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Regular shock reflection by wedges for potential flow

Estimation of shock reflection by large-angle wedges for

self-similar potential flow near sonic arc

ABSTRACT

Shock reflection problem is a fundamental and important issue both in theoretical

analysis and in applications. It is also a building block for general study of multi-

dimensional conservation laws. In this thesis we start with surveying various shock

reflection-diffraction patterns, then formulate the regular reflection of shock by wedge

for potential flow as a free boundary nonlinear problem of mixed-composite hyperbolic-

elliptic type. Our task in this thesis is to give a direct and simple proof for the general

estimate and the regularity results for the global solution obtained by Chen and Feld-

man in [9][10]. More precisely, it is C1,1-regularity at the point where the pseudo-sonic

circle meets the reflected shock and belongs to the C2,α-regularity up to the pseudo-

sonic circle in the pseudo-subsonic region. The main idea in the proof is to develop the

technique of Maximum principle to handle free boundary problems. At the end of the

thesis, we would also address several open questions in general shock reflection prob-

lem.

Keywords: Shock regular reflection, Potential flow, free boundary problem, regu-

larity
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Chapter 1 Introduction

1.1 Description of shock reflection

Shock waves may occur in many physical or natural situations, for example, solar winds

of sun can generate bow shocks(due to a planet’s magnetosphere interacting with a stel-

lar wind[15][16]), see Fig 1.1 (cited from Wikipedia), aircraft can generate supersonic

or almost sonic shocks[17], see Fig 1.2 (cited from Wikipedia) and various explosions

also generate blast waves[18], see Fig 1.3 (cite from Wikipedia). When a shock hits d-

ifferent types obstacles, shock reflection-diffraction phenomena may occur. Moreover,

shock reflection-diffraction by a flat-boundary is one of the most fundamental multi-

dimensional problems in mathematical fluid dynamics. When a plane shock hits the

wedge and heads on, a self-similar shock of reflection-diffraction moves outward as

the original shock waves forward in time. The solutions of this problem is showed to

be fundamental for the mathematical theory of multidimensional hyperbolic systems of

conservation laws which is still largely incompletely.

Figure 1.1 bow shock Figure 1.2 aircraft Figure 1.3 blast wave

The complexity of reflection-diffraction configurations is first proposed by Ernst

Mach[1] in nineteenth century, in which he addressed two kinds of pattern may occur

if shock waves hits a wedge: regular reflection (simpler figuration, occur when wedge

angle is relatively large) and Mach reflection (complicated figuration). Then due to

the importance in wide application, the problem attracted many scientists’ attention.

However, it was unlucky that this problem remained dormant until mid twentyth cen-

tury when von Neumann, Friedrichs, Bathe, and many experimental, computational,
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and asymptotic analysts began extensive and deep research into almost every aspects of

shock reflection-diffraction phenomena. See von Neumann[2][3] and Ben-Dor[4]; also

see [19][20][21][22]. A few decades ago, it had been showed the complete situation is

much more complicated than Mach originally observed, for example, the Mach reflec-

tion can be further divided into more sub-patterns (such as, irregular Mach reflection),

and various other patterns of shock reflection-diffraction may also be produced like the

von Neumann reflection and the Guderley reflection see[5][6][7][8]. Lately in 2005,

Chen and Feldman [9][10] obtained the first global existence theory of shock reflection

configurations for potential flow with the wedge angle θw is large (close to 90 degree).

For stability, they also proved that constructed solution converges to the unique solu-

tion of the normal reflection when θw tends to π
2
. In 2009, Bae, Chen and Feldman[11]

showed the regularity of solutions to regular shock reflection for potential flow and

argued the transition of the different patterns of shock reflection configurations.

Figure 1.4 Regular Reflection-Diffraction Configuration

But there are still many essential issues need to be studied before fully understand-

ing the phenomena of shock reflection, which includes the following two problems.

