is formed by rotating δ⃗ from 0 to 2π. Consequently, the region E is formed with hyperbolas in

different dimensions. Intuitively, the shape of the intersection between E and the corresponding

orthogonal plane is irregular, because the temporal correlation in different locations can be

different, which makes the curvature of the hyperbolas different from each other.
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r r+r-

y1

y3

y2

0

y1

y2

Figure 4–1: Region E in 2-D physical space localization.

An abstract figure of the region E in 3-D sample space and the corresponding orthogonal

plane is shown as Fig. 5–1. This is because the temporal correlation in different locations can

be different, which makes the curvature of the hyperbolas different from each other.
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Chapter 5 Asymptotic Equivalent Region of E in
High-Dimensional Scenarios

This section aims to find the mathematical description of the region E under the high temporal

and sample dimensions and 2-D physical space. The inequality above provides a description of

E, which however reveals limited information about the exact shape of E. This is because the

inequality needs to hold for all possible values of θ and the parameter λ′ is actually dependent

on θ, which makes it hard to find out the shape of E. Note that λs are actually eigenvalues of the

covariance matrixΣm(r⃗), but we are unable to find the close-form expression of the eigenvalues.

Our strategy to deal with the issue is to find a matrix Υm(r⃗) to approximate Σm(r⃗), where the

corresponding close-form of eigenvalues could be obtained and the resulted E′ is asymptotically

equivalent to E.

5.1 Approximate Matrix

The covariance matrix of the RSS at location r⃗ is

Σm(r⃗) =



ρ0(r⃗) ρ1(r⃗) ρ2(r⃗) · · · ρm−1(r⃗)

ρ1(r⃗) ρ0(r⃗) ρ1(r⃗)
. . . ρm−2(r⃗)

ρ2(r⃗) ρ1(r⃗)
. . . . . . ...

... . . . . . . . . . ρ1(r⃗)

ρm−1(r⃗) · · · ρ2(r⃗) ρ1(r⃗) ρ0(r⃗)


. (5–1)

For the correlation coefficients, it is reasonable that

ρi(r⃗′) ≈ ρi(r⃗) +∇ρi(r⃗)(r⃗′ − r⃗), (5–2)
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Σm(r⃗′) = Σm(r⃗) + δ cos θ


|∇ρ0(r⃗)| |∇ρ1(r⃗)| |∇ρ2(r⃗)| · · · |∇ρm−1(r⃗)|
|∇ρ1(r⃗)| |∇ρ0(r⃗)| |∇ρ1(r⃗)|

. . . |∇ρm−2(r⃗)|
|∇ρ2(r⃗)| |∇ρ1(r⃗)|

. . . . . . ...
... . . . . . . . . . |∇ρ1(r⃗)|

|∇ρm−1(r⃗)| · · · |∇ρ2(r⃗)| |∇ρ1(r⃗)| |∇ρ0(r⃗)|

 .

(5–3)

Υm(r⃗) =



ρ0(r⃗) ρ1(r⃗) + ρm−1(r⃗) ρ2(r⃗) + ρm−2(r⃗) · · · ρ1(r⃗) + ρm−1(r⃗)

ρ1(r⃗) + ρm−1(r⃗) ρ0(r⃗) ρ1(r⃗) + ρm−1(r⃗)
. . . ρ2(r⃗) + ρm−2(r⃗)

ρ2(r⃗) + ρm−2(r⃗) ρ1(r⃗) + ρm−1(r⃗) ρ0(r⃗)
. . . ...

... . . . . . . ρ1(r⃗) + ρm−1(r⃗)
ρ1(r⃗) + ρm−1(r⃗) ρ2(r⃗) + ρm−2(r⃗) · · · ρ1(r⃗) + ρm−1(r⃗) ρ0(r⃗)


.

(5–4)

because the correlation of the RSS is continuous, which has been verified in our experiments to

be presented in Chapter 6. Then we have equation (5–3). We propose to use matrix Υm(r⃗) to

approximate Σm(r⃗), as shown in equation (5–4).

Suppose that the eigenvector of Υm(r⃗) is u = [ u1 u2 · · · um ] satisfies that Υm(r⃗)u =

τ(r⃗)u. It is easy to verify that vector u(k) = [1, ei2πk/m, ei2π2k/m, . . . ei2π(n−1)k/n](1 ≤ k ≤ n)

satisfies the equations and the corresponding eigenvalue is

τm,k(r⃗) = ρ0(r⃗) +
m−1∑
j=1

(ρi(r⃗) + ρm−i(r⃗))e
i2πjk/m. (5–5)

We note that τm,k(r⃗) is a real number since the coefficients of complex conjugate pairs ei2πjk/m

and ei2πj(m−k)/m are identical. For the eigenvalues at location r⃗′, we have

τm,k(r⃗′) = ρ0(r⃗′) +
m−1∑
j=1

(ρi(r⃗′) + ρm−i(r⃗′))e
i2πjk/m

= τm,k(r⃗) + δ cos θ
m−1∑
j=1

(|∇ρi(r⃗)|+ |∇ρm−i(r⃗)|)ei2πkj/m.
(5–6)

To simplify the notations, we use ∆τm,k to represent
m−1∑
j=1

(|∇ρi(r⃗)|+ |∇ρm−i(r⃗)|)ei2πkj/m,

thus τm,k(r⃗′) = τm,k(r⃗) + δ cos θ∆τm,k.
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We are to prove that using τm,k(r⃗) to approximate eigenvalues of Σm(r⃗) could incur the

error converging to zero as m goes to infinity.

5.2 Asymptotical Equivalence Analysis

We take another form of region E as following to facilitate understanding:

m∑
i=1

yi
2

λm,i(r⃗)
− [

(y1 +
√
2δ∇ cos θ)

2

λm,1(r⃗′)
+

m∑
i=1

yi
2

λm,i(r⃗′)
] ≤ ln

|Σ(r⃗)|
|Σ(r⃗′)|

, (5–7)

where θ ∈ [0, π]. If we use eigenvalues of matrix Υm(r⃗) to replace λi(r⃗′), we could obtain the

region E′ characterized by the following equation:

m∑
i=1

yi
2

τn,i(r⃗)
− [

(y1 +
√
2δ∇ cos θ)2

τm,1(r⃗′)
+

m∑
i=1

yi
2

τm,i(r⃗′)
] ≤ ln

|Υm(r⃗)|
|Υm(r⃗′)|

. (5–8)

Lemma 1. lim
m→∞

|Υm(r⃗)− Σ(r⃗)|2 = 0, where | · |2 represents the Hilbert-Schmidt Norm.

Proof.

Υm(r⃗)− Σ(r⃗) =



0 ρm−1(r⃗) ρm−2(r⃗) · · · ρ1(r⃗)

ρm−1(r⃗) 0 ρm−1(r⃗)
. . . ρ2(r⃗)

ρm−2(r⃗) ρm−1(r⃗) 0
. . . ...

