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Dialogue State Tracking in Statistical Dialogue Management

ABSTRACT

Dialogue management is the core of a dialogue system. In recent years, there is a

research trend towards statistical dialogue management. As an important part of sta-

tistical dialogue management, dialogue state tracking (DST) is a process to estimate

the distribution of the dialogue states at each dialogue turn given the interaction his-

tory. Recently, to advance the research of statistical dialogue management, researchers

start to formulate dialogue state tracking as an independent problem so that a bunch of

machine learning algorithms can be investigated.

Both rule-based and statistical approaches have been successfully used for the DST

problem. Since the DST problem is raised out of the statistical dialogue management

framework, statistical approaches have been the natural focus and achieved the state-of-

the-art performance. However, statistical approaches have also shown large variation

in performance and poor generalization ability due to the lack of data. There also have

been attempts of using probability operation rules for DST, due to their simplicity, ef-

ficiency and portability. However, the performance of these methods are usually not

competitive to statistical tracking approaches and there lacks a way to improve the DST

performance when training data are available.

In this paper, two novel frameworks are proposed which manage to take advantage

of both rule-based and statistical approaches. One framework, referred to as constrained

Markov Bayesian polynomial (CMBP), taking the first step towards bridging the gap

between rule-based and statistical approaches for DST, formulates rule-based DST in a
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general way and allow data-driven rules to be generated. Here, a DST rule is defined

as polynomial function of a set of probabilities satisfying certain linear constraints.

Prior knowledge is encoded in these constraints. Under reasonable assumptions, CMBP

optimization can be converted to a constrained linear programming problem. Another

framework, referred to as recurrent polynomial network (RPN), further bridges the gap.

RPN’s unique structure enables the framework to have all the advantages of CMBP

including efficiency, portability and interpretability. Additionally, RPN achieves more

properties of statistical approaches than CMBP. CMBP and RPN were evaluated on

the data corpora of the second and the third Dialog State Tracking Challenge (DSTC-

2/3). Experiments showed that both CMBP and RPN have good generalization ability

and can significantly outperform both traditional rule-based approaches and statistical

approaches with similar feature set. Compared with the state-of-the-art statistical DST

approaches with a lot richer features, CMBP and RPN are also competitive.

Keywords: Statistical Dialogue Management, Dialogue State Tracking, Rule-based

Model, Statistical Model, Data-driven Rule, Constrained Markov Bayesian Polynomial,

Recurrent Polynomial Network
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Chapter 1 Introduction

1.1 Spoken Dialogue System

1.1.1 Spoken Dialogue System

A task-oriented spoken dialogue system (SDS) is a system that can continuously in-

teract with human to accomplish a predefined task through speech. It usually consists

of three modules: input, output and control, as shown in figure 1.1. The input mod-

ule mainly consists of automatic speech recognition (ASR) and spoken language un-

derstanding (SLU), with which semantics-level user dialogue acts are extracted from

acoustic speech signals. With the input user dialogue acts, the control module, also

called dialogue management accomplish two missions. One is to maintain its internal

state, an encoding of the machine’s understanding about the conversation. As informa-

tion is received from the input module, the state is updated, which is called dialogue

state tracking (DST). Another mission is to choose a machine action based on its pol-

icy, also at semantics-level, to direct the dialogue given the information of the dialogue

state, referred to as dialogue decision making. The output consists of natural language

generation (NLG) and text-to-speech (TTS) synthesis, with which machine dialogue

acts are converted to audio.

1.1.2 Dialogue Management

Dialogue management is the core of a dialogue system. Traditionally, most commercial

spoken dialogue systems assume observable dialogue states and employ hand-crafted

rules for dialogue management, such as dialogue flow-chart. Here, dialogue state is

observable, hence no tracking is needed. Dialogue decision is simply a set of mapping

rules from state to machine action. This is referred to as rule-based dialogue manage-

ment. However, unpredictable user behaviour, inevitable automatic speech recognition

and spoken language understanding errors make it difficult to maintain the true dia-

1



Dialogue State Tracking in Statistical Dialogue Management

User 

Text-to-speech 
Synthesis 

Natural 
Language 

Generation 

Automatic 
Speech 

Recognition 

Spoken 
Language 

Understanding 

Dialogue 
Manager 

Dialogue State 
Tracking 

Input Module 

Control Module 

Output Module 

Figure 1.1 Diagram of a spoken dialogue system (SDS)

logue state and make decision. Hence, in recent years, there is a research trend towards

statistical dialogue management. A well-founded theory for this is the partially observ-

able Markov decision process (POMDP) framework ([1], Williams and Young, 2007:

393–422.)([2], Thomson and Young, 2010: 562–588.)([3], Young et al., 2010: 150–

174.)([4], Young et al., 2013: 1160–1179.). In most studies of POMDP, both dialogue

state tracking and decision making are modelled using statistical approaches.

Recently, to advance the research of statistical dialogue management, researchers

start to formulate dialogue state tracking as an independent problem so that a bunch of

machine learning algorithms can be investigated. The dialog state tracking challenge

(DSTC) provides the first common testbed in a standard format, along with a suite

of evaluation metrics for this purpose ([5], Williams, 2012: 959–970.)([6], Williams,

2012: 23–24.)([7], Williams et al., 2013: 404–413.)([8], Henderson et al., 2014: 263–

272.)([9], Henderson et al., 2014: 324–329.).

2
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1.2 Our Results and Organization of Thesis

1.2.1 Main Contribution of This Thesis

Two novel frameworks are proposed which manage to take advantage of both rule-based

and statistical approaches. One framework is Constrained Markov Bayesian Polynomial

(CMBP) ([10], Sun et al., 2014: 330–335.)([11], Yu et al., 2015: 1–10.) which takes

the first step towards bridging the gap between rule-based and statistical approaches

for dialogue state tracking. The other framework is Recurrent Polynomial Network

(RPN) ([12], Sun et al., 2015: 1–22.) which further bridges the gap. Both frameworks

achieve efficiency, portability, interpretability, simplicity as well as state-of-the-art state

tracking performance.

1.2.2 Organization of This Thesis

The rest of the paper is organized as follows. Section 2 formulates the dialogue state

tracking problem. The rule-based and statistical approaches for DST are reviewed in

section 3, followed by two novel frameworks bridging the gap between rule-based

and statistical approaches for DST. One novel framework, referred to as Constrained

Markov Bayesian Polynomial, is discussed in section 4. Another novel framework,

named Recurrent Polynomial Network, is introduced in section 5. Section 6 concludes

the paper. Details of CMBP constraints formulation and derivative calculation of RPN

are included in the Appendix.

3
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Chapter 2 Dialogue State Tracking

A dialogue can be regarded as a time sequence {a0,o1, · · · , at−1,ot}, where ai is the

system information at i-th dialogue turn, including the system response, and oi denotes

all information from the user’s speech at i-th turn, e.g. the output of ASR and SLU. At

each turn, the system needs to estimate the probability distribution of the state given the

whole dialogue history up to that turn, also referred to as belief state bt(s), or briefly bt,

bt(s) = T (s, b0, a0,o1, · · · , at−1,ot)

= P (s|b0, a0,o1, · · · , at−1,ot)
(2-1)

where T (·) denotes the tracker and b0 is the initial belief state.

As shown in equation (2-1), the result of DST is influenced not only by the tracker

T (·) but also by the sequence {a0,o1, · · · , at−1,ot} and the initial belief state b0. In

general, the initial state is assumed to be uniformly distributed and the system informa-

tion can be obtained deterministically by the tracker. The information oi from user’s

speech usually refers to the output of ASR and SLU. In this paper, the output of ASR is

not used directly, so oi denotes the output of SLU, which is an N -best list of semantic

hypotheses.

For an end-to-end spoken dialogue system, a dialogue state tracker should be mea-

sured from at least the following three aspects:

• Accuracy The tracker should be as accurately as possible to estimate the system

state. It has been shown that the improvement of tracking accuracy can benefit

for the task completion rates in the end-to-end spoken dialogue system.

• Efficiency As shown in figure 1.1, the tracker is only a small component in the

whole system. In order to make the system and users can converse in real time,

the tracker should compute as fast as possible.

• Generalization In practice, it is hard to collect enough dialogues for training

before an system is employed, which is often the case whenever a new domain

4
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encounters or the current domain is extended. Therefore, it is important that the

tracker can work well in new domain or extended domain.

Partially observable Markov decision process (POMDP) framework provides a well-

founded theory for statistical dialogue management. In most studies of POMDP, both

dialogue state tracking and decision making are modelled using statistical approaches.

In early works of POMDP, belief state is updated using Bayes’ theorem with consider-

ation of Markov and reasonable independence assumptions. This DST approach leads

to the below update formula for bt

bt(st) = P (st|ot, at−1, bt−1)

= k · P (ot|st, at−1)
∑

st−1∈S

P (st|st−1, at−1)bt−1(st−1)
(2-2)

where k is the normalization constant and at−1 is the system response in the (t− 1)-th

turn. Due to the huge number of possible states, approximation is necessary for DST

in real world SDS tasks. State space partition (hidden information state, i.e. HIS) ([3],

Young et al., 2010: 150–174.) or further state independence assumption (Bayesian

network update state, i.e. BUS) ([2], Thomson and Young, 2010: 562–588.) have been

used. However, these generative methods can neither accurately nor efficiently track

the dialogue state.

To advance the statistical dialogue management research, the Dialog State Tracking

Challenge (DSTC) is organized to provide common testbeds for comparing different

DST models. There have been 3 challenges, each with a different task. All challenges

have the task of tracking users’ goals and employ labelled dialogue corpus and simpli-

fied dialogue state representations. The data for DSTC-1 ([7], Williams et al., 2013:

404–413.) was collected using the Let’s Go system, which provides bus schedule infor-

mation in Pittsburgh, USA. In this domain, there are 9 slots, such as route, from.desc,

to.desc etc. The user can inform the system the value of any slot. As the dialogue

progresses, the values for different slots are accumulated to form the user’s goal. A

number of different evaluation metrics were investigated in DSTC-1. Accuracy of joint

goals and Brier score were accepted later as the primary metrics for future challenges.

5
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In DSTC-2 ([8], Henderson et al., 2014: 263–272.), the domain is changed to restaurant

search with 8 slots. Some slots are requestable slots, while the others are informable,

which may be provided as search constraints. Dialogue state also becomes richer. In

addition to the users’ goals, search method (the way the user is trying to interact with

the system, e.g. by-name, by-constraints etc.) and requested slots are also employed.

DSTC-3 ([9], Henderson et al., 2014: 324–329.) focuses on dialogue domain extension.

Only a small set of labelled dialogues in a new domain (tourist information) are avail-

able and all participants are asked to build a belief state tracker on the small data set

plus the DSTC-2 data. The new domain has 13 slots, which include all slots in DSTC-2

and 5 new slots. In all the 3 challenges, the dialogue state tracker receives SLU N -best

hypotheses for each user turn, each hypothesis having a set of act-slot-value tuples with

a confidence score. The dialogue state tracker is supposed to output a set of distributions

of the dialogue state. In this paper, the joint goal tracking, which is the most difficult

and general task of DSTC-2/3, is of interest.