(1) The dependence of the reflection patterns upon some physical parameters, for

example the wedge angle θw. Various criteria and conjectures have been proposed in

determining the existence of configurations for the patterns, for examples,

(1.1) von Neumann’s detachment conjecture[23]: Regular reflection configura-

tion may exist globally whenever the two-shock configuration exists locally around the

2
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incident point P0 (see Fig 1.4, cite from[10]). More specifically, there is a detachment

angle θd so that when θw ∈ (θd,
π
2
) the global regular reflection exists and it will transit

to Mach reflection when θw ∈ (0, θd).

(1.2) von Neumann’s sonic conjecture[23]: For θw ∈ (θd,
π
2
), the regular reflection

configuration may still not be stable. But there is a sonic angle θsonic satisfying 0 < θd <

θsonic <
π
2

such that a stable regular reflection exists when θw ∈ (θsonic,
π
2
).

We can note that in fact state (2) behind the shock only exists when θw ∈ (θd,
π
2
)

(this is the motivation of detachment conjecture). Moreover, for each θw ∈ (θd,
π
2
)

there exists two possible state (2) (weak sense and strong sense, with ρweak2 < ρstrong2 ).

We always choose weak state (2) since Elling (2011) proved that for strong state (2)

the global regular reflection solution fails to exist. Besides, the motivation of sonic

conjecture is based on the following fact: there will exist θsonic ∈ (θd,
π
2
) such that:

state (2) is supersonic at P0 for θw ∈ (θsonic,
π
2
), while state (2) is subsonic at P0 for

θw ∈ (θd, θsonic). If it is supersonic, the propagation speeds are finite and the state (2)

is completely determined by the local information: state (1), state (0), and the location

of the point P0. Fairly to say, the disturbance information at the corner point P3 (see

Fig 1.4) cannot travel towards the incident point P0. However, if it is subsonic the

disturbance information can reach P0 and potentially altering the reflection-diffraction

type. For simplicity, we study the case that the regular reflection configuration is stable

and converges to the uniquely determined normal reflection while θw → π
2
, i.e., the

reflection point P0 is supersonic.

It is clear to see the sonic conjecture is stronger than the detachment one. However,

Sheng-Yin [12] point out the regime between the angle θd and θsonic is very narrow and

can be neglected. For simplicity we assume θw ∈ (θsonic,
π
2
) in the following of this

thesis.

(2) Transition criteria between different patterns of shock reflection-diffraction con-

figurations.

One should note that physical and numerical experiments are hampered here since

the dissipation or physical viscosity smear the shock, meanwhile the boundary layers

interact with the reflection patterns and cause spurious Mach steams[1]. With notic-

3
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ing this fact, it seems that an ideal way to analyse the full shock reflection patterns,

especially the transition criteria, is still by a rigorous mathematical analysis.

1.2 Overview of my work

In this thesis, we first state the fundamental issues behind the shock reflection phenome-

na following with rigorously formulated model. Especially, we explain the ideas behind

different pattern-transition criteria. Besides, we point out the similarity and difference

between potential flow and Euler flow for estimation near sonic arc.

Second we systematically itemize the results obtained by Chen, Feldman[9][10].

Suppose a stable global solution exists, we specifically describe boundary conditions

for the formulated free boundary problem in three different coordinates. Moreover, we

point out the idea of introducing ellipticity cutoff with different choice of constant.

The distinguished work we manage to do is to give a simple and direct proof for

ϕ ≥ ϕ2, ψ ≤ Cx2, ψ ≤ 2
3(γ+1)

x2, C1,1-regularity up to sonic arc and C2,α-regularity

up to the sonic arc away from shock point P1 by developed Maximum principle and

scaling techniques.

