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SEVERAL PROBLEMS AND METHODS IN ALGEBRAIC COMBINATORICS

Several Problems and Methods in Algebraic
Combinatorics

ABSTRACT

This paper has studied some problems in algebraic combinatorics. These are from
magic squares, Hadamard matrix, Unit circles and rational spherical designs. Geomet-
rically, these combinatorial problems are all related to curves, which is an important
theme here. Several new conjecture are posed and several problems are solved through
the methods, many of which are directly related to the quadratic aspect. It is point-
ed out in the paper that there are several kinds of methods in algebraic combinatorics
which could be viewed as some kind of quadratic consideration, such as double count-
ing, calculation of the modulus and consideration of the L2 average of a system of
objects. Also, a complete introduction to the rational spherical design is given. We
give a sketch of the existence of rational spherical design from a general point of view
which is called geometric design. At last, we study the picture of the zeroes of some
polynomials and all of its higher order derivatives. A conjecture on the pattern of the
pictures is made for the next few years’ study.

KEY WORDS: rational spherical design, quadratic method, root of unity, unit
circle
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Chapter 1

Introduction

1.1 Background: Important Problems in Algebraic Combina-
torics

Enumeration, otherwise known as counting, is the oldest mathematical subject,
while algebraic combinatorics is one of the youngest. algebraic combinatorics is in
fact the synthesis of two opposing trends: abstraction of the concrete and concretiza-
tion of the abstract.

The abstraction trend consists of the categorization, conceptualization, structuraliza-
tion (in short, “bourbakization”) of mathematics. Enumeration did not escape this
trend, and in the hands of such giants as Gian-Carlo Rota[1] and Richard Stanley[2]

in America and Marco Schützenberger and Dominique Foata[3] in France, it became
more conceptual, structural, and algebraic[4]. For example, there are analogies[5] be-
tween the partially ordered set of all subsets of a finite set and the partially ordered set
of all subspaces of a finite vector space which is natural in view of‘matroid design’.

The concrete trend is dominating contemporary mathematics[6], thanks to the om-
nipresence of the mighty Computer[7]. One of the results obtained by Ziqing Xiang
and me, namely the existence for rational spherical designs, expects to see the future of
finding by computer the explicit constructions. Also in a recent work on the complex
zeros of polynomial and its derivatives, we saw a series of interesting pictures one of
which is on the second picture below. As a deep result was obtained by Szegő in 1924
in that problem of the Taylor truncation of the exponential function, which is the zeros
accumulate on the blue curve in the first picture below when the order goes to infinity,
we expect such wonderful result will also appear under the combinatorial work.
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It has been revealed that many algebraic structures have hidden combinatorial under-
pinnings; the attempts to unearth these have led to many fascinating discoveries and
unsolved problems.

Figure 1–1 Accumulation of zeros of truncation of exp function

Figure 1–2 zeros of a normal polynomial and all of its derivatives
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Therefore, it can be revealed that problems related with curves and distance[8] are
really interesting and important for the author.

There are many different kinds of mathematics which could be called algebraic com-
binatorics. The content, as far as we would like to classify by a relatively normal dis-
cipline, can be designs( in the broadest meaning), algebraic graph theory, enumer-
ative problems in the algebraic aspect, and sometimes more constructive things like
Hadamard matrices and coding theory.

In doing several independent studies and cooperations with other people, I prefer to
go further in those related to curves (also in a broader way). This theme can hardly be
seen as one in algebraic combinatorics, while in the modest way, I try to keep on car-
ing about problems from combinatorics and more related to algebra[9]. However this
theme gives out a criterion on the scope I should be limited in which will concentrate
the whole project on a mathematically interesting series of problems while several im-
portant problems in the usual meaning will not be neglected.

I did not mean to find out a particular method to tackle these problems[10]. Howev-
er, in writing up the final paper and reviewing all the problems I have tackled in this
series, it is surprisingly found out that to some extent all the important methods I have
ever used are related to the ’quadratic calculation’, which means when we meet a prob-
lem involved with modulo, we can calculate in the quadratic way adn when we are
involved in enumerative problems, counting by two different ways in a modest idea is
usually the best choice. This kind of idea is really a useful one and can be called a
mathematical philosophy or a belief when we tackle difficult combinatorial problems.

In the following chapters, I will demonstrate this idea by several important problems
and methods.
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1.2 Background of Spherical Designs

Definition 1.1 (Delsarte-Goethals-Seidel). We say a finite setX j Sn−1 is a spherical
t-design if

1

|X|
∑
x∈X

f(x) =
1

|Sn−1|

∫
Sn−1

f(x)dσ(x)

for all polynomials f(x) = f(x1, . . . , xn) of degree not exceeding t.We can also define
a toy model of it when Sn−1 is replaced by the interval [−1, 1], which is called an
interval t-design.

The purpose of my work is to explore the existence of rational spherical multi 2e-
design on Sn and to give an effective method in analytic number theory to obtain the
existence of rational interval 2e-design and also design on S1. (The S1 case is howev-
er a little different where we get only one coordinate to be rational while the other is
square root of a rational number).

We are most interested in this problem due to two simple ideas: First of all, many prob-
lems involving rational points on sphere Sn (say, the density problem for a sphere not
necessarily centered at the origin, the approximation problem by rational points of giv-
en upper bound of height), more generally speaking, the problems of metric diophan-
tine approximation on manifolds[11], are very fascinating themselves and our methods
are related to the spirit of rational approximation. On the other hand, spherical t-design
itself is a very important topic in combinatorics, especially in design theory[12].

It is not until the year 1984 that P. D. Seymour and T. Zaslavsky proved a theorem
that in general solved the existence of spherical design : Let Ω be a path-connected
topological space provided with a positive finite measure µ which makes use of the
curve’s property in the topological space. Therefore, we see the prototype of the im-
portance of the curve’s role in such existence problem in combinatorics. We will come
back to that paper and state more detail on the corresponding result in it.