6
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Chapter 3 Rule-based and Statistical Approaches for DST

In general, there are two types of approaches for dialogue state tracking – statistical

approach and rule-based approach.

3.1 Statistical Models

3.1.1 Generative Statistical Models

In early work of POMDP, the belief state tracking is achieved by applying Bayesian

rules as well as reasonable independence assumptions of the state components ([3],

Young et al., 2010: 150–174.):

bt+1(s) = η p(ot+1|ut+1)P (ut+1|gt+1, at)∑
gt

P (gt+1|gt, at)
∑
ht

P (ht+1|ut+1,gt+1,ht, at)bt(g,h) (3-1)

In the above equation, there are only two pieces of external input information: p(ot+1|ut+1)

which is usually approximated by the estimated distribution (usually normalised con-

fidence score) of the semantic hypotheses q(ut+1) and bt(g,h) =
∑

ut
bt(s) of turn t.

The rest are all model parameters: η = p(ot+1|at, bt(s)) is a constant independent of

st, P (gt+1|gt, at) is the user goal model, P (ut+1|gt+1, at) is the user action model and

P (ht+1|ut+1,gt+1,ht, at) is the dialogue history model.

The dialogue history model is usually deterministic and simply measures the consis-

tency between the updated dialogue state and the original dialogue state (e.g. if a goal

is denied, it is set as -1). Parameters of the other two models need to be estimated using

training data separately on static corpora or optimised jointly together with policy using

reinforcement learning. Hence the generative Bayesian belief estimator is regarded as

a statistical DST model. It has also been applied to DSTC by concentrating only on the

goal component g , but did not yield competitive result due to inaccurate estimation of

the parameters.

7
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3.1.2 Discriminative Statistical Models

Before the DSTCs, most DST approaches are Bayesian generative models. Although

they are mathematically sound, it is hard to incorporate rich features for DST and some-

times they are intractable ([13], Lee and Eskenazi, 2013: 414–422.). Hence, discrimina-

tive models, such as Maximum Entropy model (MaxEnt) ([13], Lee and Eskenazi, 2013:

414–422.)([14], Sun et al., 2014: 318–326.), Condition Random Field (CRF) ([15],

Lee, 2013: 442–451.)([16], Kim and Banchs, 2014: 332–336.), Deep Neural Networks

(DNN) ([17], Henderson et al., 2013: 467–471.)([14], Sun et al., 2014: 318–326.),

Recurrent Neural Networks (RNN) ([18], Henderson et al., 2014: 292–299.)([9], Hen-

derson et al., 2014: 324–329.) and Decision Forest ([19], Williams, 2014: 282–291.)

etc., have been used as the discriminative statistical DST models and achieved great

success since DSTC-1. There approaches fall into four main categories: binary classifi-

cation model, multi-classification model, structured discriminative model and labelling

model.

• Binary Classification Model: Here all slots are assumed to be independent of

each other, leading to efficient state factorization:

b(s1 = v1, · · · , sn = vn) =
∏
j

b(sj = vj) (3-2)

In addition, for a slot, all candidate values which have not been observed up to the

current turn are clustered together as a special value “None”. This significantly

reduces the computational cost.

With these assumptions, the joint goal can be got by calculating the belief b(s =

v) for each slot s and candidate value v. This can be converted into a binary

classification problem of determining whether s = v is true or false. To reduce

the number of binary classifiers, value v is encoded into input features. Hence,

we only need to construct a binary classifier for each slot. Various models have

been used within this framework, such as MaxEnt ([13], Lee and Eskenazi, 2013:

414–422.)([14], Sun et al., 2014: 318–326.) and DNN ([17], Henderson et al.,

8
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2013: 467–471.)([14], Sun et al., 2014: 318–326.).

• Multi-Classification Model: In the binary classification models, the belief of ev-

ery candidate value v is evaluated separately, which may reduce the performance.

To address this issue, multi-classifier is used to track the belief of all values simul-

taneously. Same as the binary classification models, different slots are assumed

to be independent of each other, thus the belief state of each slot can be updated

separately, and the belief of joint goal is calculated by equation (3-2).

A typical example is the use of RNN ([18], Henderson et al., 2014: 292–299.)([9],

Henderson et al., 2014: 324–329.). It is worth noting that training a multi-

classification RNN requires sufficient examples for every candidate value, which

is usually not possible. Hence, some approximations, such as incorporating pre-

vious belief for value v and None, must be used.

• Structured Discriminative Model: In both binary and multi-classification mod-

els, slots are assumed to be independent of each other. However, considering re-

lational constrains may result in potential improvement of the DST performance.

For instance, in the Let’s Go domain, the arrival place and the departure place

should not be the same ([15], Lee, 2013: 442–451.). Structured discriminative

models are proposed to capture the relationship between slots at a particular turn.

A typical example is CRF with manually designed factored graph ([15], Lee,

2013: 442–451.). Although CRF can capture the relationship between different

slots, the CRF graph structure needs to be designed manually by experts. When

the relational constraints are very complex, the design of the structures will be

time-consuming. In order to tackle this problem, a web-style ranking model

(decision forest model) is proposed to track the belief state of joint slots ([19],

Williams, 2014: 282–291.). This model can automatically build conjunctions of

raw features.

• Labelling Model: Although structured discriminative models utilize the rela-

tional constraints between different slots, they only focus on information of a sin-

9
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gle turn. It is also important to capture the relationship between multiple turns. In

DSTC-2, a sequential labelling model is proposed to handle this ([16], Kim and

Banchs, 2014: 332–336.). In this approach, the output of the model includes la-

bels of the dialogue state from multiple turns. To model the temporal relationship,

a linear-chain CRF was used ([16], Kim and Banchs, 2014: 332–336.).

3.1.3 Features

It is worth nothing that features play an important role in statistical approaches. In

the DSTCs, the available information includes speech recognition and semantic parsing

results as well as the system response history. Since N -best results are also available,

various features such as confidence scores, ranks, statistics of confidence scores etc. can

be used as features. For the speech recognition results, the most common feature is the

n-gram feature weighted by confidence scores ([18], Henderson et al., 2014: 292–299.).

The system dialogue acts also can provide useful information for state estimation ([18],

Henderson et al., 2014: 292–299.)([14], Sun et al., 2014: 318–326.). Besides these

features, the turn-id of the dialogue, whether the user has interrupted the system etc.

can also be used as features ([17], Henderson et al., 2013: 467–471.)([13], Lee and

Eskenazi, 2013: 414–422.)([14], Sun et al., 2014: 318–326.).

3.2 Rule-based Approaches

Since the DST problem is raised out of the statistical dialogue management framework,

statistical approaches have been the natural focus. However, statistical approaches have

also shown large variation in performance and poor generalisation ability due to the lack

of data. There have been also an attempt to employ rule-based methods for dialogue

state tracking due to its simplicity, efficiency, portability and interpretability. For ex-

ample, the standard POMDP belief update, can be seen as a rule-based model, when all

parameters are set according to prior knowledge without data-driven estimation ([20],

Zilka et al., 2013: 452–456.). During DSTCs, a couple of rule-based models have also

been proposed. For example, the baseline of DSTC just employs a simple rule of se-

10
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lecting the SLU hypothesis with the highest confidence score so far and discarding the

rest ([7], Williams et al., 2013: 404–413.)([8], Henderson et al., 2014: 263–272.)([9],

Henderson et al., 2014: 324–329.). In DSTC-1, the simple rule-based system outper-

formed many discriminative models and was ranked the 5th in the joint goal tracking

task on Test3. More complex and interesting rules have also been proposed to enhance

the power of rule-based models.

In DSTC-1, Wang et al. ([21], Wang and Lemon, 2013: 423–432.) proposed a rule-

based model according to basic probability calculation formula for events co-occurrence.

In this approach, at the t-th turn of a dialogue, for slot s and value v, P+
t (v) and P−t (v)

are used to denote the sum of all the positive (user informing or affirming) or negative

(denying or negating) confidence scores assigned by the SLU. The belief of “the value

of slot s being v in the t-th turn”, denoted as bt(v), can be calculated as follows:

• If v 6= ‘None′,

bt(v) =
(
1− (1− bt−1(v))(1− P+

t (v))
) (

1− P−t (v)
)

(3-3)

• Otherwise,

bt(v) = 1−
∑

v′ 6=‘None′

bt(v
′) (3-4)

From the above formula, state tracking is very efficient. Besides, this improved rule-

based model has outperformed most trackers in DSTC-1 (ranked the 5th/2nd/2nd/6th

on Test1-4 respectively) and been used as a strong baseline for DSTC-2 and DSTC-3.

Other rule-based models have also been proposed. In Zilka et al. (2013), the gener-

ative Bayesian DST model is employed but the parameters are set according to rules. In

Kadlec et al. (2014), system act is further introduced as a condition to determine rules

under the Bayesian probability operation framework. These refined rule-based models

have achieved very good tracking performance. However, most of them are still not

competitive to data-driven statistical models. What’s more, once the rule is set, they are

not able to improve when more training data become available, hence lack the ability of

11
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evolution.

12
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Chapter 4 Constrained Markov Bayesian Polynomial

4.1 Constrained Markov Bayesian Polynomial

Rule-based models ([20], Zilka et al., 2013: 452–456.)([21], Wang and Lemon, 2013:

423–432.), and Bayesian generative models ([3], Young et al., 2010: 150–174.) are all

based on Bayes’ theorem. Since Bayes’ theorem is essentially summation and multi-

plication of probabilities, they can be rewritten in a general form, referred to as Markov

Bayesian Polynomial (MBP):

bt+1(s) = P(bt(g,h), q(ut)) (4-1)

where bt+1(s) is the belief state of s at the tth turn, q(ut) is the estimated confidence

distribution of the current user act ut and P(·) is a multivariate polynomial function

P(x1, · · · , xD) =
∑

0≤k1≤···≤kn≤D

wk1,··· ,kn
∏

1≤i≤n

xki (4-2)

where k ∈ {0, 1, · · · , D}, D is the number of input variables, x0 = 1, n is the order of

the polynomial. The scalar coefficient

wk1,··· ,kn = fk1,··· ,kn(st, at, st+1)

is the parameter of MBP. In general, they can be viewed as a function of the interaction

history.

It can be observed that the Bayesian generative model, equation (3-1), is a special

case of MBP with D = n = 2 and the MBP parameters correspond to the model

parameters described in 3.1.1. Since these parameters can be estimated from data1,

the generative Bayesian belief estimator is usually regarded as a statistical DST model.

It is worth noting that it is usually hard to get sufficient annotated data to estimated

1Except that the dialogue history model is usually manually set.

13
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the parameters, hence, heuristics are usually used to directly optimise dialogue state

tracking performance or the parameter update is performed together with the dialogue

policy update within reinforcement learning framework ([3], Young et al., 2010: 150–

174.).

Assuming that slots are independent and only goal tracking is of interest, for a

specific slot, rule-based models, e.g. equation (3-3), can also be written in a similar

form of MBP

bt+1(v) = P(bt(v), P+
t (v), P−t (v))) (4-3)

In contrast to the generative Bayesian model, all coefficients in (4-3) are manually set

to be integers. Therefore, rule-based model can be viewed as an MBP with features of

bt(v), P+
t (v), P−t (v) and prior knowledge (i.e. rule) is incorporated by manually setting

the integral polynomial coefficients.