1.3 Outline of this thesis

In Chapter 2, we first formulate the shock reflection problem as a nonlinear initial-

boundary value problem by introducing potential flow and then adopt self-similarity of

solution to reformulate the problem into a boundary value problem in the unbounded

domain. Noting the boundary conditions of the subsonic domain are overdetermined[9]

for the elliptic equation since the conditions on the rest boundaries are prescribed ex-

cept the sonic arc, we thus transform the problem to free boundary problem and employ

the free boundary techniques. In chapter 3, we present the unique solution of normal

reflection when the wedge angle is π/2 and describe a global theory for regular re-

flection structure for potential flow obtained by Chen, Feldman [9][10] and Bea, Chen,

Feldman[11]. In Chapter 4, we concentrate on the estimation near the sonic arc, specif-

ically we will give a new but simple proof by Maximum principle for some classical

4
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results obtained in [9][10]. We will primarily talk and give direct proofs about the high-

er regularity near sonic arc away from shock in Chapter 5. At the end of this thesis, we

conclude this paper and point out some works that remains to be open.

5
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Chapter 2 Mathematical formulation of shock reflection problem

In this chapter, I formulate the shock reflection problem by wedge when the wedge

angle is suitably large. The full Euler equation for compressible fluids in R3
+ := R+ ×

R2, where t ∈ R+ and x ∈ R2, consist of the conservation law of mass, momentum and

energy of the form:
∂tρ+∇x · (ρv) = 0,

∂t(ρv) +∇x · (ρv⊗ v) +∇ρ = 0,

∂t(
1
2
ρ|v|2 + ρe) +∇x · ((1

2
ρ|v|2 + ρe+ p)v) = 0,

(2-1)

where v = (u, v) is the fluid velocity, ρ the density, p the pressure, and e the internal

energy. Note there are other two important thermodynamic variables, temperature θ and

energy S. Choosing (ρ, S) as the independent variables, then the constitutive connec-

tion can be written as (p, θ, e) = (p(ρ, S), θ(ρ, S), e(ρ, S)) governed by the relation

θdS = de− p

ρ2
dρ.

When a flow is potential, that is, there is a velocity potential Φ such that

v = ∇xΦ

Then the Euler equations for the flow consist of conservation law of mass and the

Bernoulli law for the density ρ and the velocity potential Φ:

∂tρ+ divX(ρ∇xΦ) = 0, (conservation of mass)

∂tΦ + 1
2
|∇xΦ|2 + i(ρ) = B0, (Bernoulli’s law)

(2-2)

6
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where B0 is the Bernoulli constant determined by the incoming flow and(or) boundary

conditions, and

i′(ρ) =
p′(ρ)

ρ
=
c2(ρ)

ρ

with c(ρ) being the sound speed. For polytropic gas, p(ρ) = κργ, c2(ρ) = κγργ−1, γ >

1. Without loss of generality, we choose κ = γ−1
γ

such that

i(ρ) = ργ−1, c2(ρ) = (γ − 1)ργ−1 (2-3)

which can be achived by the scaling:(x, t, B0)→ (αx, α2t, α−2B0), α2 = κγ
γ−1

.

Besides, the second equation in (2-2) can be written as

ρ(DΦ) = i−1(B0 − (∂tΦ +
1

2
|∇xΦ|2)).

For a steady solution Φ = ϕ(x), i.e., ∂tΦ = 0, we can further obtain the famous steady

potential flow equation in aerodynamics:

∇x · (ρ(∇xΦ)∇xΦ) = 0 (2-4)

2.1 Initial-boundary value problem

When a plane shock in the (x,t)-coordinates, x = (x1, x2) ∈ R2, with left state (ρ,∇xΦ) =

(ρ1, u1, 0) and right state (ρ0, 0, 0), u1 > 0, ρ0 < ρ1, hits a symmetric wedge

W := {(x1, x2) : |x2| < x1 tan θw, x1 > 0}

head on, it experiences a reflection-diffraction process, where θw ∈ (0, π
2
) is the wedge

half-angle. Then the Bernoulli law (2) becomes

∂tΦ +
1

2
|∇xΦ|2 + i(ρ) = i(ρ0) (2-5)

This reflection-diffraction problem can be formulated as the following mathematical

problem.