... . . . . . . ρm−1(r⃗)

ρ1(r⃗) ρ2(r⃗) · · · ρm−1(r⃗) 0


. (5–9)

With the definition of Hilbert-Schmidt Norm,

|Σ(r⃗)−Υn(r⃗)|2 = 2
n−1∑
i=1

i
n
ρ2

i
(r⃗), (5–10)

we will show that

lim
m→∞

m−1∑
i=1

i
m
ρ2

i
(r⃗) = 0. (5–11)
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By applying Abel Transformation to the equation above, we obtain that

m−1∑
i=1

i
m
ρ2

i
(r⃗) =

m− 1

m
An−1 −

m−2∑
i=1

1

m
Ai, (5–12)

where Ai =
i∑

j=1

ρ2
j
(r⃗). Since the covariances are absolutely summable with

∑
i

ρi < ∞, we use

A to denote the supremum of
∑

ρ2
j
(r⃗), i.e., A = sup

∑
ρj

2(r⃗). Consequently, we can find N

such that A > Ak > A− ε holds for all the k ≥ N for any ε > 0. Hence

A >
m−2∑
i=1

1

m
Ai =

1

m
(
N−1∑
i=1

Ai +
m−2∑
i=N

Ai) >
m−N − 1

m
(A− ε). (5–13)

Notice that

lim
m→∞

m−N − 1

m
(A− ε) = A− ε (5–14)

, we thus have proven that for any ε > 0, lim
m→∞

m−2∑
i=1

1
m
Ai > A− ε.

Combined with the fact that
m−2∑
i=1

1
m
Ai < A, we can conclude that

lim
m→∞

m−2∑
i=1

1

m
Ai = A = lim

n→∞

m− 1

m
Am−1. (5–15)

The proof is completed.

Lemma 2. (Wielandt-Hoffman theorem [37]) Given two Hermitian matrices A and B with

eigenvalues αk and βk respectively, then

1

m

m∑
i=1

|αk − βk|2 ≤ |A−B|2. (5–16)

We present the lemma for the purpose of self-completeness.
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Lemma 3. For any given integer s, we have

lim
m→∞

1

m

m∑
i=1

(τ s
m,k

(r⃗)− λs
m,k

(r⃗)) = 0. (5–17)

Proof. Note that

1

m

s−1∑
i=0

∣∣∣τ s
m,k

(r⃗)− λs
m,k

(r⃗)
∣∣∣

1

m

s−1∑
i=0

|τm,k(r⃗)− λm,k(r⃗)|

∣∣∣∣∣
s−1∑
i=0

τ i
m,k

(r⃗)λs−i−1
m,k

(r⃗)

∣∣∣∣∣
≤ sM s−1

n

s−1∑
i=0

|τm,k(r⃗)− λm,k(r⃗)|

≤ sM s−1

√√√√ 1

m

m∑
i=1

|τm,k(r⃗)− λm,k(r⃗)|2

≤ sM s−1 |A−B| ,

(5–18)

where s and M are constants with respect to m. The penult inequality is based on Cauchy-

Schwarz Inequality and the last inequality is based on Lemma 2. Then the proof is completed.

With Weierstrass’ theorem, we know that there exists a sequence of polynomials [Pt(x)]

such that lim
t→∞

Pt(x) =
1
x
. For every fixed t, we know that

lim
m→∞

1

m

m∑
i=1

|Pt(τm,i(
−→r ))− Pt(λm,i(

−→r ))| = 0 (5–19)

according to Lemma 3. Hence combining the two equations above, we can obtain that

lim
m→∞

1

m

m∑
i=1

∣∣∣∣ 1

τm,i

− 1

λm,i

∣∣∣∣ = 0. (5–20)
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Theorem 1. The region E′ is asymptotical equivalent to region E, that is to say:

(1) : lim
m→∞

1

m
{

m∑
i=1

[
yi

2

λm,i(r⃗)
− yi

2

τm,i(r⃗)
]−

m∑
i=1

[
yi

2

λm,i(r⃗′)
− yi

2

τm,i(r⃗′)
]

− [
(y1 +

√
2δ∇ cos θ)2

λm,1(r⃗′)
− (y1 +

√
2δ∇ cos θ)2

τm,1(r⃗′)
]} = 0;

(2) : lim
m→∞

{ln
|Σ(r⃗)| 1

m

|Σ(r⃗′)| 1
m

− ln
|Υm(r⃗)|

1
m

|Υm(r⃗′)|
1
m

} = 0.

(5–21)

Proof. The RSS can be observed at each location is bounded, hence y2i s and (y1 +
√
2δ∇ cos θ)2

are bounded. Suppose that their upper bound is M , then

1
m

∣∣∣∣∣∣∣
m∑
i=1

[ yi
2

λm,i(r⃗)
− yi

2

τm,i(r⃗)
]−

m∑
i=2

[ yi
2

λm,i(r⃗′)
− yi

2

τm,i(r⃗′)
]

−[ (y1+
√
2δ∇ cos θ)2

λm,1(r⃗′)
− (y1+

√
2δ∇ cos θ)2

τm,1(r⃗′)
]

∣∣∣∣∣∣∣ ≤ 2M
m

m∑
i=1

∣∣∣ 1
τm,k(r⃗)

− 1
λm,k(r⃗)

∣∣∣. (5–22)

Combined with Eq. 6–4, we know that the first part of theorem holds. The proof of the sec-

ond part is similar. By using Weierstrass’ theorem, we know that there exists a sequence of

polynomials Qt(τm,k(r⃗)) such that lim
t→∞

Pt(τm,k(r⃗)) = ln τm,k(r⃗). Combined with Lemma 3, we

have

lim
m→∞

1

m

m∑
i=1

|ln τm,k(r⃗)− lnλm,k(r⃗)| = 0 (5–23)

Notice that
1

m

m∑
i=1

|ln τm,k(r⃗)− lnλm,k(r⃗)| ≥
1

m

∣∣∣∣∣ln |Σ(r⃗)| 1
m

|Υm(r⃗)|
1
m

∣∣∣∣∣ , (5–24)

which means that

lim
m→∞

1

m

∣∣∣ln |Σ(r⃗)| 1
m − ln |Υm(r⃗)|

1
m

∣∣∣ = 0. (5–25)

With the same virtue,

lim
m→∞

1

m

∣∣∣ln |Σ(r⃗′)| 1
m − ln |Υm(r⃗′)|

1
m

∣∣∣ = 0. (5–26)

Combining these two equations, the second part of this theorem is proved.
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5.3 Boundaries of Region E′

We define the Fourier Transformation of the covariance series as:

g(ω, r⃗) =
∞∑

j=−∞

ρj(r⃗)e
i2πωj,−1

2
< ω ≤ 1

2
. (5–27)

According to Szego’s theorem [sze], for an arbitrary continuous function G, we have

lim
m→∞

1

m

m−1∑
k=0

G(τm,k(r⃗)) =

∫ 1/2

−1/2

G(g(ω), r⃗)dω. (5–28)

Let G(x) = ln x, we can obtain the approximate expression of the determinant of Σm:

ln |Σm(r⃗)|1/m =
1

m

∑
ln τm,k(r⃗) ≈

∫ 1/2

−1/2

ln g(ω, r⃗)dω. (5–29)

For the matrix Σm(r⃗′), the corresponding Fourier Transformation is

g(ω, r⃗′) =
∞∑

j=−∞

ρj(r⃗′)e
i2πωj = g(ω, r⃗) + δ cos θ

∞∑
j=−∞

|∇ρj(r⃗)|ei2πωj,−
1

2
< ω ≤ 1

2
. (5–30)

Similarly, we can use

m

∫ 1/2

−1/2

ln[g(ω, r⃗) + δ cos θ
∞∑

j=−∞

|∇ρj(r⃗)|ei2πωj]dω (5–31)

to estimate the term ln |Σm(r⃗′)|.