4.1.1 Generalized Rule-based Model: Constrained MBP

MBP gives a common form for rule-based and statistical generative Bayesian models.

However, it does not provide a roadmap to bridge the two type of models. The key

issue is how to allow rule-based model to be data-driven without losing the ability to

incorporate prior knowledge. Here, a novel framework, constrained Markov Bayesian

Polynomial (CMBP) is proposed to address issue. The basic idea is to construct a

constrained optimisation problem for DST model training, where the model takes the

form of MBP and the constraints encode all necessary probabilistic conditions as well

as prior knowledge or intuition. In this paper, CMBP is derived as an extension of the

rule-based model (3-3), hence slot and value independence are also assumed, though

CMBP is not limited to the assumptions. To enhance the power of rule-based model,

more probabilistic features are introduced into CMBP as below

• P+
t (v): sum of scores of SLU hypotheses informing or affirming value v at turn t

• P−t (v): sum of scores of SLU hypotheses denying or negating value v at turn t

14
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• P̃+
t (v) =

∑
v′ /∈{v,None} P

+
t (v′)

• P̃−t (v) =
∑

v′ /∈{v,None} P
−
t (v′)

• brt : probability of the value being ‘None’ (the value not mentioned) at turn t

• bt(v): belief of “the value being v at turn t”

With the above probabilistic features, a Constrained Markov Bayesian Polynomial (CMBP)

model is defined as

bt+1(v) =P
(
P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v), brt , bt(v)
)

s.t. constraints (4-4)

The constraints in equation (4-4) can be classified into three categories.

• Probabilistic constraints enforce the probabilistic requirement by definition.

These constraints can be directly written as a set of linear equality or inequali-

ties. For example

brt = 1−
∑

v′ 6=None

bt(v
′) (4-5)

• Intuition constraints encode intuitive prior knowledge (i.e. rules). For exam-

ple, the rule “goal belief should be unchanged or positively correlated with the

positive scores from SLU” can be represented by

∂P(P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v), brt , bt(v))

∂P+
t+1(v)

≥ 0 (4-6)

• Regularization constraints attempt to regularise the solution to prevent overfit-

ting in the data-driven rule generation in section 4.1.2. For example, the coeffi-

cients of P(·) may be limited to be in [−1, 1].

Although constraints can be represented in mathematic forms, to construct a feasible

constrained optimisation problem, it is necessary to further approximate the constraints
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using linear equalities or inequalities. For example, equation (4-6) can be approximated

by the below linear constraintP(a) ≥ P(b)

∣∣∣∣∣∣ a,b ∈ χ, ai ∈ T5a1 = b1 + 0.1, ai = bi ∀i 6= 1

 (4-7)

where a and b are the 6-dimensional input vectors of equation (4-4),χ denotes all possi-

ble input vectors and T5 = {0, 0.2, 0.4, 0.6, 0.8, 1} is quantised interval of [0, 1]. Details

of CMBP constraints and their corresponding linear approximations can be found in the

appendix.

4.1.2 Data-driven Rule Generation for CMBP

Once rule-based model is formulated as CMBP, intuition knowledge becomes soft con-

straints and there usually exist multiple feasible solutions. It is then possible to employ

data-driven criterion to optimise CMBP. In CMBP, polynomial order n, as shown in

equation (4-2), determines the model complexity. Order n = 1 or n = 2 is too small

to model complex situations, while n ≥ 4 is too large to efficiently optimise. Hence,

in this paper, polynomial order n = 3 is used to construct the search space. By using

the overall goal tracking accuracy on the training data as the optimisation criterion, the

data-driven CMBP can be written as the below optimisation problem

max L (w) =
∑M

m=1 Acc
(
P(x

(m)
1 , · · · , x(m)

6 ;w)
)

(4-8)

s.t. approximated linear constraints

where w = {w000, w001, · · · , w666} and w ∈ Z are the CMBP parameters, M is the

total number of turns of the training data, Acc(·) is the goal state tracking accuracy

evaluation function. With the formulated optimisation problem (4-8), CMBP can be

optimised as below:

1. Generate a superset of all feasible CMBP solutions satisfying the approximated

linear constraints.
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This generation can be regarded as a special kind of integer linear programming

problem whose objective function is dummy. Existing integer linear program-

ming solver can be used for this purpose. In this paper, SCIP ([23], Achterberg,

2009: 1–41.) is used. By setting additional constraints, the size of this superset

can be controlled so that it is neither too small, nor too big.

2. L (w) is exhaustively calculated for each feasible solution from step 1.

During the optimisation, due to relaxation of constraints, it is possible to get some

bt(v) or brt out of [0, 1]. To get legal track output, out-of-range bt(v) is always

clipped to be 0 or 1 and the brt is re-calculated accordingly.

3. Find the optimal CMBP solution by selecting the one with highest accuracy. Ad-

ditional selection criterion, such as regularization terms, can also apply here.

With the above optimisation, the best integer coefficient CMBP can be found and this

optimal solution can be refined when more training data is available.

Although CMBP was originally motivated from Bayesian probability operation which

leads to the natural use of integer polynomial coefficient w ∈ Z, CMBP can also be

viewed as a statistical approach. Hence, the CMBP framework, equation (4-8), can be

extended to real coefficient polynomials. The optimisation of real-coefficient CMBP

is done by first getting an integer solution and then performing hill climbing search as

shown in algorithm 1:

The above CMBP framework effectively bridges rule-based approaches and sta-

tistical approaches. The constraints reflect intuition prior knowledge and can be set

manually, while the general Bayesian polynomial representation allows data-driven op-

timisation of model parameters. An additional advantage of the integer-programming

based optimisation approach is that it is straightforward to find multiple feasible solu-

tions satisfying constraints. It is then possible to perform system combination on the

top N candidates of equation (4-8). In this paper, belief score averaging is investigated

as a simple system combination approach.
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Let w = {w000, · · · , w666} be an integer coefficient solution set for equation
(4-8);
Let I ← {i|wi ∈ w, wi 6= 0};
Let D← {−0.4,−0.2,−0.1, 0.1, 0.2, 0.4};
Let wr ← w, done← false;
while done is false do

done← true;
foreach index i in I do

foreach step d in D do
Let ∆w = {· · · , wi + d, · · · };
Let ŵr = wr + ∆w ;
if L(ŵr) > L(wr) then

wr ← ŵr, done← false;
end

end
end

end
Algorithm 1: Hill climbing algorithm for real coefficient solution

4.2 Experiment

As introduced in section 2, the DSTCs have provided the first common testbed in a

standard format, along with a suite of evaluation metrics for dialogue state tracking ([7],

Williams et al., 2013: 404–413.). In this paper, DSTC-2 and DSTC-3 tasks are used

to evaluate the proposed approach. Both tasks provide training dialogues with turn-

level ASR hypotheses, SLU hypotheses and user goal labels. DSTC-2 is a restaurant

domain task and 2118 in-domain training dialogues are provided ([8], Henderson et al.,

2014: 263–272.). While in DSTC-3, a tourist domain task, only 10 in-domain training

dialogues are provided. The DSTC-3 task is to adapt the tracker trained on DSTC-2 data

to the new domain with very few dialogues. In this section, only joint goal tracking is

discussed. Table 4.1 is a summary of the size of datasets of DSTC-2 and DSTC-3.

The DST evaluation criteria are the joint goal accuracy and the L2 ([8], Henderson

et al., 2014: 263–272.)([9], Henderson et al., 2014: 324–329.). Accuracy is defined as

the fraction of turns in which the tracker’s 1-best joint goal hypothesis is correct, the

larger the better. L2 is the L2 norm between the distribution of all hypotheses output

by the tracker and the correct goal distribution (a delta function), the smaller the better.
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Table 4.1 Summary of data corpora of DSTC-2/3

Task Dataset #Dialogues Usage
dstc2trn 1612 Training

DSTC-2 dstc2dev 506 Training
dstc2eval 1117 Test

DSTC-3
dstc3seed 10 Not used
dstc3eval 2265 Test

Moreover, schedule 2 and labelling scheme A defined in Henderson et al. (2013) are

used in both tasks. Specifically, schedule 2 only counts the turns where new information

about some slots either in a system confirmation action or in the SLU list is observed.

Labelling scheme A is that the labelled state is accumulated forwards through the whole

dialogue. For example, the goal for slot s is “None” until it is informed as s = v by the

user, from then on, it is labelled as v until it is again informed otherwise.

Since the features of CMBP are all probabilistic features, the performance of CMBP

is strongly correlated to the quality of confidence scores from SLU. It has been shown

that the organiser-provided live SLU confidence was not good enough ([25], Zhu et al.,

2014: 336–341.)([14], Sun et al., 2014: 318–326.). Hence, most of the state-of-the-art

results from DSTC-2 and DSTC-3 used refined SLU (either explicitly rebuild a SLU

component or take the ASR hypotheses into the trackers ([19], Williams, 2014: 282–

291.)([14], Sun et al., 2014: 318–326.)([18], Henderson et al., 2014: 292–299.)([26],

Henderson et al., 2014: 360–365.)([22], Kadlec et al., 2014: 348–353.)([10], Sun et

al., 2014: 330–335.)). In accordance to this, except for the results directly taken from

other papers (shown in table 4.5, 4.6, 5.4 and 5.5), all experiments in this paper used

the output from a refined semantic parser ([25], Zhu et al., 2014: 336–341.)([14], Sun

et al., 2014: 318–326.) instead of the live SLU provided by the organizer.

4.2.1 Investigation on CMBP Configurations

This section describes the experiments comparing different configurations of CMBP.

All experiments were performed on the DSTC-2 tasks.

As indicated in section 4.1.2, multiple feasible solutions can be generated using
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integer programming, and the feasible solution space is controlled by the number of

constraints so that it is neither too big nor too small. Table 4.2 compares the integer

CMBP performance with different constraint sets2 . For each constraint set, the detailed

description can be found in the appendix. The number of feasible solutions is shown in

column #Solutions, and the best integer CMBP is obtained by exhaustively checking the

overall joint goal accuracy on the combined data set of dstc2trn and dstc2dev.

The performance of the best CMBP is then evaluated on dstc2eval, shown in column

Acc and L2.

Table 4.2 Performance of CMBP with different constraint sets on dstc2eval.

Constraint set #Solutions Acc L2

{(6-23) - (6-34)} 7926 0.756 0.372
{(6-14),(6-23) - (6-34)} 461 0.756 0.370

{(6-14),(6-15),(6-23) - (6-34)} 132 0.756 0.375

It can be seen that larger solution space does not necessarily yield significantly

better results. By applying more constraints (i.e. prior knowledge), the feasible CMBP

space can be effectively controlled without losing much performance of the best CMBP

contained in the space. In the following experiment, the constraint set is fixed to be

{(6− 14), (6− 23)− (6− 34)}.