Moreover, the interesting result we get finally on S2 is related again to the quadratic
form, since we can make sure that the square of each coordinates are rational numbers.
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This is again related to our quadratic methods. However, the direct result which means
the coordinates themselves are rational numbers is still a conjecture for us as fas as
what the author know.
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Chapter 2

Hadamard Matrices

2.1 enumerative problem of magic square

We begin by stating a result obtained by the author which fascinates him to the
problem related with algebraic combinatorial problems on the finite matrix.

Theorem 2.1.
H3(r) =

(
r + 4

4

)
+

(
r + 3

4

)
+

(
r + 2

4

)

where H3(r) is the number of all magic matrix of order 3 which has row sum and
column sum r.

Proof. Let a, b, c, d be four numbers in a submatrix of order 2. We have the following
three cases which give out a partition of all possible situations:

1.a+ b+ c, b+ c+ d ≤ r

0 ≤ a+ b+ c+ d− r ≤ a ≤ a+ b ≤ a+ b+ c ≤ r

2.b+ c+ d > r, a ≤ d

0 ≤ a < a+ b+ c+ d− r ≤ a+ c ≤ c+ d ≤ r

3.a+ b+ c > r, d < a

0 ≤ d < a+ b+ c+ d− r ≤ c+ d < a+ c ≤ r

which gives out respectively
(
r+4
4

)
,
(
r+3
4

)
and

(
r+2
4

)
possibilities to choose the construc-

tion.
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Remark 2.1. It is very interesting to find such a fascinating proof, since we know these
three case itself is a combinatorial construction. And this is the charming property of
algebraic combinatorics, which from the view of logic the proof itself is intrinsic. To
find such a proof can sometimes be also a target to pursue for the author.

2.2 The Problem of Construction
Definition 2.1. An Hadamard matrix or order n is an n × n matrix H with entries
+1and −1, such that

HH⊤ = nI

Observation 1. Of course, any two columns of H are also orthogonal. This property
does not change if we permute rows and columns or if we multiply some rows or columns
by −1. Two such matrices are called equivalent[13].

Observation 2. If n ̸= 1or2 then n must be multiple of 4.

For observation 2, one should operate the matrix into a normal one and the prop-
erty of the size naturally comes out.

Theorem 2.2. If Hm and Hn are Hadamard matrics of order m and n respectively,
then Hm ⊗Hn is also a Hadamard matrix of order mn.

Proof. One sees that

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

(A⊗B)⊤ = A⊤ ⊗B⊤

Im ⊗ In = Imn

By this kind of product theorem, one can try to construct Hadamard Matrix of
large size. When I practise the ’quadratic method’ in a variable way, I found out that
the idea of ’Paley construction’ can be very useful. Last semester I once use the Paley
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matrix to construct a kind of self-complementary graph. On the problem of the con-
struction of Hadamard matrix, I also found it very helpful and natural to construct a
three-term Kronecker product sum of matrices.

Definition 2.2. If we see the elements of Fq as numbers

0 = a0, a1, ..., aq−1

we can define a matrix Q by
qij := χ(ai − aj)

This is called Paley matrices. And we can easily obtain a symmetric of antisymmetric
matrixC (conference matrix) which will be useful in the next construction of Hadamard
matrics.

Definition 2.3. Let Pm be the matrix of size m with the asymmetric diag zero form
where the submatrices have size m/2.

Proof. We need to define the conference matrix C. It should always meet the identity

CC⊤ = (n− 1)I

when all methods could be used to construct such matrix. Here we can construct it
directly from Q. Let

C =



0 1 1 . . . 1

±1 ∗ ∗ ∗ ∗
±1 ∗ ∗ ∗ ∗
... ∗ ∗ ∗ ∗
±1 ∗ ∗ ∗ ∗


(2–1)

where the star entry are that of Q. The signs of the terms ±1 are chosen in such a way
that C is symmetric or antisymmetric.

Now we can state and prove our main result.
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Theorem 2.3. Let q be a prime number power ≡ 1(mod4). Let C be the matrix just
constructed. Choose H and P as in the above construction. Then we have

(Hm ⊗ Cq+1 ⊗Qq) + (PmHm ⊗ Cq+1 ⊗ Iq) + (Hm ⊗ Iq+1 ⊗ Jq)

is also an Hadamard matrix of size mq(q + 1).

Hereby in this theorem we choose the positive sign on the first column.

Proof. Obviously we have the associativity of the Kronecker Product. And we also
have

QqQ
T
q = qIq − Jq

HmH
T
m = mIm

QqJq = JqQq = O

PmPm = −Im

T = Hm ⊗ Cq+1 ⊗Qq + PmHm ⊗ Cq+1 ⊗ Iq +Hm ⊗ Iq+1 ⊗ Jq

T T = HT
m ⊗ CT

q+1 ⊗QT
q −HT

mPm ⊗ CT
q+1 ⊗ Iq +HT

m ⊗ Iq+1 ⊗ Jq

Hereby there are three main terms and six intersection terms of the product TT T :

(1) main term

(Hm ⊗ Cq+1 ⊗Qq)(H
T
m ⊗ CT

q+1 ⊗QT
q ) = (HmH

T
m)⊗ (Cq+1C

T
q+1)⊗ (QqQ

T
q )

= mIm ⊗ qIq+1 ⊗ (qIq − Jq) = mqIm(q+1) ⊗ (qIq − Jq)

(2) main term

(PmHm ⊗ Cq+1 ⊗ Iq)(HT
mPm ⊗ CT

q+1 ⊗ Iq) = (PmHmH
T
mPm)⊗ (Cq+1C

T
q+1)⊗ Iq

= mIm ⊗ qIq+1 ⊗ Iq = mqIm(q+1) ⊗ Iq
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(3) main term

(Hm ⊗ Iq+1 ⊗ Jq)(HT
m ⊗ Iq+1 ⊗ Jq) = (HmH

T
m)⊗ Iq+1 ⊗ J2

q

= mIm ⊗ Iq+1 ⊗ qJq = mqIm(q+1) ⊗ Jq

(1)+(2)+(3) gives out the sum of main terms:

mqIm(q+1) ⊗ (q + 1)Iq = mq(q + 1)Imq(q+1)

To complete the proof it suffices to show the six intersection terms cancel out. In
fact we have

(Hm⊗Cq+1⊗Qq)(H
T
m⊗ Iq+1⊗ Jq) = (HmH

T
m)⊗ (Cq+1Iq+1)⊗ (QqJq) = Omq(q+1)

since we have at first
QqJq = Oq

Similarly, we have

(Hm ⊗ Iq+1 ⊗ Jq)(HT
m ⊗ CT

q+1 ⊗QT
q ) = Omq(q+1)

The other four terms cancel out two by two.