7
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Problem 2.1 (Initial-Boundary Value Problem). Seek a solution of the system of equa-

tions (1) and (2), the initial condition at t = 0:

(ρ,Φ)|t=0 =

(ρ0, 0) for |x2| > x1 tan θw, x1 > 0

(ρ1, u1x1) for x1 < 0

(2-6)

and the slip boundary condition along the wedge boundary ∂W :

∇Φ · υ|∂W = 0 (2-7)

where υ is the exterior unit normal to ∂W (see Fig 2.1).

Figure 2.1 Initial-Boundary Value Problem

2.2 Boundary value problem

Notice that Problem 2.1 is invariant under the self-similar scaling:

(x, t)→ (αx, αt), (ρ,Φ)→ (ρ,Φ/α) for α > 0

Thus, we seek a self-similar solution with the form:

ρ(x, t) = ρ(ξ, η), Φ(x, t) = tφ(ξ, η), for (ξ, η) = x/t.

8
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Let (U, V ) = (u − ξ, v − η) to be the pseudo-velocity, and q =
√
U2 + V 2. Then the

self-similar solutions are governed by the following system:



(ρU)ξ + (ρV )η + 2ρ = 0,

(ρU2 + p)ξ + (ρUV )η + 3ρU = 0,

(ρUV )ξ + (ρV 2 + p)η + 3ρV = 0,

(U(1
2
ρq2 + γp

γ−1
))ξ + (V (1

2
ρq2 + γp

γ−1
))η + 2(1

2
ρq2 + γp

γ−1
) = 0.

(2-8)

We can calculate the eigenvalues of system (2-8):

λ1 = λ2 =
U

V
, λ± =

UV ± c
√
q2 − c2

U2 − c2
,

with the sonic speed c =
√

γp
ρ

.

Remark 2.2. when the potential flow is pseudo-subsonic, i.e., q < c, the eigenvalues

λ± are thus complex and the system consists of two nonlinear equations of hyperbolic-

elliptic mixed type and two transport equations. Therefore, system (2-8) is hyperbolic-

elliptic composite mixed in general.

For the pseudo-potential function ϕ = φ− 1
2
(ξ2+η2), we can calculate it is governed

by the following potential flow equation of second order:

div(ρ(|Dϕ|2, ϕ)Dϕ) + 2ρ(|Dϕ|2, ϕ) = 0 (2-9)

with

ρ(|Dϕ|2, ϕ) = (ργ−1
0 − (γ − 1)(ϕ+

1

2
|Dϕ|2))

1
γ−1 (2-10)

where the divergence div and gradient D are with respect to the self-similar variables

(ξ, η). Then we have

c2 = c2(|Dϕ|2, ϕ, ργ−1
0 ) = ργ−1

0 − (γ − 1)(
1

2
|Dϕ|2 + ϕ) (2-11)

Therefore the equation (2-9) is a nonlinear equation of mixed elliptic-hyperbolic

9
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equation. By Remark 2.2, it is elliptic if and only if

|Dϕ| < c(|Dϕ|2, ϕ, ργ−1
0 ), (2-12)

which is equivalent to

|Dϕ| < c∗(ϕ, ρ0, γ) :=

√
2

γ + 1
(ργ−1

0 − (γ − 1)ϕ) (2-13)

Shocks are discontinuities in the pseudo-velocity Dϕ. That is, if Ω+ and Ω− := Ω\Ω+

are two nonempty open subsets of Ω ⊂ R2 and S := ∂Ω+ ∩Ω is a C1-curve where Dϕ

has a jump, then ϕ ∈ W 1,1
loc ∩ C1(Ω± ∪ S) ∩ C2(Ω±) is a global weak solution of (2-9)

in Ω if and only if ϕ is in W 1,∞
loc (Ω) and satisfies equation (2-9) in Ω± and the continuity

and Rankine-Hugoniot condition on S:

[ϕ]S = 0 continuity condition,

[ρ(|Dϕ|2, ϕ)Dϕ · υ]S = 0 Rankine-Hugoniot jump condition.
(2-14)