Since multiple CMBP solutions can be used for combination, it is interesting to

know whether the performance of the top N solutions are robust and comparable. Table

4.3 shows that the top 5 integer CMBP models have similar performance. This demon-

strates the robustness of CMBP and implies that system combination is likely to be safe

to yield improvement.

Table 4.3 Performance of top 5 CMBPs on dstc2eval.

Performance
N-Best CMBP Solution

1 2 3 4 5
Acc 0.756 0.756 0.756 0.756 0.756
L2 0.370 0.375 0.375 0.375 0.371

2The solution set is calculated by SCIP version 3.1.0 with 8 byte precision. Due to the limited numer-
ical precision, the calculated solution may not be exactly the same as the real solution set.
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The top-5 solutions in table 4.3 are found by purely optimising the overall goal

accuracy of the training data (dstc2trn+dstc2dev). They usually have large com-

plexity (i.e. the number of non-zero integer coefficients), for example, the 1-best so-

lution has 12 parameters. As regularization, constraints in section 4.1.1 or terms in

section 4.1.2, can be imposed on CMBP to control complexity and avoid over-fitting.

To investigate the effect of regularisation, 12 CMBP models with different number of

non-zero integer coefficients were randomly selected from the feasible solution space.

The results are shown in Figure 4.1. Furthermore, the hill climbing algorithm is applied

to each of them to generate corresponding optimal real-coefficient CMBPs.

0.754

0.756

0.758

0.76

0.762

0.764

0.766

5 6 7 8 9 10 11 12 13 14 15 16 17 18

Integer RealAccuracy

#Param

Figure 4.1 Performance of real-coefficient CMBPs compared with the corre-
sponding integer-coefficient CMBPs on dstc2eval dataset

From Figure 4.1, the CMBPs with small complexity have similar performance com-

pared to the top 5 integer CMBPs in table 4.3. This shows that by applying regulariza-

tion term, the model size can be effectively reduced without hurting the performance.

In addition, most of the real-coefficient CMBPs outperform the corresponding integer

coefficient CMBPs, demonstrating the importance of extending integer coefficients to

real numbers. Another observation is that there is no obvious correlation between the

performance of the optimised real-coefficient CMBPs and the corresponding integer-

coefficient CMBPs. In practice, the time algorithm 1 takes is positively correlated to

the complexity of CMBP. Therefore, to efficiently optimise real-coefficient CMBPs, in
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the following experiments, we only run algorithm 1 on integer-coefficient CMBPs with

the smallest number of non-zero coefficients.

It can be seen from Figure 4.1 that although in general the real-coefficient CMBPs

have better performance, sometimes they do not outperform the corresponding integer-

coefficient CMBPs. System combination is investigated here to make the performance

of the real-coefficient CMBPs stable. The combined model, which applies belief score

averaging on the the above 12 CMBPs, achieved an accuracy of 0.761 on dstc2eval.

This is a very competitive result.

4.2.2 Comparison with Other DST Approaches

The previous section investigates how to get the best integer-coefficient CMBP and op-

timised real-coefficient CMBP, in this section, the performance of CMBP is compared

to both rule-based and statistical approaches. As indicated before, CMBP can be natu-

rally viewed as a data-driven approach with the probability features defined in 4.1.1, to

make fair comparison, all statistical models in this section also use similar feature set.

Altogether, 2 rule-based trackers and 2 statistical trackers were built for performance

comparison:

• MaxConf is a rule-based model common used in spoken dialogue systems which

always selects the value with the highest confidence score from the 1st turn to the

current turn. It was used as one of the primary baselines in DSTC-2 and DSTC-3.

• HWU is a rule-based model based on equation (3-3), proposed by Wang and

Lemon (2013); Wang (2013). It is regarded as a simple, yet competitive baseline

of DSTC-2 and DSTC-3.

• DNN is a statistical model with probability feature as CMBP. Since DNN does

not have recurrent structures while RPN does, to fairly take into account this, the

DNN feature set at the tth turn is defined as

⋃
i∈{t−9,··· ,t}

{
P+
i (v), P−i (v), P̃+

i (v), P̃−i (v)
}
∪
{
P̂ (t)

}
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where P̂ (t) is the highest confidence score from the 1st turn to the tth turn. The

DNN has 3 hidden layers with 64 nodes per layer.

• MaxEnt is another statistical model using Maximum Entropy model with the

same input feature as DNN.

In this section, the integer coefficient CMBPs for DSTC-2 were trained on dstc2trn

and dstc2dev, and then algorithm 1 was used to extend it to real coefficient CMBPs.

For DSTC-3, the CMBP model trained for DSTC-2 was directly used without modifi-

cation. This means that the seed data of DSTC-3 was not used at all. This is to test

the hypothesis that rule-based model is less sensitive to data compared to statistical

approaches. Both 1-best integer-coefficient and optimised real-coefficient CMBPs are

compared with the above DST approaches and the results are shown in table 4.4.

Table 4.4 Performance of 1-best integer-coefficient and optimised real-coefficient
CMBPs compared with 2 baselines and 3 statistical trackers on the test dataset of
DSTC-2 (dstc2eval) and DSTC-3 (dstc3eval).

Type System
dstc2eval dstc3eval
Acc L2 Acc L2

Rule
MaxConf 0.668 0.647 0.548 0.861

HWU 0.720 0.445 0.594 0.570

Statistical
DNN 0.719 0.469 0.628 0.556

MaxEnt 0.710 0.431 0.607 0.563

CMBP
Int 0.756 0.370 0.623 0.552

Real 0.764 0.428 0.632 0.591

From the table it can been seen that with similar feature set, CMBP, especial real-

coefficient CMBP, has relatively good performance compared with both rule-based ap-

proaches and statistical approaches.

4.2.3 Comparison with State-of-the-art DSTC Trackers

In DSTC-2 and DSTC-3, the state-of-the-art trackers mostly employed statistical ap-

proaches. Usually, richer feature set and more complicated model structures than the

statistical models in section 4.2.2 are used. In this section, the proposed CMBP ap-

proach is compared to the best submitted trackers in DSTC-2/3, regardless of fairness
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of feature selection and the SLU refinement approach. The real-coefficient CMBP with

score averaging of feasible CMBP solutions whose number of parameters is less than 8

was used here and the CMBP trained on DSTC-2 was again directly used for DSTC-3.

The result is presented in table 4.5 and 4.6.

Table 4.5 Performance comparison between CMBP and best trackers of DSTC-2
on dstc2eval. Baseline* is the best results from the 4 baselines in DSTC2.

System Approach Rank Acc L2
Baseline* Rule 5 0.719 0.464

Williams (2014) LambdaMART 1 0.784 0.735
Henderson et al. (2014) RNN 2 0.768 0.346

Sun et al. (2014) DNN 3 0.750 0.416
CMBP Sys. Comb. 2.5 0.762 0.436

Note that the Williams’s system ([19], Williams, 2014: 282–291.) used batch ASR

hypothesis information (i.e. off-line ASR re-decoded results) and can not be used in

the normal on-line mode in practice. Hence, the practically best tracker is Hender-

son et al.([18], Henderson et al., 2014: 292–299.). It can be observed from table 4.5,

CMBP ranks only second to the best practical tracker in accuracy, although the L2 per-

formance is slightly worse. Since accuracy is the most important criterion, considering

that CMBP used much simpler feature set and can operate very efficiently, it is quite

competitive.

Table 4.6 Performance comparison between CMBP and best trackers of DSTC-3
on dstc3eval. Baseline* is the best results from the 4 baselines in DSTC3.

System Approach Rank Acc L2
Baseline* Rule 6 0.575 0.691

Henderson et al. (2014) RNN 1 0.646 0.538
Kadlec et al. (2014) Rule 2 0.630 0.627

Sun et al. (2014) Rule 3 0.610 0.556
CMBP Sys. Comb. 1.5 0.634 0.579

It can be seen from table 4.6, CMBP trained on DSTC-2 can achieve state-of-the-

art performance on DSTC-3. This demonstrates that CMBP successfully inherits the

advantage of good generalisation ability of rule-based model.
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Chapter 5 Recurrent Polynomial Network

5.1 Recurrent Polynomial Network

Recurrent polynomial network ([12], Sun et al., 2015: 1–22.) takes the other way

to bridge rule-based and statistical approaches. The basic idea of RPN is to enable a

kind of statistical model to take advantage of prior knowledge or intuition by using the

parameters of rule-based models to initialize the parameters of statistical models.

Like common neural networks, RPN is a statistical approach so it is as easy to add

features and try complex structures in RPN as in neural networks. However, compared

with common neural networks which are “black boxes”, an RPN can essentially be

seen as a polynomial function. Hence, considering that a CMBP is also a polynomial

function, the encoded prior knowledge and intuition in CMBP can be transferred to

RPN by using the parameters of CMBP to initialize RPN skillfully. In this way, it

bridges rule-based models and statistical models.

A recurrent polynomial network is a computational network. The network contains

multiple edges and loops. Each node is either an input node, which is used to represent

an input value, or a computation node. Each node x is set an initial value u(0)x at time 0,

and its value is updated at time 1, 2, · · · . Both the type of edges and the type of nodes

decide how the nodes’ values are updated. There are two types of edges. One type,

referred to as type-1, indicates the value updating at time t takes the value of a node

at time t − 1, i.e. type-1 edges are recurrent edges, while the other type, referred to

as type-2, indicates the value updating at time t takes another node’s value at time t.

For simplicity, let Ix be the set of nodes index y such which are linked to node x by a

type-1 edge, Îx be the set of nodes y which are linked to node x by a type-2 edge. Based

on these definitions, two types of computation nodes, sum and product, are introduced.

Specifically, at time t > 0, if node x is a sum node, its value u(t)x is updated by

u(t)x =
∑
y∈Ix

wx,yu
(t−1)
y +

∑
y∈Îx

ŵx,yu
(t)
y (5-1)
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where w, ŵ ∈ R are the weights of edges.

Similarly, if node x is a product node, its value is updated by

u(t)x =
∏
y∈Ix

u(t−1)y

Mx,y
∏
y∈Îx

u(t)y
M̂x,y (5-2)

where Mx,y and M̂x,y are integers, denoting the multiplicity of the type-1 edge −→yx,

and the multiplicity of the type-2 edge −→yx respectively. It is noted that only w, ŵ are

parameters of RPN while Mx,y, M̂x,y are constant given the structure of an RPN.

𝑎 𝑏

𝑐 𝑑
1.0

0.5

Figure 5.1 A simple example of RPN. The type of node a, b, c, d is input, input,
product, and sum respectively. Edge

−→
dd is of type-1, while the other edges are of

type-2. M̂a,c = 2, M̂b,c = M̂c,d = Md,d = 1.