Notice that

∂
ln |Σm(r⃗)|

1
m

|Σm(r⃗′)|
1
m

∂θ
=

δ sin θ
∞∑

j=−∞
|∇ρj(r⃗)|ei2πωj

g(ω, r⃗) + δ cos θ
∞∑

j=−∞
|∇ρj(r⃗)|ei2πωj

= O(δ sin θ). (5–32)
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Since δ is a bounded real number and | sin θ| ≤ 1,

d ln |Σm(r⃗)|
1
m

|Σm(r⃗′)|
1
m

dθ
≈ 0. (5–33)

Moreover, ∂
[
(y1+

√
2δ∇ cos θ)2

λi(r⃗
′)

+
m∑
i=1

yi
2

λi(r⃗
′)
]

∂θ
= sin θ[h(cos θ) − c], where h(·) is a monotone function

with respect to cos θ and c is a positive number. Note that θ ∈ [0, π], thus there is at most

one root of function sin θ[h(cos θ) − c] in [0, π]. We use θ∗ to denote this root; therefore, the

minimum value of function (y1+
√
2δ∇ cos θ)2

λi(r⃗′)
+

n∑
i=1

yi
2

λi(r⃗′)
is achieved under these three cases:


cos θ = −1,

cos θ = 1,

cos θ = cos θ∗.

(5–34)

Consequently, the boundaries of the region E′ can be described by the following three

hypersurfaces:

F1 :
n∑

t=1

yi
2

τn,t(r⃗)
− [

(y1 −
√
2δ∇)

2

τn,1(r⃗)− δ∆τn,1
+

n∑
t=2

yi
2

τn,t(r⃗)− δ∆τn,t
] ≤ ln

|Σ(r⃗)|
|Σ(r⃗′)|

(5–35)

F2 :
n∑

t=1

yi
2

τn,t(r⃗)
− [

(y1 +
√
2δ∇)

2

τn,1(r⃗) + δ∆τn,1
+

n∑
t=2

yi
2

τn,t(r⃗) + δ∆τn,t
] ≤ ln

|Σ(r⃗)|
|Σ(r⃗′)|

(5–36)

F3 :
n∑

t=1

yi
2

τn,t(r⃗)
− [

(y1 +
√
2δ cos θ∗∇)

2

τn,1(r⃗) + δ cos θ∗∆τn,1
+

n∑
t=2

yi
2

τn,t(r⃗) + δ cos θ∗∆τn,t
] ≤ ln

|Σ(r⃗)|
|Σ(r⃗′)|

(5–37)

The results above is for the single measurement case, which means that only one observed

RSS reading is submitted to the server for location estimation.
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Figure 5–1: Simplified Region E with high dimensional samplings in 2-D physical space.

The results can be further extended to the case where the user could report RSS readings

from n independent APs. The corresponding region E should be:

n∑
i=1

[
m∑
j=1

y2i,j

λi,j(
→
r )

−
n∑

i=1

[
(yi,1 +

√
2∇ cos θ)2

λi,1(
→
r′)

+
m∑
j=2

y2i,j

λi,j(
→
r′)

]] ≤
n∑

i=1

ln

∣∣∣Σi(
→
r )
∣∣∣∣∣∣Σi(

→
r′)

∣∣∣ . (5–38)

Note that there are n items in the outlayer sum sequence and the ith item

m∑
j=1

y2i,j

λi,j(
→
r )

−
n∑

i=1

[
(yi,1 +

√
2∇ cos θ)2

λi,1(
→
r′)

+
m∑
j=2

y2i,j

λi,j(
→
r′)

] ≤ ln

∣∣∣Σi(
→
r )
∣∣∣∣∣∣Σi(

→
r′)

∣∣∣ (5–39)

corresponds to the ith measurement. We can use the techniques in the single measurement

scenario to figure out the approximation region E′ .
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Chapter 6 Location Estimation Facilitated by Temporal
Correlation of the RSS

After revealing the fundamental reason why accuracy of location estimation could be improved

by taking temporal correlation of the RSS into account, this section presents how to utilize the

theoretical results above in practical localization process. In this section, we demonstrate the

evaluation and experimental results to show the performance differences between the system

utilizing and the system ignoring temporal correlation of the RSS.

6.1 Feasibility of Utilizing Temporal Correlation

We first investigate whether location estimation could be facilitated with the information of

temporal correlation in practice. The experiments are conducted in a laboratory indoor envion-

ment to verify our analysis for the 2-D physical space. We conduct experiments in an square

indoor space that is a around 40m2. The square is divided into grids with the edge length of

60cm. We use six mobile devices to measure the RSSes from all APs detected at 110 (11*10)

different locations. We measure the RSS value every 25 millisecond for 4k times at each loca-

tion. Traditional localization estimation processes extract the RSS information independently

and build the corresponding PDF in the database, such as the mean value of RSS distribution

shown in Fig. 6–1 (b).

We illustrate the spatial distribution of ρ in Fig. 6–1 (a), where the values of ρ in different

locations are derived from the locally sampled RSSes. The method for deriving those values

are to be described in the following subsection. We randomly select an pre-existing AP and

measure its RSS. It is interesting to find that the values of ρ are basically increasing as the

distance between the sampling location and the AP’s location is increasing, while the values of

µ are basically decreasing, as shown in Fig. 6–1 (b). That is the nearer the location is to the AP,
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Figure 6–1: Spatial distribution of values of ρ and µ

the signal strength is stronger and the mean values of the RSS are higher; the farther the location

is to the AP, the signal strength is vanishing thus the sequentially observed RSSes are basically

the same. The temporal correlation trends to be enhanced when the distance is larger. This is

because the region of vibration is limited when the RSS value are small at a far place. When at

a place close to the AP, its signal strength has more liberty at the near place. In other words, the

vibrations of signal are allayed by the fading, shadowing or multi-path effects.

Figure 6–2 associates the values of µ and ρ with locations, where the horizontal axis repre-

sents the indices of locations. We sort the locations according to the locally sampled values of

µ, and the corresponding values of ρ are also plotted. In this way, we want to verify whether the

temporal correlation information is useful by comparing it to the previous measures, i.e. mean

and sigma. If the temporal correlation has a distinct relation with the positions, we can say

it is an additional information to the previous method, which means we can double the useful

metrics without inflating the training database.