−(Hm ⊗ Cq+1 ⊗Qq)(H
T
mPm ⊗ CT

q+1 ⊗ Iq)
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= −mPm ⊗ qIq+1 ⊗Qq = −mqPm ⊗ Iq+1 ⊗Qq

while

(PmHm ⊗ Cq+1 ⊗ Iq)(HT
m ⊗ CT

q+1 ⊗QT
q )

= mPm ⊗ qIq+1 ⊗QT
q = mqPm ⊗ Iq+1 ⊗Qq

These two terms thus annihilate.

(PmHm ⊗ Cq+1 ⊗ Iq)(HT
m ⊗ Iq+1 ⊗ Jq)

= mPm ⊗ Cq+1 ⊗ Jq

while

(Hm ⊗ Iq+1 ⊗ Jq)(−HT
mPm ⊗ CT

q+1 ⊗ Iq)

= −mPm ⊗ CT
q+1 ⊗ Jq = −mPm ⊗ Cq+1 ⊗ Jq

and we are done for all the calculation.

2.3 The Problem of Entry Sum
After one has already constructed some Hadamard matrices, although the general

problem of constructing all possible Hadamard matrices is still far from our ability,
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one has also to consider another general problem:

What can we say about the total sum of all the entries?

This is formally posed under the existence of Hadamard matrix. However, it is in-
dependent of the existence of Hadamard matrix since this could be a criterion to look
for the Hadamard matrix. In this paper, such problem is considered:

What is the asymptotic formula of the maximum absolute value of the sum of all the
entries of Hadamard matrix of order n, when n goes to infinity?

We give out a quite accurate result on both the upper bound and lower bound of the
asymptotic order here. It is really amazing that the upper order and the lower order are
the same.

Theorem 2.4. Suppose

β(n) = max |
∑
i,j

aij|

where the the maximum value are chosen from all the Hadamard matrix of order n
and aij are the entries.

Then one has

β(n) ≤ n3/2

Proof. From the definition of Hadamard matrix, two different rows have the inner prod-
uct of their corresponding vectors 0. and the inner product by a vector with itself should
be n, which means the double sum of the following form equals n2:

n2 =
∑
i,j

n∑
k=1

aikaj,k
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=
n∑

k=1

∑
i,j

aikajk =
n∑

k=1

(
n∑

i=1

aik)
2 =

n∑
k=1

s2k

where sk is the sum of the k th column.

By Cauchy inequality we have immediately that

(
n∑

k=1

sk)
2 ≤ (

n∑
k=1

12)(
n∑

k=1

s2k)

which implies that
n∑

k=1

sk ≤ n3/2

.
Since the Hadamard matrix is chosen without restriction, we are done.

Theorem 2.5.
β(n) ≥ 2−n

(
n

n/2

)
n2

which is of order n3/2

Proof. This is by direct calculation of Stirling formula that the order of the function
on n is n3/2. To prove the inequality, we need to find the whole structure of the some
kind of average value. For this consideration, we should utilize the random vector, say
x ∈ {+1,−1}n and do the operation on an arbitary Hadamard matrix:

First of all, we transform each row vector vj into xjvjfor each j.

Then we multiply −1 to some row vectors such that for each row, the sum of this
row is nonnegative. Note that at this time the matrix transformed is still an Hadamard
matrix since Hadamard matrix property will hold under the operation of changing rows
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and columns and multiplication by ±1.

We name the sum of entries of this Hadamard matrix by sx. One easily sees that in
fact

sx =
n∑

i=1

|x · vi|

By the definition of β(n), which is the maximum value, should be no smaller than sx

for every x ∈ {+1,−1}n.

In particular, one has the inequality

β(n) ≥ 1

2n

∑
x∈{+1,−1}n

sx

=
1

2n

∑
x∈{+1,−1}n

n∑
i=1

|x · vi|

=
1

2n

n∑
i=1

n∑
d=0

∑
d(x,vi)=d

|n− 2d|

Note that here d is the Hamming distance of two vectors, which is very common used
in the coding theory. After looking at the right hand side of the calculation, we found
that the summation by i is independent of the index i. The right hand side should be
equal to

1

2n

n∑
i=1

(
n∑

d=0

(
n

d

)
|n− 2d|)

=
n

2n

n∑
d=0

(
n

d

)
|n− 2d|

To complete the proof, one should only examine the identity of binomial numbers:
n∑

d=0

(
n

d

)
|n− 2d| = n

(
n

n/2

)
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Note that here n is the order of an Hadamard matrix which is supposed to be an even
number. Hence we can use technique to calculate by half:

n/2−1∑
d=0

(
n

d

)
|n− 2d|

=

n/2−1∑
d=0

n!

(n− d)!d!
((n− d)− d)

= n(

n/2−1∑
d=0

(
n− 1

d

)
−

n/2−1∑
d=1

(
n− 1

d− 1

)
) = n

(
n− 1

n/2− 1

)

Note that the other half part is the same with this part, we conclude by pointing out

2

(
n− 1

n/2− 1

)
=

(
n

n/2

)

Remark 2.2. It is very interesting to note the order 3/2. It is the mean value between
that of a normal Hadamard matrix (of order 1) and of full entry matrix (of order 2).
Basically speaking, this phenomenon is important when a random problem is involved.
It is also very obvious for the physicists to understand such order, especially when a
vector modulus is related to the essential inequality in Physics, due to professor Ye.X
in Shanghai Jiaotong University. From a mathematical point of view, the author found
the result not so surprising. Although the Hadamard matrices are far from understood,
some of its combinatorial properties are very clear, like the conclusion made here.
Again we see the ’quadratic’ method fully used here, which is supposed to be the center
of this article.
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Chapter 3

Combinatorics on the Unit Circle

3.1 A Conjecture on the Unit Circle

The author has heard about this conjecture for many years: Consider several roots
of unity which may not be different and the order of each root of unity may vary. Then
what about the sum of these roots of unity? Mu.X.S. made such a beautiful conjecture
which has many combinatorial and number theoretical implications: If the sum falls
on a unit circle, then the sum itself is also a root of unity. Mu.X.S. is very good at
number theory in even high school time, and he won the gold medal of IMO by a full
score(together with Wei.D.Y and other foreign student in the participants of that year’s
IMO). He thought on it and asked this problem to some mathematicians, one of them
is a French specialist on diophantine approximation and transcendental number theory.
Everyone who heard about it found it both interesting and meaningful, while no proof
has ever been found.