Let u(t), û(t) denote the vector of computation nodes’ values and the vector of

input nodes’ values at time t respectively, then a well-defined RPN can be seen as a

polynomial function as below.

u(t) = P
(
û(t) ⊕ u(t−1) ⊕ û(t−1) ⊕ {1}

)
(5-3)

where⊕ denotes vector concatenation and P is defined by equation (4-2). For example,

for the RPN in figure 5.1, its corresponding polynomial function is

(u(t)c , u
(t)
d ) =P

(
u(t)a , u

(t)
b , u

(t−1)
c , u

(t−1)
d , u(t−1)a , u

(t−1)
b

)
=
(

(u(t)a )
2
u
(t)
b , 0.5u

(t−1)
d + (u(t)a )

2
u
(t)
b

)
(5-4)

Each computation node can be regarded as an output node. For example, for the

RPN in figure 5.1, node c and node d can be set as output nodes.
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5.2 RPN for Dialogue State Tracking

As introduced in section 2, in this paper, the dialogue state tracker receives SLU N -

best hypotheses for each user turn, each hypothesis having a set of act-slot-value tuples

with a confidence score. The dialogue state tracker is supposed to output a set of dis-

tributions of the joint user goal, that is, the value for each slot. For simplicity and

consistency with chapter 4 and the work of Sun et al. (2014) and Yu et al. (2015), slot

and value independence are assumed in the RPN model for dialogue state tracking,

though neither CMBP nor RPN is limited to the assumptions. Besides, in the rest of

the paper, bt(v), P+
t (v), P−t (v), P̃+

t (v), P̃−t (v) are abbreviated by bt, P+
t , P

−
t , P̃

+
t , P̃

−
t

respectively in circumstances where there is no ambiguity.

5.2.1 Basic Structure

Before describing details of the structure used in the real situations, to help understand

the corresponding relationship between RPN and CMBP, let’s first look at a simplified

case with a smaller feature set and a smaller order, which is a corresponding relation-

ship between the RPN shown in figure 5.2 and 2-order polynomial (5-5) with features

bt−1, P
+
t , 1:

bt = 1− (1− bt−1)(1− P+
t )

= bt−1 + P+
t − P+

t bt−1

(5-5)

Recall that a CMBP of polynomial order 2 with 3 features is the following equation

(refer to equation (4-2)):

P(ι0, ι1, ι2) =
∑

0≤k1≤k2≤2

gk1,k2
∏

1≤i≤2

ιki (5-6)

The RPN in figure 5.2 has three layers. The first layer only contains input nodes.

The second layer only contains product nodes. The third layer only contains sum

nodes. Every product node in the second layer denotes a monomial of order 2 such

as (bt−1)
2, bt−1, P

+
t and so on. Every product node in the second layer is linked to the

sum node in the third layer whose value is a weighted sum of value of product nodes.
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𝑏𝑡−2 𝑃𝑡−1
+ 1

𝑏𝑡−1

−10 1 0 1 0

𝑏𝑡−1 𝑃𝑡
+ 1

𝑏𝑡

−10 1 0 1 0

𝑏𝑡 𝑃𝑡+1
+ 1

𝑏𝑡+1

−10 1 0 1 0

Figure 5.2 A simple example of RPN for DST.

With weight set according to coefficients in equation (5-5), the value of sum node in the

third layer is essentially the bt in equation (5-5).

Like the above simplified case, a layered RPN structure shown in figure 5.3 is used

for dialogue state tracking in our first trial which essentially corresponds to 3-order

CMBP, though the RPN framework is not limited to the layered topology. Recall that

a CMBP of polynomial order 3 is used as shown in the following equation (refer to

equation (4-2)):

P(ι0, · · · , ιD) =
∑

0≤k1≤k2≤k3≤D

gk1,k2,k3
∏

1≤i≤3

ιki (5-7)

𝑏𝑡−2 𝑃𝑡−1
+ 𝑃𝑡−1

−  𝑃𝑡−1
+  𝑃𝑡−1

− 1 𝑏𝑡−1 𝑃𝑡
+ 𝑃𝑡

−  𝑃𝑡
+  𝑃𝑡

− 1 𝑏𝑡 𝑃𝑡+1
+ 𝑃𝑡+1

−  𝑃𝑡+1
+  𝑃𝑡+1

− 1

𝑏𝑡−1 𝑏𝑡 𝑏𝑡+1

𝑤,  𝑤 𝑤,  𝑤 𝑤,  𝑤

Figure 5.3 RPN for DST.

Let (l, i) denote the index of i-th node in the l-th layer. The detailed definitions of

each layer are as follows:

• First layer / Input layer:
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Input nodes are features at turn t, which corresponds to variables in CMBP in

section 4.1.1. i.e.

– u
(t)
(1,0) = bt−1

– u
(t)
(1,1) = P+

t

– u
(t)
(1,2) = P−t

– u
(t)
(1,3) = P̃+

t

– u
(t)
(1,4) = P̃−t

– u
(t)
(1,5) = 1

While 7 features are used in chapter 4 and previous work of CMBP ([10], Sun et

al., 2014: 330–335.)([11], Yu et al., 2015: 1–10.), only 6 of them are used in RPN

with feature brt−1 removed (brt is defined in section 4.1.1). Since our experiments

showed the performance of CMBP would not become worse without feature brt−1,

to make the structure more compact, brt−1 is not used in this paper for RPN. In

accordance to this, CMBP mentioned in the rest of paper does not use this feature

either.

• Second layer:

The value of every product node in the second layer is a monomial like the sim-

plified case. And every product node has indegree 3 which is corresponding to

the order of CMBP.

Every monomial in CMBP is the product of three repeatable features. Corre-

spondingly, the value of every product node in second layer is the product of val-

ues of three repeatable nodes in the first layer. Every triple (k1, k2, k3)(0 ≤ k1 ≤

k2 ≤ k3 ≤ 5) is enumerated to create a product node x = (2, i) in second layer

that nodes (1, k1), (1, k2), (1, k3) are linked to. i.e. Îx = {(1, k1), (1, k2), (1, k3)}.

And thus u(t)x = u
(t)
1,k1

u
(t)
1,k2

u
(t)
1,k3

.

And different node in the second layer is created by a distinct triple. So given the

6 input features, there are
5∑

k1=0

5∑
k2=k1

5∑
k3=k2

1 =
(
6+3−1

3

)
= 56 nodes in the second

layer.
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To simplify the notation, a bijection from nodes to monomials is defined as:

F : {x|x is the index of a node in the 2nd layer} → {(k1, k2, k3)|0 ≤ k1 ≤ k2 ≤ k3 ≤ D}
(5-8)

F(x) = (k1, k2, k3)⇐⇒ u
(t)
2,i = u

(t)
1,k1

u
(t)
1,k2

u
(t)
1,k3

(5-9)

where D + 1 = 6 is the number of nodes in the first layer, i.e. input feature

dimension.

• Third layer:

The value of sum node x = (3, 0) in the third layer is corresponding to the output

value of CMBP.

Every product nodes in the second layer are linked to it. Node x’s value u(t)3,0 is

a weighted sum of values of product node u(t)2,i where the weights correspond to

gk1,k2,k3 in equation (5-7).

With only sum and product operation involved, every node’s value is essentially a

polynomial of input features. And just like recurrent neural network, node at time t can

be linked to node at time t + 1. That is why this model is called recurrent polynomial

network.

The parameters of the RPN can be set skillfully according to CMBP coefficients

gk1,k2,k3 in equation (5-7) so that the output value is the same as the value of CMBP,

which is a direct way of applying prior knowledge and intuition to statistical models. It

is explained in detail in section 5.2.4.

5.2.2 Activation Function

In DST, the output value is a belief which should lie in [0, 1], while values of compu-

tational nodes are not bound by certain interval in RPN. Experiments showed that if

weights are not properly set in RPN and a belief bt−1 output by RPN is larger than 1,

then bt may grow much larger because bt is the weighted sum of monomials such as
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(bt−1)
3. Belief of later turns such as bt+10 may grow to a number which is so large that

can hardly be calculated.

Therefore, an activation function is needed to map bt to a legal belief value (referred

to as b′t) in (0, 1). 3 kinds of functions, the logistic function, the clip function, and the

softclip function have been considered. A logistic function is defined as

logistic(x) =
L

1 + e−η(x−x0)
(5-10)

It can map R to (0, 1) by setting L = 1. However, even with carefully setting η and x0,

such as η = 5, x0 = 0.5, the gap between b′t and bt can hardly be omitted when bt is in

the range of (0, 1) so that it makes RPN inherit the prior knowledge from CMBP more

difficult. For example, if logistic function is used and P+
t , P−t , P̃+

t , P̃−t are all 0 at some

turn t. If bt−1 is in [0, 1] and activation function is linear on [0, 1], using the constraints

given by the previous work of CMBP ([10], Sun et al., 2014: 330–335.)([11], Yu et al.,

2015: 1–10.), with certain parameter set to constant, it is easily ensured that bt = bt−1.

However, constraints in CMBP should be changed to achieve this property if logistic

function is used.

As an alternation, a clip function is defined as

clip(x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

(5-11)

It is linear on [0, 1]. However, if b′t = clip(bt), bt 6∈ [0, 1] and L is the loss function,

∂L
∂bt

=
∂L
∂b′t

∂b′t
∂bt

=
∂L
∂b′t
× 0 = 0 (5-12)

Thus, ∂L
∂bt

would be 0 whatever ∂L
∂b′t

is. This gradient vanishing phenomenon may affect

the effectiveness of backpropagation training in section 5.2.5.

So an activation function softclip(·) is introduced, which is a combination of lo-

gistic function and clip function. Let ε denote a small value such as 0.01, δ denote
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Figure 5.4 Comparison among clip function, logistic function, and softclip func-
tion

the offset of sigmoid function such that sigmoid (ε− 0.5 + δ) = ε. Here the sigmoid

function refers to the special case of the logistic function defined by the formula

sigmoid(x) =
1

1 + e−x
(5-13)

The softclip function is defined as

softclip(x) ,


sigmoid (x− 0.5 + δ) if x ≤ ε

x if ε < x < 1− ε

sigmoid (x− 0.5− δ) if x ≥ 1− ε

(5-14)

softclip : R → (0, 1) is a non-decreasing, continuous function. However, It is not

differentiable when x = ε or x = 1− ε. So we defined its derivative as follows:

∂softclip(x)

∂x
,



∂sigmoid(x−0.5+δ)
∂x

if x ≤ ε

1 if ε < x < 1− ε
∂sigmoid(x−0.5−δ)

∂x
if x ≥ 1− ε

(5-15)
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It is like a clip function. However, its derivative may be small on some inputs but is

not zero. Figure 5.4 shows the comparison among clip function, logistic function, and

softclip function.

With the activation function, a new type of computation node, referred to as activa-

tion node, is introduced. Activation node only takes one input and only has one input

edge of type-2, i.e |Îx| = 1 and Ix = ∅. The value of an activation node x is calculated

as

u(t)x = softclip
(
u(t)x
)

(5-16)

where x denotes the input node of node x. i.e. Îx = {x}.

The activation function is used in the rest of the paper. Figure 5.5 gives an example

of RPN with activation function, whose structure is constructed by adding an activation

function to the RPN in figure 5.3.