Here the continuity of ϕ is followed by the continuity of the tangential derivative of ϕ

across S, which is a direct corollary of irrotionality of the velocity. The discontinuity

S of ∇ϕ is called a shock if ϕ further satisfies the physical entropy condition that

the corresponding density function ρ(|∇ϕ|2, ϕ, ρ0) increases across S in the quasiflow

direction. Chen-Feldman [9] remarked that the Rankine-Hugoniot jump condition with

the continuity condition (2-14) across a shock for (2-9) is also fairly good approximation

to the corresponding Rankine-Hugoniot conditions even for the full Euler equations for

the shock with small strength since the errors are third-order in strength of the shock.

Fix constants ρ1 > ρ0 > 0. The plane incident shock solution in the (x, t)-

coordinates with states (ρ,∇xΦ) = (ρ0, 0, 0) and (ρ1, u1, 0) corresponds to a contin-

uous weak solution ϕ of (2-9) in the self-similar coordinates (ξ, η) with the following

form:

ϕ0(ξ, η) = −1

2
(ξ2 + η2) for ξ > ξ0 (2-15)

10
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ϕ1(ξ, η) = −1

2
(ξ2 + η2) + u1(ξ − ξ0) for ξ > ξ0 (2-16)

respectively, where

u1 = (ρ1 − ρ0)

√
2(ργ−1

1 − ργ−1
0 )

(γ − 1)(ρ2
1 − ρ2

0)
> 0 (2-17)

ξ0 = ρ1

√
2(ργ−1

1 − ργ−1
0 )

(γ − 1)(ρ2
1 − ρ2

0)
=

ρ1u1

ρ1 − ρ0

> 0 (2-18)

are the velocity of state (1) and the location of the incident shock, uniquely determined

by (ρ0, ρ1, γ) with Rankine-Hugoniot jump condition along S, i.e. (2-14). Then P0 =

(ξ0, ξ0 tan θω) in the following Fig 2.2. Since the problem is symmetric with respect to

the axis η = 0, it suffices to consider the problem in the half plane η > 0 outside the

half-wedge

Λ := {ξ < 0, η > 0} ∪ {η > ξ tan θω, ξ > 0}

Then the initial-boundary value problem in the (x, t)-coordinates can be formulated as

the following boundary value problem in the self-similar coordinates (ξ, η).

Problem 2.3 (Boundary Value Problem). (see Fig 2.2) Seek a solution ϕ of equation

(7) in the self-similar domain Λ with the slip boundary condition on ∂Λ:

Dϕ · υ|∂Λ = 0 (2-19)

and the asymptotic boundary condition at infinity:

ϕ→ ϕ̄ :=

ϕ0 for ξ > ξ0, η > ξ tan θω

ϕ1 for ξ < ξ0, η > 0

when ξ2 + η2 →∞ (2-20)

where (2-20) holds in the sense that limR→∞ ||ϕ− ϕ||C(Λ\BR(0)) = 0

It is convinced that the solutions of Problem 2.3 contain all possible patterns of

shock reflection-diffraction configurations as observed in numerical and even physical

11
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Figure 2.2 Regular Reflection

experiments. See[4][5][6][14].

2.3 Free boundary problem

Since ϕ1 does not satisfy the slip boundary condition (2-19), the solution must differ

from ϕ1 in {ξ < ξ0} ∩ Λ and thus a shock diffraction by the wedge occurs. In Chen-

Feldman[9][10] the existence of global solution ϕ with its stability to Problem 2.3 has

been established for potential flow when the wedge angle θω is large and close to π/2,

and the corresponding structure of solution is as follows (see Fig 2.2): The vertical line

is the incident shock S = ξ = ξ0 that hits the wedge at the point P0 = (ξ0, ξ0 tan θω),

and state (0) and state (1) ahead of and behind S are given by ϕ0 and ϕ1 defined in (2-