The author has been indulged in finding the key to the proof from three years ago and
it was a coincidence that at that time Professor Feng.K.Q visited to Shanghai Jiaotong
University to give a short course on algebraic curves. Professor Fend has advised the
author to look up some results on the CM field. This is because the theory about al-
gebraic integers on the unit circle would not necessarily be a root of unity, while in a
CM field one can find much more to do with.However, until now there is no evidence
that this theory could help on finding the combinatorial structure of the sum of roots
of unity.

Then thanks to Professor Li.J.Y. who suggests me to think on Galois correspondence
and some algebraic aspects on it. Although the Galois correspondence is not needed
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finally, we tried to find the important thing successfully, which is related to the cyclo-
tomic polynomial. It is really happy for the author to solve this conjecture just before he
graduates from the University. He will continue to pursue his study on number theory
related to combinatorics and algebraic theory.

It is important to point out that the author has met Professor W.Zudilin who is a spe-
cialist on transcendental number theory. And he told the author that it is not evident
from the view of approximation theory to solve this problem although it is related to
both the distance problem and algebraic problem.

Therefore, it is of first importance to state the proof in this paper. We expect to see
more applications of it on algebraic combinatorics and other combinatorial problems.

Theorem 3.1. Suppose the sum of several roots of unity is located on the unit circle,
then it is a root of unity.

Proof. To understand the key of the whole proof, we need first to state a lemma.

Lemma 3.2. (Kronecker) If all the conjugate elements of an algebraic integer are lo-
cated within the unit circle, then they are all roots of unity.

One should note in particular that if all the conjugate elements are on the unit cir-
cle, the conclusion still holds.

Proof. This is a purely combinatorial proof. Suppose α is an algebraic integer with all
the n conjugate elements α(i) (including itself). Then

f1(x) =
n∏

i=1

(x− α(i))

must be a irreducible polynomial with integer coefficient. Suppose the contrary of the
assumption, if α is not a root of unity. One has for any two different integer h < k,

αh ̸= αk
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. This means that the two sets
∪n

i=1{α(i)h} and
∪n

i=1{α(i)k} can not be identical. Oth-
erwise we can find a snake of the label of length no more then n which gives out the
identity

αht

= αkt

where t is the length of the snake. One should note that we can safely forget about
the special case where for some i and j, α(i)=α(j) because that case could be easily
reduced to the general case where all conjugate elements are different with each other.
That means α is a root of unity, contrary to our supposition.

Therefore we get two different sets which means the series of polynomials fh(x) =∏n
i=1(x − α(i)h) has no identical terms in the sense of polynomials. But these poly-

nomials are all with integer coefficients from the number theoretic view. On the other
hand, all the absolute values of the coefficients of them are bounded by nwhich is fixed
since by our original assumption, |α(i)| are all bounded by 1.

Combine these two aspects we immediately find the contradiction: the number of pos-
sible choices of all the different monomial polynomials of degree n with integer coef-
ficients which are bounded by n in its absolute value is no more than (2n+ 1)n, while
on the other hand, there are infinitely many different polynomials in the series {fh(x)}.
This is a contradiction and we conclude here that α is a root of certainty.

Now we come back to the proof of the theorem. Without loss of certainty, we
may assume that these roots of certainty are ζhn where h belongs to a subset of [n]
where ζn is a primitive root of unity of degree n. Let η =

∑
h ζ

h
n , by the assumption

|η| = 1,i.e.|η|2 = 1.

By this quadratic method we can calculate with a polynomial:

(
∑
h

ζhn)(
∑
h

ζ−h
n ) = 1

In view of mod(xn − 1) we can see the following function as a polynomial of x with
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degree less than n which has one of its root ζn.

f(x) = (
∑
h

ζhn)(
∑
h

ζ−h
n )− 1

From the view of number theory we know that f(x) is divisible by the cyclotomic
polynomial of degree φ(n), or say, ζmn where g.c.d.(n,m) = 1 are root of f(x).
Now we conclude by the lemma. For any g ∈ Gal(Q(ζn)/Q), one has

g(η) =
∑
h

g(ζn)
h

while we have known from the discussion above that g(ζn) is a root of the f(x).

This implies that |g(η)|2 = 1 for any g ∈ Gal(Q(ζn)/Q), we have then for any conju-
gate element of η, it will locates on the unit circle.

Note that η is an algebraic integer and it meets all the conditions of the lemma, hence
it must be a root of unity.

3.2 A Conjeture Transformed into Problems on the Unit Circle
A combinatorial problem naturally comes out when we do some ’crystallization’

for a smooth curve or a continuous curve. This method is helpful for the famous dis-
cussion on the relation with area and the length, as well as other metric structure.

Usually people will use Fourier analysis when the corresponding problem of the dis-
tance that varies in a closed curve. Then the ’crystallization’, or the approximation of
the curve by a series of unit length polygons will be in the place when we try to tackle
on the other hand.

We call it a problem on the unit circle since all the sides of the polygons can be moved to
be a point on the unit circle. Then for the problem involved with distance, the quadrat-
ic method is the first one we would remind ourselves and sometimes it indeed works
efficiently.
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The problem stated here was totally posed by the author from a discussion of a proof
in curve-shortening and mean curvature flow. In the page 19 of the paper[14], the au-
thor Mooney.Connor mentioned an important property without proof that ’At a spatial
minimum, we must have d/ψ ≤ 1 , where equality holds if and only if our curve is a
circle.’ where d is the length of chord between two points on a closed curve and ψ is
that of a circle with the same perimeter L.