𝑏𝑡−2 𝑃𝑡−1
+ 𝑃𝑡−1

−  𝑃𝑡−1
+  𝑃𝑡−1

− 1 𝑏𝑡−1 𝑃𝑡
+ 𝑃𝑡

−  𝑃𝑡
+  𝑃𝑡

− 1 𝑏𝑡 𝑃𝑡+1
+ 𝑃𝑡+1

−  𝑃𝑡+1
+  𝑃𝑡+1

− 1

𝑏𝑡−1 𝑏𝑡 𝑏𝑡+1

Figure 5.5 RPN for DST with activation functions

5.2.3 Complete Structure

Adding features to CMBP is not easy because additional prior knowledge is needed to

add to keep the search space not too large. Concretely, adding features can introduce

new monomials. Since the trivial search space is exponentially increasing as the number

of monomials, the search space tends to be too large to explore when new features are

added. Hence, to reduce the search space, additional prior knowledge is needed, which
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can introduce new constraints to the polynomial coefficients. For the same reason,

increasing the model complexity is also not very convenient in CMBP.

In contrast to that, since RPN can be seen as a statistically model, it is as easy as

most statistical approaches such as RNN to add new features to RPN and use more

complex structures. At the same time, no matter what new features are used and how

complex the structure is, RPN can always take advantage prior knowledge and intu-

ition which is discussed in section 5.2.4. In this paper, both new features and complex

structure are explored.

Adding new features can be done by just adding input nodes which correspond to

the new features, and then adding product nodes corresponding to the new possible

monomials introduced by the new input nodes. In this paper, for slot s, value v at turn

t, in addition to f0 ∼ f5 which are defined as bt−1(v), P+
t (v), P−t (v), P̃+

t (v), P̃−t (v),

and 1 respectively, 4 new features are investigated. f6 and f7 are features of system acts

at the last turn:

• f6 , canthelp(s, t, v)∪canthelp.missing slot value(s, t) =1 if the system can-

not offer a venue with the constraint s = v or the value of slot s is not known for

the selected venue, otherwise 0.

• f7 , select(s, t, v) =1 if the system asks the user to pick a suggested value for

slot s, otherwise 0.

f6 and f7 are introduced because user is likely to change their goal if given machine

acts canthelp(s, v), canthelp.missing slot value(s, t) and select(s, v). f8 and f9 are

features of user acts at the current turn:

• f8 , inform(s, t, v) = 1 if one of SLU hypotheses to the user is informing slot s

is v, otherwise 0.

• f9 , deny(s, t, v) =1 if one of SLU hypotheses to the user is denying slot s is v,

otherwise 0.

f8 and f9 are features about SLU acttype, introduced to make system robust when the

confidence scores of SLU hypothesis are not reliable.
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In this paper, the complexity of evaluating and training RPN for DST would not

increase sharply because a constant order 3 is used and number of product nodes in the

second layer grows from 56 to 220 when number of features grows from 6 to 10.

In addition to new features, RPN of more complex structure is also investigated

in this paper. To capture some property just like belief bt of dialogue process, a new

sum node x = (3, 1) in the third layer is introduced. The connection of (3, 1) is the

same as (3, 0), so it introduces a new recurrent connection. The exact meaning of its

value is unknown. However, it is the only value used to record information other than

bt of previous turns. Every other input features except bt are features of current turn t.

Compared with bt, there are fewer restrictions on the value of (3, 1) since its value is

not directly supervised by the label. Hence, introducing (3, 1) may help to reduce the

effect of inaccurate labels.

The structure of the RPN with 4 new features and 1 new sum node, together with

new activation nodes introduced in section 5.2.2 is shown in figure 5.6.

𝑓1
(𝑡−1)

𝑏𝑡 𝑏𝑡+1

𝑓2
(𝑡−1)

𝑓8
(𝑡−1)

𝑓9
(𝑡−1)

𝑏𝑡−1

𝑓1
(𝑡)

𝑓2
(𝑡)

𝑓8
(𝑡)

𝑓9
(𝑡)

𝑓1
(𝑡+1)

𝑓2
(𝑡+1)

𝑓8
(𝑡+1)

𝑓9
(𝑡+1)

Figure 5.6 RPN with new features and more complex structure for DST

5.2.4 RPN Initialization

Like most neural network models such as RNN, the initialization of RPN can be done by

setting each weight, i.e. w and ŵ, to be a small random value. However, with its unique

structure, the initialization can be much better by taking advantage of the relationship

between CMBP and RPN which is introduced in section 5.2.1.

When RPN is initialized according to a CMBP, prior knowledge and constraints
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are used to set RPN’s initial parameters as a suboptimum point in the whole param-

eter space. RPN as a statistical model can fully utilize the advantages of statistical

approaches. However, RPN is better than real CMBP while they both use data samples

to train parameters. In the work of Yu et al. (2015), real-coefficient CMBP uses hill

climbing to adjust parameters that are initially not zero and the change of parameters

are always a multiple of 0.1. RPN can adjust all parameters including parameters ini-

tialized as 0 concurrently, while the complexity of adjusting all parameters concurrently

is nearly the same as adjusting one parameter in CMBP. Besides, the change of param-

eters can be large or small, depending on learning rate. Thus, RPN and CMBP both

are bridging rule-based models and statistical ones, while RPN is a statistical model

utilizing rule advantages and CMBP is a rule model utilizing statistical advantages.

In fact, given a CMBP, an RPN can achieve the same performance as the CMBP just

by setting its weights skillfully according to the coefficients of the CMBP. To illustrate

that, the steps of initializing the RPN in figure 5.6 with a CMBP of features f0 ∼ f9 is

described below.

First, to ensure that the new added sum node x = (3, 1) will not influence the output

bt in RPN with initial parameters, ŵx,y is set to 0 for all y. So node x’s value u(t)x is

always 0.

Next, considering the RPN in figure 5.6 has more features than CMBP does, the

weights related the new features should be set to 0. Specifically, suppose node x is the

sum node in the third layer in RPN denoting bt before activation and node y is one of the

product nodes in the second layer denoting a monomial, if product node y is products

of features f6, f7, f8, f9 or the added sum node, then node y’s value is not a monomial

in CMBP, then weights ŵx,y should be set to 0.

Finally, if product node y is the product of features f0 ∼ f5, suppose the order of

CMBP is 3, then F(y) = (k1, k2, k3) defined in equation (5-8) should satisfy 0 ≤ k1 ≤

k2 ≤ k3 ≤ 5. Weights ŵxy should be initialized as gk1,k2,k3 which is the coefficient of
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fk1fk2fk3 in CMBP. Thus,

wx,y =

gk1,k2,k3 if x = (2, 0) and F(x) = (k1, k2, k3)

0 otherwise
(5-17)

For RPN of other structures, the initialization can be done by following similar

steps.

Experiments show that after training, there are only a few weights larger than 0.1,

no matter using CMBP or random initialization.

5.2.5 Training RPN

For a slot s, value v, and time t, suppose lt is the indicator of goal s = v being part of

joint goal at turn t in the dialogue label.

Suppose node x is the output node at turn t, and u(t)x is the output value at turn t. If

the mean squared error (MSE) is used as the training criterion and there are T turns, the

cost L is

L =
1

T

T∑
i=1

(u(t)x − lt)2 (5-18)

Forward Pass For each training sample, every node’s value at every time is evaluated

first. When evaluating u(t)x , values of nodes in Ix and Îx should be evaluated before.

The computation formula should be based on the type of node x. In particular, for a

layered RPN structure, we can simply evaluate ut1x1 earlier than ut2x2 if t1 < t2 or t1 = t2

and x1’s layer number is smaller than x2’s.

Backward Pass Backpropagation through time (BPTT) is used in training RPN. Let

error of node x at time t δ(t)x = ∂L
∂u

(t)
x

. If a node x is an output node, then δ(t)x should

be set according to its label lt and output value u(t)x , otherwise δ(t)x should be initialized

to 0. After a node’s error δ(t)x is determined, it can be passed to δ(t−1)y (y ∈ Ix) and

δ
(t)
y (y ∈ Îx). Error passing should follow the reversed edge’s direction. So the order of
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Initialize ∆wxy = 0,∆ŵx,y = 0 for every x, y
Initialize the value of recurrent node at turn 0 as 0
foreach Training sample slot s, value v do

for t← 1 to T do
for d← 1 to 4 do

foreach node x in time t, layer d do
evaluate u(t)x
if x is output node then

δ
(t)
x ← 2(u

(t)
x − lt)

else
δ
(t)
x ← 0

for t← T to 1 do
for d← 4 to 1 do

foreach node x in time t, layer d do
foreach node y ∈ Îx do

δ
(t)
y ← δ

(t)
y + δ

(t)
x

∂u
(t)
x

∂u
(t)
y

foreach node y ∈ Ix do
δ
(t−1)
y ← δ

(t−1)
y + δ

(t)
x

∂u
(t)
x

∂u
(t−1)
y

for t← 1 to T do
for d← 1 to 4 do

foreach node x in time t, layer d do
foreach node y ∈ Îx do

∆ŵxy ← ∆ŵxy + αδ
(t)
x u

(t)
y

foreach node y ∈ Ix do
∆wxy ← ∆wxy + αδ

(t)
x u

(t−1)
y

foreach edge(x, y) do
wxy ← wxy −∆wxy
ŵxy ← ŵxy −∆ŵxy

Algorithm 2: Training Algorithm of RPN for DST
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nodes passing error can follow the reverse order of evaluating nodes’ values.

When every δ(t)x has been evaluated, the increment on weight ŵxy can be calculated

by

∆ŵxy = α
∂L
∂ŵxy

= α
T∑
i=1

∂L
∂u

(t)
x

∂u
(t)
x

∂ŵxy

= α
T∑
i=1

δ(t)x u
(t)
y

(5-19)

where α is the learning rate. ∆wxy can be evaluated similarly.

Note that only wxy and ŵxy are parameters.

The complete formula of evaluating node value u(t)x and passing error δ(t)x can be

found in appendix.

In this paper, full batch is used in training RPN for DST. In each training epoch,

∆wxy and ∆ŵxy are calculated for every training sample and added together. The

weight wxy and ŵxy is updated by

wxy = wxy −∆wxy (5-20)

ŵxy = ŵxy −∆ŵxy (5-21)

The pseudocode of training is shown in algorithm 2.

5.2.6 Complex Structure

In this paper, to search RPN’s power of utilizing more features, multiple activation

functions and a deeper structure, two interesting explorations on RPN structure are

shown in this section, although they do not yield better results.

Complex Structure

Firstly, to express a 4-order polynomial, simply using the structure shown in figure 5.6

with in-degree of nodes in second layer increased to 4 would be sufficient. However, it
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can be expressed by a more compact RPN structure. To simplify the explanation, the

example RPN expressing 1− (1− (bt−1)
2)(1− (P+

t )2) is shown in figure 5.7.

𝑏𝑡−1 𝑃𝑡
+ 1

𝑏𝑡

𝑏𝑡 𝑃𝑡+1
+ 1

𝑏𝑡+1

0
0

0 -1 0
1

0 1
0 0 0

-1
0
0
0 0 0 1

−10 0 0 0 1

0
0

0 -1 0
1

0 1
0 0 0

-1
0
0
0 0 0 1

−10 0 0 0 1

1 − (𝑏𝑡−1)
2 1 − (𝑃𝑡

+)2 1

Figure 5.7 RPN for polynomial 1− (1− (bt−1)
2)(1− (P+

t )2)

In figure 5.7, the first layer is used for input, values of product nodes in the second

layer equal to products of two features such as (bt−1)
2, bt−1P+

t , (P+
t )2 and so on. Every

sum node in the third layer can express all the possible 2-order polynomial of features

with weights set accordingly. In figure 5.7, the values of the three sum nodes are 1 −

(bt−1)
2, 1− (P+

t )2 and 1 respectively. Then similarly, with another product nodes layer

and sum nodes layer, the value of the output node in the last layer equals the value of

the 4-order polynomial (1− (bt−1)
2)(1− (P+

t )2).