As we can see from Fig. 6–2, the values of ρ present distinct pattern compared with µ in

different locations. The situation of σ and ρ is similar to that of µ. When sorted the values of

means with positions marked on them, the ρ has little coherence with the mean and sigma, which

means the potential ability of temporal correlation information to facilitate the useful database

for localization. In fact, we calculate the cross correlation between µ, σ and ρ, whose values are

around -0.5 which indicates that the values are not definitely related to each other.
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(a) Comparison of ρ and µ

(b) Comparison of ρ and σ

Figure 6–2: Comparison of Correlation ρ, Variance σ and Mean Value

The experiment results illustrated above indicate that the temporal correlation information

of the RSS provides a diversified feature compared with the information of µ, σ and ρ. The

temporal correlation could be used to cross check the result of location estimation. It is worth

mentioning that the values of ρ can be derived from the sampled RSSes thus incur no extra

overhead in the training phase.

Through our investigation, we found it is rarely fully studied on the temporal correlation of

Wi-Fi signal strength. Since temporal correlation of RSS makes big differences in localization

systems, in next part, we would make a thorough analysis of the properties of the correlation

coefficient and design an algorithm to show what we should do to utilize such information.

37/56



Temporal Correlation of RSS Improves Accuracy of Fingerprinting Localization

6.2 Localization Estimation Algorithm

Suppose that we samplew RSSes fromAPi, then we could construct an intermediate matrix

A before computing the covariance matrix Σi(r⃗):

A =



xi,1 xi,2 . . . xi,m−1 xi,m

xi,2 xi,3 . . . xi,m xi,m+1

... ... . . . ... ...

xi,w−m xi,w−m+1 . . . xi,w−2 xi,w−1

xi,w−m+1 xi,w−m+2 . . . xi,w−1 xi,w,


(6–1)

where we assume that only m-dimensional temporal correlation is considered. The second

subscript of each entry of the matrix means the jth measurement with respect to APi. It is easy

to find that the mean value µk of each vector Ak
T is

µk =

∑w−m+k
j=k xi,j

w −m+ 1
. (6–2)

With Maximum Likelihood Estimation (MLE), we estimate the correlation matrix as

Σk,j(r⃗) = Cov[Ak
T , Aj

T ] =
(Ak

T − µk)
T (Aj

T − µj)

σ2(w −m+ 1)
, (6–3)

where k and j equals to 1, 2, ...,m, respectively.

Equation (6–3) is equivalent to the following equation:

Σk,j(
−→r ) =

w−m∑
t=0

(xi,k+t − µk)(xi,j+t − µj)

σ2(w −m+ 1)
=

w−m∑
t=0

xi,k+txi,j+t

σ2(w −m+ 1)
− µkµj

σ2
; (6–4)

therefore

Σk+1,j+1(
−→r )− Σk,j(

−→r ) = xi,j+w−m+1xi,k+w−m+1 − xi,jxi,k

σ2(w −m+ 1)
+

µkµj − µk+1µj+1

σ2
. (6–5)
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Notice that

µk − µk+1 =
xi,k − xi,k+w−m+1

w −m+ 1
= O(

1

w −m+ 1
) (6–6)

and

[
µkµj − µk+1µj+1

σ2
=

µj

σ2
(µk − µk+1) +

µk+1

σ2
(µj − µj+1)], (6–7)

and Σk+1,j+1(
−→r )−Σk,j(

−→r ) = O( 1
w−m+1

). To better estimate the parameters, often the number

of samples m should be large enough, which indicates that Σk+1,j+1(
−→r ) − Σk,j(

−→r ) is very

small, so it is reasonable to assume that the covariance matrix is in the form

Σ = σ2



1 ρ2 . . . ρm−1 ρm

ρ2 1 . . . ρm−2 ρm−1

... ... . . . ... ...

ρm−1 ρm−2 . . . 1 ρ2

ρm ρm−1 . . . ρ2 1.


(6–8)

Algorithm 6-1 illustrates how to utilize temporal correlation for better location estimation,

which is in essence a synthetic approach integrating the information of both the mean value and

the temporal correlation of the RSS.

Algorithm 6–1 Temporal Correlation for Location Estimation
Input parameters:
The training data set for each location r⃗, xij (i = 1 . . . n; j = 1 . . . w);
The reported RSS sequence tij (i = 1 . . . a; j = 1 . . . b) from a user;
Indoor space L is a set of all the identified locations recorded in the database;
Threshold Th is the critical value of choice for mean vectors.
1. For each location i in L, calculate the mean vector µi = (µ1, µ2, . . . , µm) with equation 6–2,

and calculate the correlation vector ρi = (ρ1, ρ2, . . . , ρm) as equation 6–3 shows.
2. For the reported data tij from a user, also calculate the target mean and correlation vectors

as µt, ρt.
3. Find the Euclidean distance between µt and every µi. Find all the vectors µk among those

µis, and the distance between each µk and µt should be within Th in the sample space, i.e.,
|µi −µt)| <= Th. The corresponding locations associated with those µks are denoted using
a set {lkmin}.

4. Compare the Euclidean distance between ρt and ρi in {lkmin}. Find the vector that is nearest
to ρt. The nearest distance in correlation sample space is the place we localize the user at.
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The basic idea of the algorithm is that we first find a list of candidate locations of the user

with the mean value comparison as most of the work in the literature does, and then find the

most likely location with the temporal correlation comparison.

6.3 Choice of Design Parameters

Design parameters must be chosen before the algorithm presented above can be appropri-

ately utilized. In order to make good use of the temporal correlation information and reduce

the complexity of training process, we need to find the most appropriate value of parameters

like the dimension of rho, the time interval as well as the number of training set. We conduct

experiments to show how to choose the number of temporal dimension, the sampling interval

and number of samplings in practice. These factors influence the value of ρ in a location, and a

distinguishable value of ρ in a location is favored in the localization process.

We calculate the temporal correlation coefficient ρ from 2-dimension to 280-dimension.

The results are shown in Fig. 6–3. Interestingly we found that at the beginning with dimensions

Figure 6–3: Parameter analysis of the number of correlation dimensions

smaller than 50, it shows as a linearly attenuation of correlation. When continued to increase the

dimension, the descent ratio becomes smaller. And on the higher dimensions, it shows nearly no

correlation as it changes around zero. We can find that the value of ρ decreases as the number

of dimensions increases and then keeps comparatively flat. The value of ρ is at around 0 when

the number of dimensions goes beyond 100, which indicates that it is meaningless to consider

over-high dimensions. The current value of RSS becomes almost irrelevant compared with the
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values of RSS sampled long time ago. We can also find that the number of dimensions 50 is a

critical point, after which the trend of ρ becomes flat. Consequently, we recommend to utilize

the information of the temporal correlation with the number of dimensions that are less than 50

in practice.