At first looking, this problem seems obvious to be true. However, we can not find
effective calculation to prove it. In fact, the problem considered is a kind of Lp average
geometric inequality, particularly for p = 1. After our serious statement, we can even
tackle a stronger result where p = 2. Thanks to the quadratic method and combinato-
rial calculation, this stronger version is even easier to handle with. One should think
about this problem from the following statement, which is more general than that in
the paper of Mooney.

Conjecture 3.1. Suppose C is any continuous closed curve in the Euclidean space R2

while C has a fixed perimeter L. Fix a real number l which is smaller then L, then we
will have the following inequality

(
1

L

∫ L

0

|X(s+ l)−X(s)|2ds)1/2 ≤ L

π
sin(

πl

L
)

.
where X(s) is a parameterization of the curve and s is the famous parameter of curve
length.

Now we try to see the meaning of this conjecture. The right hand side of this
inequality is nothing but the value of the left hand side when C is a circle. And the left
hand side is the L2 average of the chord length over the whole curve. Due to the fact
that L2 average is always no smaller than L1 average, one can state that if we solve this
conjecture finally, the problem from Mooney’s paper would be a weaker conclusion.

Then we state here the geometric meaning of this inequality. In Mooney’s paper, as
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one can call ψ as the extrinsic distance between two points on the closed curve of the
same length with the same intrinsic distance l between points. Such comparison could
be read from at least two points of view: the geometric one and the combinatorial one.

As for the geometric aspect, this is a classical version of the comparison between two
different important metrics in a manifold. The exterior distance is in the space where
the manifold itself is embedded. And the interior distance is independent of the space,
which is related only to the geometry of the manifold itself. Any inequality between
these two different distances would be interesting for a geometer.

On the other hand, it is important to see it from a combinatorial view. Although the
’best curve’ can be understood totally through an analytic way, such as obtaining sev-
eral inequalities between derivatives and quadratic terms, sometimes it is also related
to the ’best construction’ in the combinatorial meaning, as well as the practical method
to solve the problem itself.

The author has obtained one result on this conjecture independently, which could be
called a partial proof of the conjeture. And the result followed is a local result while
the conjeture it self can be seen as a global result.

Theorem 3.3. Denote by c(s) = maxcos<T (s),T (s+t(s))>>0 {t(s)} and c = mins∈[0,L] c(s).
Then for any l < c, the conclusion of the conjecture is true. Here< T (s), T (s+t(s)) >

denotes the angle between the two tangent vectors atX(s) andX(s+t(s)) respectively.

Proof. This is mainly by the combinatorial and quadratic method.

Here we give a sketch of the proof which consists several important steps.

First of all, one can approximate the closed curve by a polygon whose side has the
same length. We should prove the uniformity of such approximation due to compact
property of the closed curve. This kind uniformity includes the aspect in distance be-
tween two points on the curve, and the ’label’ distance between each vertex which can
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be seen as the intrinsic distance.

The second step is suppose the polygon has length of 1 for each side. And the number
of the vertices of the polygon,n, is a prime number. This is reasonable because without
loss of certainty, as n goes to infinity, we can assume any number theoretical property
of it as far as this property can be met by infinitely many number. In this case, prime
numbers are infinite. And we can suppose any length of the polygon since the problem
does not change after any dilation of the curve by the center of the origin.

The third step is to look up the problem on the unit circle, and we should do the
’translation’ from the original problem to this unit circle problem. The chord length is
translated into the modulus of the sum of the complex numbers on the unit circle with
increasing label. and the curve length is translated into the difference of the label since
each complex number here is of modulus 1.

The fourth step is to do concrete calculation and apply Jensen inequality with restric-
tion of the angles difference which would be translated into the continuous version that
our result is only a local result, which gives out the conclusion only when the chosen
two points are close enough, such that l < c where c is translated into a combinatorial
restriction in our unit circle problem.

The important points that this method really works lie in the fact

|
j+m∑
k=j+1

eixk |2

=

j+m∑
k=j+1

eixk

j+m∑
k=j+1

e−ixk

=
∑
(k,k′)

cos(xk − x′k)

which means we have translated the L2 average of chord length (continuous version)
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into L1 average of cosine of angles (discrete version)!

On the other hand, through a combinatorial point of view, the average of cosine of
xk − x′k can be precisely estimated. The method here is to regroup them according to
k − k′.

For example by a series of Jensen inequality∑
k

cos(xk+1 − xk) ≤ n cos(
2π

n
)(m− 1)

∑
k

cos(xk+2 − xk) ≤ n cos(
4π

n
)(m− 2)

· · ·∑
k

cos(xk+m−1 − xk) ≤ n cos(
2(m− 1)π

n
)(m− (m− 1))

since one has rigorous relation thanks to the fact that we have already chosen n to
be a prime number. ∑

(xk+t − xk) = 2πt

However it is interesting to note that in the Euclidean space with dimension more than
3, this method does not work easily since the rigorous identity would be replaced by
inequality and as t becomes large, the direction of the inequality would change mys-
teriously. However when t = 1 it is still workable and is related to the beautiful knot
theory and combinatorial geometry. For the sake of the interested readers, please refer
to the following more general conjecture and another theorem obtained by the author.

The last step is to sum up the inequality to get the inequality with left hand side∑
(k,k′) cos(xk − x′k) and then translated back to the continuous version. We will final-

ly find that everything is perfectly done except that our result is only a local one while
the conjecture needs a global estimate. So the problem is still there.
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Now we should state the general conjecture which is far from understood and
proof. But it should be a real object of our studies.

Conjecture 3.2. Suppose C is any continuous closed curve in the Euclidean space Rn

while C has a fixed perimeter L. Fix a real number l which is smaller then L, then the
following function of curves

(
1

L

∫ L

0

|X(s+ l)−X(s)|pds)1/p

attains its maximum value only when C is a circle in a plane if p = 2 and an ellipse in
a plane if p > 2

where X(s) is a parameterization of the curve and s is the famous parameter of curve
length.