15) and (2-16), respectively. The solution ϕ and ϕ1 differ within {ξ < ξ0} only in the

domain P0P1P2P3 because of shock diffraction by the wedge vertex, where the curve

P0P1P2 is the reflected shock with the straight segment P0P1. State (2) behind P0P1 is

of the form:

ϕ2(ξ, η) = −1

2
(ξ2 + η2) + u2(ξ − ξ0) + (η − ξ0 tan θω)u2 tan θw (2-21)

which satisfies

Dϕ · υ = 0 on ∂Λ ∩ {ξ > 0};

12
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the constant velocity u2 and the angle between P0P1 and the ξ-axis are determined by

(θω, ρ0, ρ1, γ) from the Rankine-Hugoniot jump condition and the continuity condition

(2-14) for ϕ1 and ϕ2 across P0P1. Moreover, the constant ρ2 of state (2) satisfies ρ2 >

ρ1, and state (2) is pseudo-supersonic at the point P0. In addition, u2 > 0 when θω < π
2
.

The solution ϕ is pseudo-subsonic within the pseudo-sonic circle for state (2) with the

center (u2, u2 tan θω) and radius c2 = ρ
(γ−1)/2
2 > 0 (the sonic speed of state (2)), and

ϕ is pseudo-supersonic outside this circle containing the arc P0P1 in Fig 2.2, so that

ϕ2 is the unique solution in the domain P0P1P4, which is the result as I discussed in

chapter 1.1. Then ϕ differs from ϕ2 in the domain Ω = P1P2P3P4, where the equation

is elliptic. Also we introduce the following notation for various parts of ∂Ω:

Γsonic := ∂Ω ∩ ∂Bc2(u2, u2 tan θω) ≡ P1P4;

Γshock := P1P2;

Γsymm := {η = 0} ∩ ∂Ω ≡ P2P3;

Γwedge := ∂Ω ∩ ∂Λ ≡ P3P4.

Note the boundary conditions on ∂Ω:

ρ(|∇ϕ|2, ϕ)∇ϕ · υ = ρ(|∇ϕ1|2, ϕ1)∇ϕ1 · υ

ϕ = ϕ1

on Γshock; (2-22)

ϕ = ϕ2 on Γsonic; (2-23)

ϕυ = 0 on Γwedge; (2-24)

ϕυ=0 on Γsymm. (2-25)

We should be careful here, if we want the solution ϕ in Ω to be a part of global

solution to Problem 2.3, i.e., ϕ satisfies the equation in distribution sense in the domain

Λ, we need:

∇(ϕ− ϕ2) · υ|Γsonic = 0 (2-26)

In fact this condition is proposed for matching ϕ with state (2), and we need to show ϕ

13
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is at least C1 with∇(ϕ− ϕ2) = 0 across Γsonic to obtain (2-26).

Then the problem can be reformulated as the free boundary problem:

Problem 2.4 (Free Boundary Problem). Seek a global solution ϕ and a free boundary

Γsonic = {ξ = g(η)} for satisfying:

(1) free boundary function g ∈ C1,α

(2) ϕ satisfies the free boundary condition (2-22) on the Γsonic

(3) define the free boundary

Ω+ = {ξ > g(η)} ∩D (2-27)

then ϕ ∈ C1,α(Ω+) ∩ C2(Ω+) solves (2-9) and (2-10) in Ω+, and also satisfies the

equations (2-23), (2-24), (2-25) and the conormal boundary condition (2-26) on Γsonic.

Remark 2.5. The definition of Ω+ suggests the free boundary area is determined by the

level set ϕ = ϕ1. The boundary condition on Γsymm ensures g′(0) = 0, which implies

the orthogonality of the free boundary with ξ-axis. It suggests thus we cannot apply this

free boundary technique to asymmetric wedge case.