The effectiveness of the temporal correlation also depends on the length of the interval

that sequential RSS samplings are performed. Figure 6–4 shows the corresponding values of

ρ under different sampling intervals varying from 25ms to 200ms. It shows like a linearly

Figure 6–4: Parameter analysis of the sampling interval

descending when the interval increases. It is straightforward that the values of ρ are decreasing

as the length of the interval increases, because the longer the interval is the more unrelated the

currently sampled RSS values are from the previous ones. On the one hand, we cannot use the

smallest time intervals as the RSS values are repeated for almost several dozen times, which

cause great redundancy. So over-short sampling interval is unnecessary, since the RSS readings

may not change that fast and the observed values of the RSS are basically the same in this case.

On the other hand, the large time intervals are also not suitable, as the temporal correlation is

attenuated too much that may result in the deterioration of its quality. Overall, it is appropriate

to set a medial τ . In this case, we choose 100ms as the length of sampling interval, which is

proved to be appropriate in the experiments to be presented later.

After the number of dimensions and the sampling interval are determined, we still need

to decide the starting point of the sampling. This is because we could see variance of ρ at the

first amount of sampling intervals, as shown in Figure 6–5. We need to retrieve those RSSes

that could yields comparatively stable temporal correlation information. To this end, we sample
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Figure 6–5: Parameter analysis of the number of samplings

2000 RSS values in our system, since the value of ρ tends to be stable after the 1500th sampling

as shown in this figure.

In order to further present the stability of temporal correlation, we compare the correla-

tion efficient of Access Point ”CMCC-EDU” with different number of samplings. As shown

in Fig. 6–6, the horizontal axis is the id of reference points; the vertical axis is the temporal

correlation coefficient; the blue line is calculated with 1500 RSS samplings, and the red line

is calculated by 4000 RSSes. We can see that most points stays consistent with each other at

Figure 6–6: Comparison of correlation with different sampling number

each reference point, so these two correlation values with different sampling number can be a

reference as position information.

In this chapter, we do control experiments to elaborate the feasibility of the temporal cor-

relation information in localization system, and find the proper choice of key design parameters.

Combined with all the reasonable discovery in experiment, we design an algorithm for finger-

printing indoor localization utilizing temporal correlation coefficients.
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Chapter 7 Simulation and Experiment Results

In this chapter, we will integrate all the previous theoretical analysis and algorithm design in a

real positioning system and show our improvements. First section would be the introduction and

details of system setups and implementation. Next part is a model-based trace-driven simulation,

which is totally for the interest of proving the aforementioned theoretical analysis. The last

section is the experimental result in reliability improvement.

7.1 System Setups

We built a localization system prototype to show the advantage of leveraging temporal cor-

relation of signal strength. The whole procedure of fingerprinting localization system could be

described as this: First, in the experimental indoor area, we divide the region in grids as ref-

erence points with required accuracy as radius. And then, detect the n visible wireless access

points naturally deployed before without knowing locations. After that, collect the RSS finger-

print for w time for each AP at each reference point. Send all data to server and preprocess

to build the radio map. Next is the online localization phase. At this time, we test the signal

strength value for t times for each visible AP at each reference point. Log the real position as

true result. Finally we compare the radio map and the tested RSS data and make the localiza-

tion decision. Then we can get the ratio of correct localization result with all reference point as

reliability.

7.1.1 Fingerprint Collection

Although fingerprinting localization method is popular by its free hardware deployment, it

still has its most laborious job–collecting the training data. In order to do this, we write a simple

RSS detection JAV A code for Android platform.
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When collecting the training RSS data, we just need to place the phone at one of the ref-

erence point, enter the position ID of that reference point and also the collecting frequency and

time, and click the start button and wait for the collecting procedure until it finished at this ref-

erence point. And move to the next position. After travelled all the reference point, we have

finished the RSS collection procedure.

7.1.2 Database and Server

When the client sent the raw collected RSS data to server, we need to make a preprocess

and build the radio map in the database. First step is to regular the data structure and save the

fingerprint information into the database waiting for comparison with location request data. We

both calculated the typical mean values of RSS as a kind of radio map, and we also calculate

the temporal correlation of RSS as a secondary radio map. The calculation method is just as

section 6.2 states.

7.1.3 Location Determination

As for the process of location determination, the comparison part for the report RSSes and

radio map, we use basic k-nearest-neighborhoods to find the localization result. The determina-

tion algorithm is consist of ”coarse localization” and ”fine localization”. As most of the work in

the literature does, we first find a list of candidate locations of the user with the mean value com-

parison, which is named as ”coarse localization”. And then among all the candidate positions,

we find the most likely location with the temporal correlation comparison as ”fine localization”.

Through this two level of positioning, the accuracy of localization can be highly improved.

Of course, there are more accurate and evolved positioning algorithms so far, especially

the machine learning algorithms, but algorithm is not the main consideration for this paper after

all. So we only need to find a way out to prove the efficiency and effectiveness of temporal

correlation of RSS for one algorithm for example is enough. And this is the reason why we do

not need to further compare with the other experiment algorithms.
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7.2 Trace-driven Simulation

In this section, we demonstrate this trace-driven simulation to show the performance dif-

ference between the system utilizing and the system ignoring temporal correlation of the RSS.

7.2.1 Simulation introduction

The system are conducted in a indoor environment to verify our analysis for the 1-D phys-

ical space. We use two mobile devices to measure the RSSes from one AP at two different

locations that is 2 meters from each other. In order to differentiate temporal correlations of the

two locations, we add noise of people motion to one of the channels from the AP to mobile

devices. We measure the RSS value every 100 millisecond for 1k times at each location.

Traditional localization estimation processes extract the RSS information independently

and build the corresponding PDF in the database, such as the measured RSS distribution shown

in Fig. 7–1, where each curve represents the PDF of each location. The two figures represent

Figure 7–1: PDFs of the tested RSSes

two cases, where the first case means that the temporal correlation at each location is distinctive,

and the second case means that the two locations’ temporal correlations are similar to each other.

The regression parameters for the Gaussian PDFs are as shown in Table 7–1.

Table 7–1: RSS results fitting 1-d Gaussian parameters

Gaussian Pic1_r1 Pic1_r2 Pic2_r1 Pic2_r2
A 152.119 391.278 205.92 135.665
µ -71.574 -59.61 -70.3584 -72.8452
σ 3.5943 1.409 2.54672 4.10548
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7.2.2 Simulation in 2-D PDFs with correlation

In order to present the trace-simulation of theoretical model, we use two dimensional prob-

ability density functions formed by real test RSS data pairs. In this way, the two dimensional

temporal correlation can be well presented in such a two dimensional Gaussian distribution.

Based on the fingerprints observed above, we now construct the corresponding 2-D temporal

correlation PDFs, which are illustrated in Fig. 7–2 (a) and Fig. 7–2(b). The corresponding re-

gression parameters for the joint 2-D Gaussian PDFs are shown in Table II.

Table 7–2: RSS results fitting 2-D Gaussian parameters.