Now it is time to see the result mentioned above.

Theorem 3.4. The total curvature of a closed C2 space curve is no less than 2π.

Proof. If we do Gauss mapping and move the tangent vector of the close curve to
the point on the sphere, it is easy to transform this theorem into the following result
which the author called the ’traveller’s theorem’. In fact, since the curve is closed, the
average of these corresponding points on the sphere should be zero vector, and if the
total curvature is less than 2π, it is obvious that the curve consisted by all the points
on the sphere has length less than 2π. All we should prove is that this curve must be
contained in a hemisphere which is contradictory to the average vector should be zeros
vector. So we have the following interesting theorem and we conclude here for this
important theorem.

Theorem 3.5. If a traveller has travelled to many places on the world and the total
length is less than 2π times the radius of the earth, then one can conclude that he has
always been in a hemisphere.
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Proof. Fix any point P on the trace. Let Q be another point on the trace such that the
curve segments Γ1 = PQ and Γ2 = QP have equal length and Γ = Γ1 + Γ2. Rotate
the sphere such that P andQ are located symmetrically to the north poleN (also fixed
at first).So we have

P = Q = N

or P and Q have the same latitude, while have longitudes differing by angle π. If the
trace Γ does not intersect the equator, we are already done.

If Γ intersects the equator at some point, then we can uniquely construct the curve
Γ3 such that it is symmetric to Γ1 with respect to the north pole.

Now we conclude the proof by stating the fact that Γ3 and Γ1 have the same length,
while the closed curve Γ′ = Γ1+Γ3 has the same length with Γ. Furthermore, there is
a pair of antipodal equatorial points on Γ′. Join these points by geodesics on the sphere,
we see that Γ′ has length at least 2π which is a contradiction.

Remark 3.1. We hope by the above result, one can finally find the way to tackle the
general conjecture. It is a bit strange that the tuition tells us the problem is even more
obvious in high dimension, while the effective calculation is hard to be applied and the
inequalities are very difficult to control. However, we expect that this problem will be
solved by someone who combines Fourier analysis and some important conclusions
from combinatorics.
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Chapter 4

Rational Spherical Design

This work has already been introduced in the first chapter. Here we study more
details of it and show some important results related to it. A complete proof of each
part will be recently published by Xiang.Z.Q and the author.

However, the interest to the existence of rational spherical t-design was originated in
a much simpler problem, on rational design on the interval [−1, 1] where the equation
reads

1

|X|
∑
x∈X

xi =

0, i is odd,
1

i+1
, i is even,

for 0 ≤ i ≤ t.

If we consider only the antipodal solution (i.e.X = −X) for the t = 2e case, especially
in the special form

1

|X|
∑
x∈X

xi =
1

i+ 1

for 0 ≤ i ≤ t.

4.1 Geometric Designs

A strictly positive measure on a topological space is a measure under which ev-
ery non-empty open subset has strictly positive measure. A probability measure is a
measure with total measure 1.

Let M be a topological space equipped with a strictly positive probability measure
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µ on it, f be a continuous µ-integrable function into Rp, c be a vector in Rp. A subset
∆ of M is an f, c-design, if it is a topological space (not necessarily to be topological
subspace of M ) equipped with a strictly positive probability measure δ, such that f |∆
is a continuous δ-integrable function and∫

∆

fdδ = c.

An f -design is an f, c-design ∆ where c is the centroid of f , namely∫
∆

fdδ =

∫
M

fdµ.

Lemma 4.1. For a finite family of f -designs, their topological union is also an f -
design.

Proof.
δ(S) =

1

|Z|
∑
z∈Z

δz(S ∩∆z)

Theorem 4.2. Suppose M is path-connected. Let c ∈ relint(conv(Imagef)). Then
for sufficiently large n, there exists a f, c-design of size n.

This result was obtained in the paper of Seymour and Zaslavsky[15], where discus-
sion is made on the most general case.

Lemma 4.3. Let c ∈ relint(conv(Imagef))[15], and S be a finite subset of M e-
quipped with a strictly positive probability measure s. For sufficiently large n, there
exists a finite f, c-design of size n containing S. In particular, f -designs give a cover
of M .

Proof. Let n be a sufficiently integer, and

c′ = c− |S|
n

(c−
∫
S

fds) ∈ relint(conv(Imagef)).

There exists an f, c′-design ∆. Hence ∆ ∪ S is an f, c-design.
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Lemma 4.4. Let c ∈ relint(conv(Imagef)). If f, c-designs give a cover of M , then
every dense subset of M contains a finite f, c-design. In particular, if M is path-
connected, then every dense subset of M contains a finite f -design.

Proof. Suppose Y is a dense subset of M . Pick a set Z consisting of dim(Imagef)

points, such that f(Z) is a basis of (Imagef). For each z ∈ Z, let ∆z be a finite
f, c-design containing point z. Their topological union ∆ is also a finite f, c-design.

Since Y is dense in M , for every x ∈ ∆, there exists a sequence xi in Y whose limit is
x. Take ∆i = {xi | x ∈ ∆}. For sufficiently large i, f(∆i) are linearly independent.
Therefore, for sufficiently large i, we can find a strictly positive probability measure δi
on ∆i, which makes ∆i an f, c-design.

Theorem 4.5. If M is path-connected, then every dense subset of M contains a finite
f -design.

Corollary 4.6. There exists rational weight rational spherical designs.

Corollary 4.7. There exists rational weight rational interval designs.

Lemma 4.8. Let S be a countable dense subset of real interval [0, 1], and T be a dense
subset of [0, 1]. Then, there exists a continuous f : [0, 1]→ [0, 1] where f(S) ⊆ T .

Corollary 4.9. LetC be a simple curve in a topological space and S be a dense subset
with respect to the subtopology induced by C. The curve C can be parameterised as
f : [0, 1]→ C with f(Q) ⊂ S.

Proof. Let D be a dense subset of a topological space M . The topological space M
is p-D-path-connected if every p points can be covered by a simple path, whose inter-
section with D is dense with respect to the subtopology induced by D.