The complete RPN structure with same features shown in figure 5.6, the new re-

current connection and activation nodes that expresses 4-order CMBPs can be obtained

similarly.

With limited sum nodes in the third layer, the complexity of the model is much
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smaller than using a structure shown in figure 5.6 with product node’s in-degree in-

creased to 4 and increasing the number of product nodes accordingly.

Complex Features

Secondly, RNN proposed by Henderson et al. (2014) uses n-gram of ASR results and

machine acts. Similar to that, features of n-gram of ASR results and machine acts are

also investigated in RPN. Since RPN used in this paper is a binary classification model

and assumes slots independent of each other, the n-gram features proposed by Hender-

son et al. (2014) are slightly modified in this paper by removing/merging some features

to make the features independent of slots and values. For example, given machine

acts hello() | inform(area=center) | inform(food=Chinese) |

request(name), for slot food and value Chinese, the n-gram machine act features

are hello, inform, request, inform+slot, inform+value, inform+slot

+value, slot, value, slot+value.

To combine RPN with RNN proposed by Henderson et al. (2014), input nodes of

these n-gram features are not linked to product nodes in the second layer. Instead,

a layer of sum nodes followed by a layer of activation nodes with sigmoid activation

function, which are equivalent to a layer of neurons are introduced. And these activation

nodes are linked to sum nodes in the third layer just like product nodes in the second

layer. The structure is illustrated by figure 5.8 clearly.

Experiments have shown that these two structures do not yield better results when

initialized randomly or initialized using 3-order CMBPs, although the model complex-

ity increases a lot ([28], Xie et al., 2015: 1–9.). This indicates the briefness and effec-

tiveness of the simple structure shown in figure 5.6.

5.3 Experiment

As mentioned in section 4.2, it has been shown that the organiser-provided live SLU

confidence was not good enough, the output from a refined semantic parser is used

instead of the live SLU provided by the organizer. Besides, the datasets and evaluation
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𝑏𝑡

𝑓1
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𝑓2
(𝑡)

𝑓8
(𝑡)

𝑓9
(𝑡) Additional features extracted from 

ASR and machine acts

Figure 5.8 RPN structure combined with RNN features and structures
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criteria are the same as section 4.2.

For all experiments, MSE is used as the training criterion and full-batch batch is

used. For both DSTC-2 and DSTC-3 tasks, dstc2trn and dstc2dev are used,

60% of the data is used for training and 40% for validation. Validation is performed

every 5 epochs. Learning rate is set to 1.0 initially. During the training, learning rate

is halved when the MSE starts increasing. Training is stopped when the learning rate

is sufficiently small, or the maximum number of training epochs is reached. Here, the

maximum number of training epochs is set to 250.

5.3.1 Investigation on RPN Configurations

This section describes the experiments comparing different configurations of RPN. All

experiments were performed on both the DSTC-2 and DSTC-3 tasks.

As indicated in section 5.2.4, an RPN can be initialized by a CMBP. Table 5.1 shows

the performance comparison between initialization with a CMBP and with random val-

ues. In this experiment, the structure shown in figure 5.5 is used.

Table 5.1 Performance comparison between the RPN initialized by random
values, and the RPN initialized by the CMBP coefficients on dstc2eval and
dstc3eval.

Initialization
dstc2eval dstc3eval
Acc L2 Acc L2

Random 0.722 0.435 0.500 0.671
CMBP 0.758 0.370 0.644 0.542

The performance of the RPN initialized by random values sampled fromN (0, 0.01)

is compared with the performance of the RPN initialized by the integer-coefficient

CMBP. Here, the CMBP has 11 non-zero coefficients and has the best performance in

DSTC-2. It can be seen from table 5.1 that the RPN initialized by the CMBP coefficients

significantly outperforms the RPN initialized by random values. This demonstrates the

encoded prior knowledge and intuition in CMBP can be transferred to RPN to improve

RPN’s performance, which is one of RPN’s advantage, bridging rule-based models and

statistical models. In the rest of the experiments, all RPNs use CMBP coefficients for
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initialization.

Since section 5.2.3 shows that it is convenient to add features and try more complex

structures, it is interesting to investigate RPNs with different feature sets and structures,

as shown in table 5.2. It can be seen that while no obvious correlation between the per-

formance and different configurations of feature sets and structures can be observed on

dstc2eval, new features and new recurrent connections significantly help improve

the performance of RPN on dstc3eval. Thus, in the rest of the paper, both new

features and new recurrent connections are used in RPN, unless otherwise stated.

Table 5.2 Performance comparison among RPNs with different configurations
on dstc2eval and dstc3eval.

Feature Set
New Recurrent dstc2eval dstc3eval

Connections Acc L2 Acc L2

f0 ∼ f5 No
0.758 0.370 0.644 0.542

f0 ∼ f9 0.755 0.374 0.646 0.541
f0 ∼ f5 Yes

0.757 0.372 0.645 0.543
f0 ∼ f9 0.756 0.372 0.650 0.538

5.3.2 Comparison with Other DST Approaches

The previous subsection investigates how to get the RPN with the best configuration. In

this subsection, the performance of RPN is compared to both rule-based and statistical

approaches. To make fair comparison, all statistical models together with RPN in this

subsection use similar feature set. Altogether, 2 rule-based trackers MaxConf, HWU

and 2 statistical trackers DNN, MaxEnt which have been described in section 4.2.2

were built for performance comparison.

It can be observed that, with similar feature set, RPN can outperform both rule-based

and statistical approaches in terms of joint goal accuracy. Statistical significance tests

were also performed assuming a binomial distribution for each turn. RPN was shown to

significantly outperform both rule-based and statistical approaches at 95% confidence

level. For L2, RPN is competitive to both rule-based and the statistical approaches.
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Table 5.3 Performance comparison among RPN, rule-based and statistical ap-
proaches with similar feature set on dstc2eval and dstc3eval. The perfor-
mance of CMBP in the table is the performance of the RPN which has been initial-
ized but not been trained.

Type System
dstc2eval dstc3eval
Acc L2 Acc L2

Rule
MaxConf 0.668 0.647 0.548 0.861

HWU 0.720 0.445 0.594 0.570

Statistical
DNN 0.719 0.469 0.628 0.556

MaxEnt 0.710 0.431 0.607 0.563

Mixed
CMBP 0.756 0.370 0.628 0.546
RPN 0.757 0.372 0.645 0.543

5.3.3 Comparison with State-of-the-art DSTC Trackers

In the DSTCs, the state-of-the-art trackers mostly employed statistical approaches. Usu-

ally, richer feature set and more complicated model structures than the statistical models

in section 5.3.2 are used. In this section, the proposed RPN approach is compared to the

best submitted trackers in DSTC-2/3 and the best CMBP trackers, regardless of fairness

of feature selection and the SLU refinement approach. RPN is compared and the results

are shown in table 5.4 and table 5.5. Note that structure shown in figure 5.6 with richer

feature set and a new recurrent connection is used here.

Table 5.4 Performance comparison among RPN, real-coefficient CMBP and best
trackers of DSTC-2 on dstc2eval. Baseline* is the best results from the 4 base-
lines in DSTC2.

System Approach Rank Acc L2
Baseline* Rule 5 0.719 0.464

Williams (2014) LambdaMART 1 0.784 0.735
Henderson et al. (2014) RNN 2 0.768 0.346

Sun et al. (2014) DNN 3 0.750 0.416
Yu et al. (2015) Real CMBP 2.5 0.762 0.436

RPN RPN 2.5 0.756 0.372

Note that, in DSTC-2, the Williams (2014)’s system employed batch ASR hypothe-

sis information (i.e. off-line ASR re-decoded results) and cannot be used in the normal

on-line model in practice. Hence, the practically best tracker is Henderson et al. (2014).
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It can be observed from table 5.4, RPN ranks only second to the best practical tracker

in accuracy and L2. Considering that RPN only used probabilistic features and very

limited added features and can operate very efficiently, it is quite competitive.

Table 5.5 Performance comparison among RPN, real-coefficient CMBP and best
trackers of DSTC-3 on dstc3eval. Baseline* is the best results from the 4 base-
lines in DSTC3.

System Approach Rank Acc L2
Baseline* Rule 6 0.575 0.691

Henderson et al. (2014) RNN 1 0.646 0.538
Kadlec et al. (2014) Rule 2 0.630 0.627

Sun et al. (2014) Int CMBP 3 0.610 0.556
Yu et al. (2015) Real CMBP 1.5 0.634 0.579

RPN RPN 0.5 0.650 0.538

It can be seen from table 5.5, RPN trained on DSTC-2 can achieve state-of-the-art

performance on DSTC-3 without modifying tracking method1, outperforming all the

submitted trackers in DSTC-3 including the RNN system. This demonstrates that RPN

successfully inherits the advantage of good generalization ability of rule-based model.

1The parser is refined for DSTC-3 ([25], Zhu et al., 2014: 336–341.).
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Chapter 6 Conclusion

6.1 Main Contribution

In this paper, two novel frameworks, constrained Markov Bayesian polynomial and

Recurrent Polynomial Network, are proposed which manage to take advantage of both

rule-based and statistical approaches. Both frameworks achieve efficiency, portability,

interpretability and simplicity.

Constrained Markov Bayesian Polynomial framework takes the first step towards

bridging the gap between rule-based and statistical approaches for dialogue state track-

ing. It uses a polynomial function to describe the probability operation rules and em-

ploys constraints to incorporate prior knowledge. By approximating descriptive con-

straints using linear constraints, the CMBP training is formulated as a standard problem

of optimisation with linear constraints. Furthermore, the integer coefficient CMBP is

extended to real-coefficient CMBP. With the ability of incorporating prior knowledge

and being data-driven, CMBP has the advantages of both rule-based and statistical ap-

proaches.

The Recurrent Polynomial Network framework further bridges the gap between

rule-based and statistical approaches for dialogue state tracking. With the ability of

incorporating prior knowledge into a statistical framework, RPN has the advantages of

both rule-based and statistical approaches.

Experiments on two dialog state tracking challenge (DSTC) tasks showed that both

frameworks not only are more stable than many major statistical approaches, but also

have competitive performance, outperforming many state-of-the-art trackers.

6.2 Future Work

It is interesting to note that the second best tracker in DSTC-3 was a rule-based tracker.

Different from the general form in equation (4-4), it further conditioned the Bayesian

polynomial on the system act of the previous turn. This can be regarded as a piece-wise
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polynomial extension of equation (4-4). Since both the CMBP and RPN frameworks

are easy to extend, future work will investigate piece-wise polynomials.