Gaussian Pic1_r1 Pic1_r2 Pic2_r1 Pic2_r2
A 126.274 254.858 184.975 124.457
µ -71.5829 -59.5945 -70.3273 -72.8478
σ 2.5122 0.9905 1.7931 2.8962
ρ 0.9877 0.9215 0.977799 0.99263

The experimental results are shown in Fig. 7–2 (c) and Fig. 7–2 (d), where the blue and

yellow dots are fingerprints reported at the first and the second locations, respectively. We

can see from Fig. 7–2 (a), the blue dome-like function is the regression distribution of a less

correlated position and the orange dome-like function is more correlated. The height of the 2-

dimensional distribution is the count of that RSS pairs. The center of the distribution is actually

the mean value of testing signal strength data. The situation of Fig. 7–2 (b) represents the two

positions are not separated explicitly. In this case, the mean value of this two reference points are

closer to each other and makes the matching process not accurate. So the temporal correlation

information could be helpful.

Fig. 7–2 (c) and Fig. 7–2 (d) are the vertical view of Fig. 7–2 (a) and Fig. 7–2 (b) re-

spectively. The curve and straight-line boundaries to separate dots are generated by the system

considering and ignoring the temporal correlation. In both cases shown in Fig. 7–2 (c) and

Fig. 7–2 (d), the curve boundary helps the system make more accurate location estimation. Due

to the way of presentation, the seemingly one point on the figures actually represents many fin-

gerprints. The results show that the number of fingerprints whose associated locations have

been correctly estimated is much higher with the temporal boundary. We can expect that the
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(a) Gaussian Distribution of Exp1 (b) Gaussian Distribution of Exp2

(c) Exp1 Hyperbola Boundary (d) Exp2 Hyperbola Boundary

Figure 7–2: 2-D Gaussian Distribution and Hyperbolic Criteria for Localization

performance of the system will be better if more fingerprints are sampled. In order to deal with

the small probability event, we put both of arms of the hyperbola in the figure. An interest-

ing finding is that there is a blue dot in the upper right of Fig. 7–2 (c), which can be correctly

localized with the temporal boundary.

This is the most simplest case for 2-dimensional temporal series and 1-dimensional physi-

cal space with only two reference points. However, sometimes the simpler case is easy to explain

more clearly and reveal their echo with theoretical model. Regressed 2-dimensional Gaussian

distribution with received signal strength pairs is the most direct way to resent the multivari-

ate Gaussian distribution model considering the temporal correlation. In this trace-driven sim-

ulation, we establish a direct connection between the theoretical modeling and experimental

settings.
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7.3 Evaluation and Experimental Results

This section shows how the temporal correlation information of the RSS could improve the

performance of fingerprinting based localization in practice. We demonstrate the improvement

of reliability given the different accuracy radius. In our system, we use the temporal correlation

coefficient as an auxiliary reference information. Traditional positioning systems only use the

information of mean value of the RSSes, the best accuracy of which is greater than 2 meters.

We found when only adding one dimension of correlation, we can improve the reliability of the

localization accuracy around 10%.

Our experimental area is around forty square meters, and we divided them into 10*10 60cm

grids. In the fingerprint collecting phase, we collect the RSS data of all available Wi-Fi Access

Points with 25ms for 4000 times at each position. After pre-processing of filtering the raw data,

we calculate the mean and correlation coefficients of each position as their fingerprinting maps.

In the location determination phase, we use the strongest five signal strength information with

25ms for 1500 times. And we deploy k Nearest Neighbors algorithm to find the most probable

positions. In addition, we set a threshold Th for the kNN Euclidian distances between testing

and fingerprint RSSes. Here we can find some lkmin positions with distance smaller than the

threshold Th. After that we use temporal correlation to make the final decision. We find the

nearest position among that lkmin positions in the temporal correlation space.

We use the value of µ and ρ with respect to different Access Points at each location as the

local fingerprints in the localization database. At each sampling location, we collect totally 4000

RSS fingerprints at the sampling interval of 25ms with respect to each Wi-Fi AP available. In

the localization phase, we sample totally 1500 fingerprints at the sampling interval of 25ms,

where the top 5 strongest fingerprints are sampled. We compare the mean value of the sampled

fingerprints and those have been stored in the database with the K-nearest neighbors (KNN)

algorithm. In particular, we find sampled RSSes’ neighbors that are within a threshold Th in

the sample space, and put the corresponding associated locations on a list. For each location on

the list, we examine the corresponding correlation coefficient with that of the sampled RSSes.

The location matched most will be determined as the estimated location of the user.
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We evaluate the localization performance by considering both the accuracy and reliabil-

ity. In the experiment, we first set an error tolerance radius δ, which means that any estimated

locations within the δ neighborhood of the user’s actual location can be regarded as a correct

estimation. We set different radius and randomly pick up 500 estimations to evaluate the per-

formance. With the results of localization, we could find the probability that the user’s location

is correctly estimated, which is termed as reliability.

We can easily find that the contribution weight of mean and rho in location determination

phase is mainly determined by the distance threshold Th. What is the proper value should set on

Th is an important factor for our system. As the pictures show, the mean threshold Th is ranging

from 0 to 5, and the reliability is started growing and ended declining. With the accuracy radius

ranges from 30cm to 3m, the reliability shows different scales of improvement as long as the

threshold is smaller than 3.

The experiment results are illustrated in Fig 7–3. The radius is set to be 30cm, 60cm,

120cm, 180cm, 210cm, 240cm, 270cm, 3000cm, respectively. In each case, we increase the

threshold Th from 0 to 5 with increment of 0.2. Note that the unit of the threshold is not

important, as we are consider the normalized distance in the sample space. As shown in Fig 7–

3, the localization reliability increases first and then decreases as the threshold increases in all

scenarios.

If the threshold is 0, the user’s location is basically estimated using the mean of the RSSes;

the information of the temporal correlation is not utilized. If the threshold increases, the system

could cross check the candidate locations and find the most matched one; therefore the reliability

is improved. If the threshold is large enough, it means that more candidate locations could be

on the list. Since those locations are picked up according to their corresponding fingerprints in

the sample space, they may be far away from each other in the physical space. Their observed

temporal correlation information is unable to effectively tell one location from another. The

more the candidate locations are, the higher probability that the location is far from the APs,

and the temporal correlation becomes indistinguishable. That is why the reliability becomes

worse if the threshold is too large.

To further explore the experimental results, we will explain more about the details of the
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(a) Accuracy radius: 30cm (b) Accuracy radius: 60cm

(c) Accuracy radius: 90cm (d) Accuracy radius: 120cm

(e) Accuracy radius: 150cm (f) Accuracy radius: 180cm

(g) Accuracy radius: 210cm (h) Accuracy radius: 240cm

(i) Accuracy radius: 270cm (j) Accuracy radius: 300cm

Figure 7–3: Reliability with different threshold H and error tolerance radius
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figures. Firstly, we can see that intersection of y axis is actually the localization reliability with-

out correlation information of signals. With utilizing mean value of RSS only, the localization

reliability increased when the accuracy radius enlarged, from 37% to 74% as radius goes from

30 centimeters to 3 meters. And as the x variable threshold Th increases from 0 to 5, the re-

liability basically increased and then decreased with a little vibrations. As mentioned before,

the threshold Th determine the ratio of influence between mean value and temporal correlation.