14
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Chapter 3 Global structure of regular reflection for potential flow

In this chapter, I first describe the simplest case of shock reflection problem which oc-

curs when the wedge angle θw is π/2. In this case, the reflection problem becomes the

normal reflection problem and thus the incident shock normally reflected with a result-

ing plane reflected shock. Second half of this chapter concentrates on the global theory

established by Chen-Feldman[9][10] and Bea-Chen-Feldman[11] for solving Problem

2.4. Moreover, the constructed global solution tends to converge to normal reflected

case, i.e., guarantee the stability of solution.

Figure 3.1 Normal Reflection

3.1 Normal reflection

When the wedge becomes flat, i.e., θω = π
2
, the reflection becomes the normal reflection

which is the simplest case (see Fig 3.1). In this case, the incident shock normally

reflects, the reflected shock is also a plane at ξ = ξ̄, and (u2, v2, ρ2) = (0, 0, ρ2), where

ξ̄ = − ρ1u1

ρ̄2 − ρ1

< 0, with u1 =

√
(p2 − p1)(ρ2 − ρ1)

ρ1ρ2

and ρ̄2 > ρ1 is the unique solution of the Bernoulli law

ρ̄2
γ−1 = ργ−1

1 +
1

2
u2

1 +
ρ1u

2
1

ρ̄2 − ρ1

.

15
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Then state (1) has form (2-16) for ξ < ξ̄, state (2) has the form:

ϕ2(ξ, η) = −1

2
(ξ2 + η2) + u1(ξ̄ − ξ0) for ξ ∈ (ξ̄, 0),

and the reflected shock ξ = ξ̄ actually satisfies the entropy condition: ρ̄2 > ρ1. More-

over, it can be shown that |ξ̄| < c̄2 := c(ρ̄2). Then
√
ξ2 + η2 = c̄2 is the sonic circle,

and the subsonic region of state (2) is Bc̄2(0) ∩ {ξ̄ < ξ < 0}, and is supersonic out-

side the sonic circle (see Fig 3.1). That is, the normal reflection solution is uniquely

determined.

3.2 Existence and stability of global solution

In [9][10], Chen-Feldman established a rigorous mathematical method for solving free

boundary Problem 2.4 and developed the existence of global solution ϕ for potential

flow when the wedge angle θω is large with the stability for solution which converges

to the unique solution of the normal reflection when wedge angle tends to π/2 . The

corresponding structure of solution is presented in Chapter 2.3 as following Fig 2.2.

Here I grasp some primary techniques as well as all important properties of the solution.

Figure 3.2 Flatten sonic arc

First we introduce the polar coordinates (r, θ) with the polar center (u2, u2 tan θω)

of the pseudo-sonic circle of state (2), that is

ξ − u2 = r cos θ, η − u2 tan θω = r sin θ (3-1)

16
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For each ε-neighborhood of the pseudo-sonic circle P1P4 within Ω, we denote it as

Ωε := Ω ∩ {(r, θ) : 0 < c2 − r < ε}, ε ∈ (0, c2).

More specifically, in the Ωε, we use the coordinates:

x = c2 − r, y = θ − θω (3-2)

This implies that Ωε ⊂ {0 < x < ε, y > 0} and P1P4 ⊂ {x = 0, y > 0}.(See Fig 3.2)

Also we note we have introduced the following notation for various parts of ∂Ω:

Γsonic := ∂Ω ∩ ∂Bc2(u2, u2 tan θω) ≡ P1P4;

Γshock := P1P2;

Γwedge := ∂Ω ∩ ∂Λ ≡ P3P4.

The idea proposed by Chen-Feldman is to regard this reflection problem as free

boundary problem,i.e., to solve Problem 2.4.