Theorem 4.10. Let T be a topological space equipped with a strictly positive probabil-
ity measure τ , and S be a dense subset of T . Suppose for every c such that f, c-designs
in T exist, S contains a regular f, c-design in T .
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Proof. Choose T = [0, 1].

LetD be a dense subset ofM , and suppose furthermore thatM is a p-M -path-connected
topological space. Then, for c such that f, c-designs in M exist, the dense subset D
contains a regular f, c-design in M .

Lemma 4.11. For a finite family of disjoint regular F-designs, their topological union
is also a regular F-design.

4.2 From Multi-Design to Design
Historically Hilbert-Kamke Problem is one of several meaningful generalizations

of the Waring Problem in Number theory : For given Nk ∈ N, solve the system of
diophantine equations

n∑
i=1

xki = Nk

where 1 ≤ k ≤ t, xki are non-negative integers.

Posed in 1900 by D. Hilbert,the problem was eventually solved by E. Kamke who
proved the existence of the solution under some very ordinary compatible conditions
for this Diophantine equation system. Later, the asymptotic formula for the number
of solutions of this system using the Vinogradov method for estimating trigonometric
sums was gained under the spirit of Vinogradov.

In fact,some useful results among them are accessible to us, which means to blow up
the multi-set solution into the form we are looking for, i.e. a real set instead of a multi-
set, one needs to get somehow explicit asymptotic formula for the number of solutions
in terms of the number of variables in the equation. For the solution with multiplicity
at least 2 at at least one point, one sees it is actually a solution to the equation with
variables less than the original number, say n. Fortunately, one can find a classical
result due to Arkhipov.

First we state the main theorem of this section.
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Theorem 4.12. cn,k is a constant which only depends on n, k and e. If for infinitely
many n, Equation(1)has a solution, then there is a solution for Equation(2).

n∑
i=1

xki = cn,k, 0 ≤ k ≤ t

0 < xi < 1, 1 ≤ i ≤ n

xi ∈ Q, 1 ≤ i ≤ n (4–1)

n∑
i=1

xki = cn,k, 0 ≤ k ≤ t

0 < xi < 1, 1 ≤ i ≤ n

xi ∈ Q, 1 ≤ i ≤ n

xi ̸= xj, 1 ≤ i < j ≤ n (4–2)

Before proving the main theorem, one needs a routine rational-integral transfor-
mation in order to use the main result below from Arkhipov.

Theorem 4.13. We state here the Hilbert-Kamke problem in number theory.

Hilbert-Kamke problem[16]

x1 + x2 + · · ·+ xs = N1

x21 + x22 + · · ·+ x2s = N2

· · ·

xk1 + xk2 + · · ·+ xks = Nk. (4–3)

However there are obviously some necessary conditions:

N
j/k
k ≤ Nj ≤ s1−j/kN

j/k
k (1 ≤ j ≤ k) (4–4)
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for the system of equations (3) to be solvable.

Denote by J the number of solutions of equation (1) in positive integers. Let s0 =

min{k222k−1, 3k22k − k} and P = N
1/k
k . Then for s ≥ k2(4 log k + 2 log log k + 9),

the following asymptotic formula is valid:

J = J(N1, . . . , Nk) = σγP s−k(k+1)/2 + θk30k
3

P s−k(k+1)/2−1/30(2+log k).

If the necessary conditions (4) hold and s ≥ s0, then σ ≥ σ0 > 0 and γ ≥ γ0 > 0,
then

J ∼ P s−k(k+1)/2.

where the common notations among analytic number-theorists are defined as fol-
lows, while they are not essentially related to our main theorem:

σ =
∞∑

q1=1

· · ·
∞∑

qk=1

∑
0≤a1<q1
(a1,q1)=1

· · ·
∑

0≤ak<qk
(ak,qk)=1

q−sV se−2πiA,

γ =

∫ ∞

−∞
· · ·
∫ ∞

−∞
W se−2πiBdβ1 · · · dβs,

q = q1 · · · qk

V =

q∑
x=1

e2πi(a1x/q1+···+akx
k/qk)

A =
a1N1

q1
+ · · ·+ akNk

qk

W =

∫ 1

0

e2πi(β1x+···+βkx
k)dx

B =
β1N1

P
+ · · ·+ βkNk

P
.

Arkhipov’s proof[17] also works if we restrict the integral variables xj ∈ [1, Y ].
The final result turns out to be:

J(Y ) ∼ Y s−k(k+1)/2.
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More precisely, one has the following proposition

Proposition 4.14. For large Y , denote by J(Y ) the number of solutions of equation
(3) in positive integers with xj ∈ [1, Y ](1 ≤ j ≤ k). Then for s ≥ s0, the following
asymptotic formula is valid:

J(Y ) = σγ′Y s−k(k+1)/2 + θk30k
3

Y s−k(k+1)/2−1/30(2+log k).

Here θ and the singular series σ are as above, while the new singular integral γ′

is defined as

γ′ =

∫ ∞

−∞
· · ·
∫ ∞

−∞
W se−2πiB′

dβ1 · · · dβs,

where
B′ = β1s/2 + · · ·+ βksY

k−1/(k + 1).

Further more, γ′ ≥ γ′0 > 0.

Having this theorem, we now consider the following special case in the theorem,
which is just our problem:

x1 + x2 + · · ·+ xs = N1

x21 + x22 + · · ·+ x2s = sY 2/3

· · ·

xk1 + xk2 + · · ·+ xks = sY k/(k + 1). (4–5)

Arkhipov’s proof also works if we restrict the integral variables xj ∈ [1, Y ]. The
final result turns out to be:

J(Y ) ∼ Y s−k(k+1)/2.