The increment of Th means the temporal correlation information is making a bigger sense in

location determination. We can see that the reliability would increase at the beginning and reach

the maximum when Th is around 1.8, and then decrease more or less until less than the original

value of reliability. We can also find that the larger accuracy radius is, the later of decrement is

as Th growing. Although the trend is increasing at first and decreasing at last, the reliabilities

with Th smaller than 3 are all larger than original value, which means that it can be guaranteed

that the improvement of reliability within some interval. Another thing that we should notice is

that, although the value of reliability is smaller when Th is large enough, this does not mean the

temporal correlation would cause decrement of reliability. Furthermore, when accuracy radius

is larger than 3 meters, the critical Th that caused decrement of reliability before would also

make improvement when accuracy radius increased correspondingly. The experiment data are

further analyzed as Table 7–3, which shows that the reliability of the fingerprinting localization

could be improved by up to 13% if we choose the radius of 0.3m and the threshold of 1.

Table 7–3: Combination of H and radius and corresponding reliability improvement

Radius δ Mean Threshold H Reliability Improvement
0.3m 1 13%
0.6m 1.6 7%
0.9m 1.6 7%
1.2m 1.8 9%
1.5m 1.8 9%
1.8m 1.8 7%
2.1m 1.8 8%
2.4m 1.8 12%
2.7m 1.8 8%
3.0m 1.8 7%
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SUMMARY

In this paper, we have theoretically shown that the temporal correlation of the RSS can further

improve accuracy of the fingerprinting localization. In particular, we have constructed a theo-

retical framework to evaluate how the temporal correlation of the RSS can influence reliability

of location estimation, which is based on a newly proposed radio propagation model consid-

ering the time-varying property of signals from Wi-Fi APs. The framework has been applied

to analyze localization in the one dimensional physical space, which reveals the fundamental

reason why localization performance can be improvement by leveraging temporal correlation

of the RSS. We have extended our analysis to high-dimensional scenarios and mathematically

depict the boundaries in the RSS sample space, which distinguish one physical location from

another. Moreover, we have developed an algorithm to utilize temporal correlation of the RSS

to improve the location estimation accuracy, where the process for choosing key design param-

eters are provided through experiments. Experiment results show that the localization accuracy

can be improved by up to 13% with appropriate leveraging the RSS temporal correlation.

Our future work is mainly to consider how to refine our model with other signal strength

distributions, like Multi-Gaussian, multimodal scenarios. Another interesting thing is to fix

the different hardware problem and pedestrian motion influence. How to build a model properly

describe the version control and temporal difference would be very useful in localization system.

And the positioning algorithms utilizing temporal correlation of signal can be further improved.

There is a still long way to go before a standard indoor localization system can be

formed, and there are kinds of problems to solve in each step of the positioning procedure,

like fingerprint-collecting, RP deployment, AP selection, positioning algorithms and so on. Be-

sides solving the system problems and improve its performance practically, we also need to find

their mathematical mechanism by theoretical analysis at the same time, which can always lead

the development of the real systems in a correct and efficient way.

52/56



Temporal Correlation of RSS Improves Accuracy of Fingerprinting Localization

Bibliography

[1] Z. Zhou Z. Yang and Y. Liu. “From RSSI to CSI: Indoor localization via channel re-

sponse”. In: ACM Computer Survey 46.2 (2013), pp. 1–32.

[2] J. Yang S. Sidhom Y. Wang Y. Chen H. Liu Y. Gan and F. Ye. “Push the Limit of WiFi

based Localization for Smartphones”. In: Proc. ACM MobiCom. ACM. 2012, pp. 305–

316.

[3] S. Sidhom Y. Wang Y. Chen H. Liu J. Yang and F. Ye. “Accurate WiFi Based Localization

for Smartphones Using Peer Assistance”. In: IEEE Transactions on Mobile Computing

13.10 (2013), pp. 2199–2214.

[4] V. N. Padmanabhan A. Rai K. K. Chintalapudi and R. Sen. “Push the Limit of WiFi based

Localization for Smartphones”. In: Proc. ACM MobiCom. ACM. 2012, pp. 293–304.

[5] B. Lu S. Fang and Y. Hsu. “Learning location from sequential signal strength based on

GSM experimental data”. In: IEEE Transactions on Vehicular Technology 61.2 (2012),

pp. 726–736.

[6] S. Fang and T. Lin. “A dynamic system approach for radio location fingerprinting in

wireless local area networks”. In: IEEE Transactions on Communications 58.4 (2010),

pp. 1020–1025.

[7] S. Kuo and Y. Tseng. “A scrambling method for fingerprint positioning based on tem-

poral diversity and spatial dependency”. In: IEEE Transactions on Knowledge and Data

Engineering 20.5 (2008), pp. 678–684.

[8] J. Yang S Liu Y. Chen M. Gruteser G. Chandrasekaran M. A. Ergin and R. P. Martin.

“Empirical evaluation of the limits on localization using signal strength”. In: Proc. IEEE

SECON. IEEE. 2009, pp. 1–9.

53/56



Temporal Correlation of RSS Improves Accuracy of Fingerprinting Localization

[9] S. Kyperountas I. Hero A.O. R. Moses N. Patwari J. Ash and N. Correal. “Locating the

nodes: cooperative localization in wireless sensor networks”. In: IEEE Signal Processing

Magazine 22.4 (2005), pp. 55–69.

[10] M. Perkins N. S. Correal N. Patwari A. O. H. III and R. J. O’dea. “Relative location

estimation in wireless sensor networks”. In: IEEE Transactions on Signal Processing

51.8 (2003), pp. 2137–2148.

[11] V. Atanasovski M. Angjelichinoski D. Denkovski and L. Gavrilovska. “Cramér-Rao

Lower Bounds of RSS-Based Localization With Anchor Position Uncertainty”. In: IEEE

Transactions on Information Theory 61.5 (2015), pp. 2807–2834.

[12] A. Padmanabha Iyer K. Chintalapudi and V. N. Padmanabhan. “Indoor localization with-

out the pain”. In: Proc. ACM MobiCom. ACM. 2010, pp. 173–184.

[13] X. Wang Y. Wen X. Tian and S. Lu. “Fundamental limits of RSS fingerprinting based

indoor localization”. In: Proc. IEEE INFOCOM. IEEE. 2015, pp. 2479–2487.

[14] E. Martínez M. Rodriguez J. Favela and M. Muñoz. “Location-aware access to hospital

information and services”. In: Information Technology in Biomedicine, IEEE Transac-

tions on 8.4 (2004), pp. 448–455.

[15] Hamid Harroud, Mohamed Ahmed, and Ahmed Karmouch. “Policy-driven personalized

multimedia services for mobile users”. In: Mobile Computing, IEEE Transactions on 2.1

(2003), pp. 16–24.

[16] T. Lin S. Fang and K. Lee. “A novel algorithm for multipath fingerprinting in indoor

WLAN environments”. In: Wireless Communications, IEEE Transactions on 7.9 (2008),

pp. 3579–3588.