Furthermore, tracking dialogue states for sub-dialogue segments in human-human

dialogues will be the focus of the next Dialog State Tracking Challenge (i.e. DSTC-4).

It is also interesting to investigate applying CMBP and RPN to that task.
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Appendix

CMBP Constraints Formulation

In order to be consistent with section 4.1.2 and introduce the constraints clearly, the

constraints formulation of order-3 CMBP is the focus in the following content. The

constraints formulation of CMP of other order can be obtained with just slight modifi-

cations of the constraints formulation of order-3 CMBP. As definition (4-2), the coeffi-

cients of CMBP of order 3 is denoted by wijk:

P(x1, x2, x3, x4, x5, x6) =
∑

0≤i≤j≤k≤6

wijkxixjxk (6-1)

where x0 = 1, and w ∈ Z.

Constraints Formulation

The probabilistic constraints, intuition constraints, and regularization constrains inves-

tigated in this paper are described below respectively.

Probabilistic constraints:

0 ≤ bt(v) ≤ 1 (6-2)

0 ≤ brt ≤ 1 (6-3)

brt = 1−
∑
v′

bt(v
′) (6-4)

Intuition constraints:

• If neither positive nor negative information is collected, the belief should not
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change.

P+
t+1(v) = 0 ∧ P−t+1(v) = 0 ∧ P̃+

t+1(v) = 0∧

P̃−t+1(v) = 0 ⇒ bt+1(v) = bt(v) (6-5)

where here “∧” and “⇒” are used to denote logical conjunction and material

implication respectively.

• If both ASR and SLU is perfectly correct, that is, 1 is assigned to all correct values

and 0 to all incorrect values, then the model should always give the correct result.

Considering the special case that there is only one value which is not “None”,

the following 3 constraints can be obtained.

P+
t (v) = 1⇒ bt(v) ≥ 0.5 (6-6)

P−t (v) = 1⇒ bt(v) ≤ 0.5 (6-7)

P̃+
t (v) = 1⇒ bt(v) ≤ 0.5 (6-8)

• The belief should be unchanged or positively correlated with the positive scores

from SLU.

∂P(P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v), brt , bt(v))

∂P+
t+1(v)

≥ 0 (6-9)

• The belief should be unchanged or negatively correlated with the negative scores

from SLU.

∂P(P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v), brt , bt(v))

∂P−t+1(v)
≤ 0 (6-10)

• The belief should be unchanged or negatively correlated with the sum of the pos-
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itive scores of the other values.

∂P(P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v), brt , bt(v))

∂P̃+
t+1(v)

≤ 0 (6-11)

• The belief should be unchanged or positively correlated with the sum of the neg-

ative scores of the other values.

∂P(P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v), brt , bt(v))

∂P̃−t+1(v)
≥ 0 (6-12)

• The belief of the current turn should be unchanged or positively correlated with

the belief of the previous turn.

∂P(P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v), brt , bt(v))

∂bt(v)
≥ 0 (6-13)

Regularization constraints:

• The coefficients of P(·) is limited to be in [−1, 1]. This constraint comes from

the observation that all coefficients of rule-based model (3-3) are in [−1, 1].

− 1 ≤ wijk ≤ 1 (6-14)

• The sum of the coefficients of P(·) is limited to be 0. This constraint comes from

the observation that the sum of the coefficients of rule-based model (3-3) is 0.

∑
0≤i≤j≤k≤6

wijk = 0 (6-15)

Constraints Approximation

To simplify the presentation, the set consisting of all possible input vectors (P+
t (v),

P−t (v), P̃+
t (v), P̃−t (v), brt , bt(v)) is denoted by χ. By definition, the following relations
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and (6-2), (6-3), (6-4) are true:

0 ≤ P+
t (v) ≤ 1 (6-16)

0 ≤ P−t (v) ≤ 1 (6-17)

0 ≤ P̃+
t (v) ≤ 1 (6-18)

0 ≤ P̃−t (v) ≤ 1 (6-19)

0 ≤ P+
t (v) + P̃+

t (v) ≤ 1 (6-20)

0 ≤ P−t (v) + P̃−t (v) ≤ 1 (6-21)

Therefore,

χ = {(x1, x2, x3, x4, x5, x6)|0 ≤ x1 ≤ 1 ∧ 0 ≤ x2 ≤ 1∧

0 ≤ x3 ≤ 1 ∧ 0 ≤ x4 ≤ 1 ∧ x1 + x3 ≤ 1 ∧ x2 + x4 ≤ 1∧

0 ≤ x5 ≤ 1 ∧ 0 ≤ x6 ≤ 1 ∧ x5 + x6 ≤ 1} (6-22)

The conversion from the exact constraints to the relaxed linear constraints is dis-

cussed in detail as below. For approximation purpose, two quantised interval of [0, 1],

T5 and T10, need to be defined first:

T5 = {0, 0.2, 0.4, 0.6, 0.8, 1}

T10 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

A number of theorems are then proved for the constraints approximation.

Theorem 6.1. If a rule satisfies constraints (6-2), (6-3), (6-4), then the rule satisfies the
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following sets of linear constraints:

{0 ≤ P(a) ≤ 1|a ∈ χ, ai ∈ T5, i = 1, · · · , 6} (6-23)

{0 ≤ P(a) + P(b) ≤ 1|a, b ∈ χ, a1 + a3 = b1 + b3,

a2 + a4 = b2 + b4, a1 ≤ b3, b1 ≤ a3, a2 ≤ b4, b2 ≤ a4,

a5 = b5, a5 + a6 + b6 = 1, ai, bi ∈ T5, i = 1, · · · , 6} (6-24)

Proof. The set of linear constraints (6-23) can be obtained by constraint (6-2). By

combining constraint (6-3) and (6-4), it can be proved that 0 ≤
∑

v′ bt(v
′) ≤ 1. Thus

the set of linear constraints (6-24) can be obtained by considering the special case that

there are at least 2 values which are not “None”.

Theorem 6.2. A rule satisfies constraint (6-5) if and only if

w000 = w005 = w055 = w056 = w066 =

w555 = w556 = w566 = w666 = 0 (6-25)

and

w006 = 1 (6-26)

Proof. Suppose constraints (6-25) and (6-26) hold. Under the condition P+
t+1(v) =

P−t+1(v) = P̃+
t+1(v) = P̃−t+1(v) = 0, then for all v, (P+

t+1(v) = P−t+1(v) = 0) by the

definition of P+
t+1(v), P−t+1(v), P̃+

t+1(v), P̃−t+1(v) and constraints (6-16), (6-17). Thus by

definition (4-4) and equation (6-1)

bt+1(v) = w000 + w005b
r
t + w055(b

r
t )

2 + w056b
r
t bt(v)

+ w066(bt(v))2 + w555(b
r
t )

3 + w556(b
r
t )

2bt(v)

+ w566b
r
t (bt(v))2 + w666(bt(v))3 + w006bt(v)

= bt(v)
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Therefore, constraint (6-5) holds. Reversely suppose constraint (6-5) holds, it is

easy to check that under the condition that P+
t+1(v) = 0 ∧ P−t+1(v) = 0 ∧ P̃+

t+1(v) =

0∧ P̃−t+1(v) = 0, if at least one of constraint (6-25) or (6-26) does not hold, the equality

“bt+1(v) ≡ bt(v)” does not hold.

Theorem 6.3. If a rule satisfies constraints (6-6), (6-7), (6-8), then the rule satisfies the

following set of linear constraints:

{P(1, 0, 0, 0, a5, 0) ≥ 0.5|a5 ∈ T10} (6-27)

{P(0, 1, 0, 0, a5, a6) ≤ 0.5|a5, a6 ∈ T10, a5 + a6 = 1} (6-28)

{P(0, 0, 1, 0, a5, a6) ≤ 0.5|a5, a6 ∈ T10, a5 + a6 = 1} (6-29)

Proof. The set of linear constraints (6-27) can be obtained by simply combining con-

straint (6-6) and definition (4-4). The derivations for the sets of linear constraints (6-28)

and (6-29) are similar.

Theorem 6.4. If a rule satisfies constraints (6-9), (6-10), (6-11), (6-12), (6-13), then the

rule satisfies the following sets of linear constraints:P(a) ≥ P(b)

∣∣∣∣∣∣ a,b ∈ χ, ai ∈ T5, i = 1, · · · , 6

a1 = b1 + 0.1, ai = bi ∀i 6= 1

 (6-30)

P(a) ≥ P(b)

∣∣∣∣∣∣ a,b ∈ χ, ai ∈ T5, i = 1, · · · , 6

a2 = b2 + 0.1, ai = bi ∀i 6= 2

 (6-31)

P(a) ≥ P(b)

∣∣∣∣∣∣ a,b ∈ χ, ai ∈ T5, i = 1, · · · , 6

a3 = b3 + 0.1, ai = bi ∀i 6= 3

 (6-32)

P(a) ≥ P(b)

∣∣∣∣∣∣ a,b ∈ χ, ai ∈ T5, i = 1, · · · , 6

a4 = b4 + 0.1, ai = bi ∀i 6= 4

 (6-33)

P(a) ≥ P(b)

∣∣∣∣∣∣ a,b ∈ χ, ai ∈ T5, i = 1, · · · , 6

a6 = b6 + 0.1, ai = bi ∀i 6= 6

 (6-34)

Proof. The rule satisfies the set of linear constraints (6-30) is because constraint (6-9)

indicates P(x1, x2, x3, x4, x5, x6) is monotonically increasing with respect to x1. The
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derivations for the other sets of linear constraints are similar.

By theorem 6.1, 6.2, 6.3 and 6.4, it can be seen that the linear constraints (6-23) -

(6-34) relax the constraints (6-2) - (6-4), (6-5) - (6-13).

Derivative calculation

Using MSE as the criterion, δ(t)x = ∂L
∂u

(t)
x

is initialized as following:

δ(t)x =

2(u
(t)
x − lt) if x is a output node

0 otherwise
(6-35)

Suppose node x is an activation node and f(·) = softclip(·), let y = ox,

δ(t)y =
∂L
∂u

(t)
y

=
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)x
∂f(u

(t)
y )

∂u
(t)
y

(6-36)

Suppose node x = (d, i) is a sum node, then when node x passes its error, the error

of node y ∈ Îx is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)y + δ(t)x ŵx,y

(6-37)

Similarly, error of node y ∈ Ix is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t−1)
y

= δ(t)y + δ(t)x wx,y

(6-38)

Suppose node x = (d, i) is a product node, then when node x passes its error, error
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of node y ∈ Îx is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t)
y

= δ(t)y + δ(t)x M̂x,yu
(t)
y

M̂x,y−1 ∏
z∈Îx−{y}

u(t)z
M̂x,z

∏
z∈Ix

u(t−1)z

Mx,z
(6-39)

Similarly, error of node y ∈ Ix is updated as

δ(t)y = δ(t)y +
∂L
∂u

(t)
x

∂u
(t)
x

∂u
(t−1)
y

= δ(t)y + δ(t)x Mx,yu
(t−1)
y

Mx,y−1 ∏
z∈Îx

u(t)z
M̂x,z

∏
z∈Ix−{y}

u(t−1)z

Mx,z

(6-40)
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