Proposition 4.15. For large enough Y , Denote by J ′(Y ) the number of solutions of
equation (5) in positive integers with xj ∈ [1, Y ](1 ≤ j ≤ k) and xi ̸= xj(i ̸= j).
Then for s ≥ s0 + 2, the following holds:

J ′(Y )≫ Y s−k(k+1)/2.
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Proof. One easily sees the total number of solutions J ′′(Y ) with xi = xj for some
i ̸= j is

≤
(
s

2

) Y∑
x=1

Js−2(
sY

2
− 2x, . . . ,

sY k

k + 1
− 2xk) ≤

(
s

2

)
Y k30k

3

Y s−2−k(k+1)/2

by the asymptotic formula. So

J ′(Y ) ≥ J(Y )− J ′′(Y )≫ Y s−k(k+1)/2.

Now we have come to the final proof of the main theorem.

Proof. of the main theorem. Suppose Equation (1) has a solution. Let Y be a multi-
ple of each denominator in the rational number xi, we get a solution to the system of
diophantine equations:

n∑
i=1

xki = cn,kY
k, 0 ≤ k ≤ t

0 < xi < Y, 1 ≤ i ≤ n

xi ∈ Z, 1 ≤ i ≤ n.

Then one applied the above result to get the integer solution with mutually different
property. After we divide the integer solution by the denominator, again we obtain a
rational solution of Equation (2), which has mutually different rational coordinates.
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Chapter 5

Far Beyond the Unit Circle

In this section I will state a breaktaking studying program starting from one con-
crete problem.
We begin by considering the zeros of the following polynomial

f(x) =
xn+1 − 1

x− 1

.

One can easily find out that the zeros of it are distributed on the unit circle by equidis-
tance. And by the old theorem, we know that all the roots of the derivative of f(x) are
also located within the unit circle. But how on the earth is the distribution? Is there an
obvious pattern, even describable pattern of its distribution?

In fact, this question is more clear to ask when we consider even more: How about
the zeros of the second order derivative and the higher order ones?

This time I drew all the zeros of each order derivative of f(x) and the first few ones
met the author’s expectation. The following picture reveals the distribution of zeros of
the first 6 consecutive derivatives (including f(x) itself) when n = 45.

There is clearly an effect of draging all the points to the right half plane. We call
it ’effect of derivative’. In fact, we have a more precise result in the discrete version to
understand this effect:

Theorem 5.1. If all the zeros of a polynomial f(x) are located on a line ℜz = a, then
the finite difference of it with step length h will have all the zeros located on the line
ℜz = a− h/2.

第 35页共 47页



SEVERAL PROBLEMS AND METHODS IN ALGEBRAIC COMBINATORICS

Figure 5–1 zeros of the first 6 sheafs

Proof. We use again the quadratic method. suppose

f(x) =
n∏

k=1

(x− a− ibk)

then we have the finite difference of it with step h is

fh(x) =
n∏

k=1

(x+ h− a− ibk)−
n∏

k=1

(x− a− ibk)

.

Suppose ξ = µ+ iτ is a root of fh(x),

n∏
k=1

(µ+ iτ + h− a− ibk) =
n∏

k=1

(µ+ iτ − a− ibk)

.
Taking modulus square on each side, one has the identity

n∏
k=1

((µ+ h− a)2 + (τ − bk)2) =
n∏

k=1

((µ− a)2 + (τ − bk)2)
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which from the obvious inequalities implies that

|µ+ h− a| = |µ− a|

hence
µ = a− h/2

Now we are glad to see the whole pictures on the full zeros, of each derivatives
with order n = 500 and different pixels.

Figure 5–2 1000px

It is mysterious to see the pattern of curves because of the difference of pixels.

However, the distribution itself is the essential thing of our studies. We make a conjec-
ture here that such graph has a limit pattern under some meaningful distance between
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Figure 5–3 1500px

Figure 5–4 2000px
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Figure 5–5 4000px

two pictures. Limit means when n goes to infinity, there is a picture which will be
close enough to the pictures drawn under large enough n.
From the view of algebraic combinatorics, such kind of pattern is very closed to com-
binatorial 2=design because as we observe the picture, each point has always located
at the intersection of two beautiful curves which are imagined by us from connecting
the natural neighbour points.

However, neighbour points are still not defined very well just from observing the pic-
ture. More precise conjecture is to be posed.

From the view of prime number theory, these graphs are even more interesting. Please
compare the following two graphs, which give out the similarity of the pattern of the
two graphs. It would be very surprising to point out what they really are:

The first one is our known picture of roots of all derivatives up to degree of 150, which
is totally algebraic and combinatorial.

第 39页共 47页



SEVERAL PROBLEMS AND METHODS IN ALGEBRAIC COMBINATORICS

While the second one is nothing but the famous picture of the distribution of primes
numbers on the spiral obeying basic equations in the plane.

Figure 5–6 basic zeros picture

Figure 5–7 primes on the spiral

The author also stuied the corresponding picture of the polynomial whose zeros

第 40页共 47页



SEVERAL PROBLEMS AND METHODS IN ALGEBRAIC COMBINATORICS

are located with equidistance on the unit square and unit hexagone with high degree.
The pictures are also surprisingly beautiful and the author expects to get some remark-
able properties of it. Please see these two patterns as belowed.

Figure 5–8 square1

Remark 5.1. It is important to note this remarkable phenomenon of higher order
derivatives. In fact, only that of the exponential truncation functions are well studied
till now. In that case, the famous result is by Szegő in 1924 which is stated in the
introduction part. From this view, one would like to conclude that the hidden power of
combinatorics, behind these deep problems, are really infinite.
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Figure 5–9 square2

Figure 5–10 hexagon
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Conclusion

In this paper we have stated several important theorems on the existence of Hadamard
matrices and the so called rational spherical design and rational interval design. We
have studied some combinatorial aspects of the zeroes of all order derivatives of a poly-
nomial. An enumerative problem has been totally solved about the three order magic
square. An interesting conjecture on the root of unity posed by Mu.X.S is proved by
combinatorial facts. Besides, the most important conjecture posed by the author on
the comparison inequality of two different metrics are also locally solved by the au-
thor using purely combinatorial method. In solving these problems, it is remarkable
that sometimes the calculation by quadratic terms are more helpful. These problems
themselves and the proofs are related by many geometric common views, for example,
curves play the main role in the whole paper. From this view, one would like to con-
clude that the hidden power of combinatorics, behind these deep problems, are really
infinite.
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