[17] V. Ranki F. Belloni P. Kemppi T. Rautiainen and J. Pajunen. “Hybrid positioning system

combining angle-based localization, pedestrian dead reckoning and map filtering”. In:

Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on.

IEEE. 2010, pp. 1–7.

54/56



Temporal Correlation of RSS Improves Accuracy of Fingerprinting Localization

[18] E. Servan-Schreiber T. Hodes R. Katz and L. Rowe. “Composable ad-hoc mobile services

for universal interaction”. In: Proceedings of the 3rd annual ACM/IEEE international

conference on Mobile computing and networking. ACM. 1997, pp. 1–12.

[19] U. Bandara, H. Morikawa M. Hasegawa M. Inoue, and T. Aoyama. “Design and imple-

mentation of a bluetooth signal strength based location sensing system”. In: Radio and

Wireless Conference, 2004 IEEE. IEEE. 2004, pp. 319–322.

[20] V. Falcao R. Want A. Hopper and J. Gibbons. “The active badge location system”. In:

ACM Transactions on Information Systems (TOIS) 10.1 (1992), pp. 91–102.

[21] R. Peng and M. Sichitiu. “Angle of arrival localization for wireless sensor networks”. In:

Sensor and Ad Hoc Communications and Networks, 2006. SECON’06. 2006 3rd Annual

IEEE Communications Society on. Vol. 1. IEEE. 2006, pp. 374–382.

[22] H. So Y. Chan W. Tsui and P. Ching. “Time-of-arrival based localization under NLOS

conditions”. In: Vehicular Technology, IEEE Transactions on 55.1 (2006), pp. 17–24.

[23] A. Haimovich C. Comşa J. Luo and S. Schwartz. “Wireless localization using time dif-

ference of arrival in narrow-band multipath systems”. In: Signals, Circuits and Systems,

2007. ISSCS 2007. International Symposium on. Vol. 2. IEEE. 2007, pp. 1–4.

[24] V. Padmanabhan A. Rai K. Chintalapudi and R. Sen. “Zee: zero-effort crowdsourcing

for indoor localization”. In: Proceedings of the 18th annual international conference on

Mobile computing and networking. ACM. 2012, pp. 293–304.

[25] A. Elgohary-M. Farid M. Youssef H. Wang S. Sen and R. Choudhury. “No need to war-

drive: unsupervised indoor localization”. In: Proceedings of the 10th international con-

ference on Mobile systems, applications, and services. ACM. 2012, pp. 197–210.

[26] D. Katabi S. Kumar S. Gil and D. Rus. “Accurate indoor localization with zero start-up

cost”. In: Proc. ACM MobiCom. ACM. 2014, pp. 483–494.

[27] A. Agrawala M. Youssef and S. Udaya. “WLAN location determination via clustering and

probability distributions”. In: Pervasive Computing and Communications, 2003.(PerCom

55/56



Temporal Correlation of RSS Improves Accuracy of Fingerprinting Localization

2003). Proceedings of the First IEEE International Conference on. IEEE. 2003, pp. 143–

150.

[28] K. Plataniotis A. Kushki and A. Venetsanopoulos. “Kernel-based positioning in wireless

local area networks”. In: Mobile Computing, IEEE Transactions on 6.6 (2007), pp. 689–

705.

[29] W. Valaee C. Feng W. Au and Z. Tan. “Received-signal-strength-based indoor positioning

using compressive sensing”. In: Mobile Computing, IEEE Transactions on 11.12 (2012),

pp. 1983–1993.

[30] S. Kumar D. Vasisht and D. Katabi. “Decimeter-Level location with a single WiFi access

point”. In: Proc. NSDI. 2016, pp. 165–178.

[31] A. Padmanabha Iyer K. Chintalapudi and V. N. Padmanabhan. “SpotFi: Decimeter level

localization using WiFi”. In: Proc. ACM SIGCOMM. ACM. 2015, pp. 269–282.

[32] A. Sheth D. Halperin W. Hu and D. Wetherall. “Tool release: Gathering 802.11n traces

with channel state information”. In: Proc. ACM SIGCOMM CCR 41.1 (2011), pp. 53–53.

[33] K. Kaemarungsi and P. Krishnamurthy. “Properties of indoor received signal strength

for WLAN location fingerprinting”. In: Mobile and Ubiquitous Systems: Networking and

Services (MOBIQUITOUS). IEEE. 2004, pp. 14–23.

[34] M. Youssef and A. Agrawala. “Handling samples correlation in the horus system”. In:

INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Com-

munications Societies. Vol. 2. IEEE. 2004, pp. 1023–1031.

[35] K. Kaemarungsi and P. Krishnamurthy. “Modeling of indoor positioning systems based

on location fingerprinting”. In: Proc. IEEE INFOCOM. IEEE. 2004, pp. 1012–1022.

[36] X. Li E. Elnahrawy and R. P. Martin. “The limits of localization using signal strength: A

comparative study”. In: Proc. IEEE SECON. IEEE. 2004, pp. 406–414.

[37] L. D. Branges. “The Stone-Weierstrass theorem”. In: Proceedings of the American Math-

ematical Society 10.5 (1959), pp. 822–824.

56/56


	Figure Index
	Table Index
	Symbols
	Chapter 1  Introduction and Related Work
	1.1 Introduction
	1.2 Related Work
	1.2.1 Overview of WLAN Fingerprinting Localization
	1.2.2 Fundamental Limits of RSS Fingerprinting Approach
	1.2.3 Temporal Information of RSS Utilized for Localization


	Chapter 2  Theoretical Model of Location Estimation
	Chapter 3  Analysis of 2-D Temporal Correlation for 1-D Physical Space Localization
	3.1 Finding Region E
	3.2 Analysis on Region E
	3.2.1 Boundaries of Region E
	3.2.2 Accurate Description of E

	3.3 Influence of Temporal Correlation on Accuracy of Localization

	Chapter 4  High-Dimensional Extensions for Localization
	4.1 High-Dimensional Temporal Correlation
	4.2 High-Dimensional Sample Space
	4.3 Two-Dimensional Physical Space

	Chapter 5  Asymptotic Equivalent Region of E in High-Dimensional Scenarios
	5.1 Approximate Matrix
	5.2 Asymptotical Equivalence Analysis
	5.3 Boundaries of Region E'

	Chapter 6  Location Estimation Facilitated by Temporal Correlation of the RSS
	6.1 Feasibility of Utilizing Temporal Correlation
	6.2 Localization Estimation Algorithm
	6.3 Choice of Design Parameters

	Chapter 7  Simulation and Experiment Results
	7.1 System Setups
	7.1.1 Fingerprint Collection
	7.1.2 Database and Server
	7.1.3 Location Determination

	7.2 Trace-driven Simulation
	7.2.1 Simulation introduction
	7.2.2 Simulation in 2-D PDFs with correlation

	7.3 Evaluation and Experimental Results

	SUMMARY
	Bibliography