Theorem 3.1 (Chen-Feldman[9][10]). There exist θc = θc(ρ0, ρ1, γ) ∈ (0, π
2
) and α =

α(ρ0, ρ1, γ) ∈ (0, 1/2) such that, when θω ∈ [θc,
π
2
), there exists a global self-similar

solution:

Φ(x, t) = tϕ(
x
t
) +
|x|2

2t
for

x
t
∈ Λ, t > 0,

with

ρ(x, t) = (ργ−1
0 − (γ − 1)(Φt +

1

2
|∇xΦ|2))

1
γ−1

of Problem 2.1 (also, Problem 2.3) for shock reflection by the wedge, which satisfies

17
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that, for (ξ, η) = x
t
,

ϕ ∈ C0,1(Λ),

ϕ ∈ C∞(Ω) ∩ C1,α(Ω),

ϕ =


ϕ0 for ξ > ξ0 and η > ξ tan θω

ϕ1 for ξ < ξ0 and above the reflection shock P0P1P2

ϕ2 in P0P1P4

(3-3)

Moreover,

1. equation (2-9) is elliptic in Ω;

2. ϕ2 ≤ ϕ ≤ ϕ1 in Ω;

3. there exist ε0 ∈ (0, c2
2

) such that ϕ ∈ C1,1(Ωε0) ∩ C2(Ωε0\Γsonic); moreover, in

the coordinates (3-2) we define,

||ϕ− ϕ2||(par)2,0,Ωε0
:=

∑
0≤k+l≤2

sup(xk+l/2−2|∂kx∂ly(ϕ− ϕ2)(x, y)|) <∞ (3-4)

4. there exist ω > 0 and a function y = f̂(x) such that, in the coordinate (3-2) we

have,

Ωε0 = {(x, y) : x ∈ (0, ε0), 0 < y < f̂(x)},

Γshock ∩ {0 ≤ x ≤ ε0} = {(x, y) : x ∈ (0, ε0), y = f̂(x)},
(3-5)

and

||f̂ ||C1,1([0,ε0]) <∞,
df̂

dx
≥ ω > 0 for 0 < x < ε0 (3-6)

5. the reflected shock P0P1P2 is C2 at P1 and C∞ except P1;

6. there exists %0 > 0 so that, in the coordinates (3-2),

|∂x(ϕ− ϕ2)(x, y)| ≤ 2− %0

γ + 1
x in Ωε0 , (3-7)
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Moreover, it is to say the solution ϕ is stable in terms of the wedge angle in W 1,1
loc

and converges in W 1,1
loc to the uniquely determined solution of the normal reflection as

θw → π/2

The existence of state (2) of form (2-21) with constant velocity (u2, u2 tan θω), u2 >

0, and constant density ρ2 > ρ1, satisfying Rankine-Hugonior jump condition (2-14)

on P0P1 is shown in [10][section 3] for θω ∈ [θc,
π
2
). The existence of a solution ϕ

of Problem 2.3, satisfying (2-22) and property 3 follows from [10][Main Theorem].

Property 4 follows from (5.7) and (5.25)-(5.27) in [10] and the fact that ϕ− ϕ2 ∈ Θ.

Remark 3.2. We should note the norm imposed in (3-4) with the finite estimate further

shows the fact: the potential flow equation (2-9) and (2-10) coincides with the full

Euler equation in a subdomain of Ω bounded by the streamline of pseudo-velocity field

passing through P1, sonic arc and wedge.
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Chapter 4 Estimation for solution near the sonic arc

One of the primary difficulties for constructing the global existence theory is that the

ellipticity condition (2-12) is hard to handle with. The second difficulty is that the

ellipticity degenerates at the sonic circle P1P4, with the non-variational structure and

nonlinearity for the equation behaving near sonic arc area. However, we need to match

the solution ϕ with ϕ2 at least in C1, with both Dirichlet and conormal conditions.

In this chapter, we will show the conormal condition follows automatically from

the structure of elliptic degeneracy of (2-9) on P1P4 for ϕ. For achieving this, we first

adopt a proper cutoff that depends on the distance to the sonic circle to modify equation

(2-12) and we have the modified equation to be elliptic in Ω with elliptic degeneracy

on P1P4 (see Section 4.1 and 4.2). Then I give a proof to show ϕ is in fact C1,1 up to

the boundary, especially |D(ϕ − ϕ2)| ≤ Cx, and confirm the cornormal condition on

the sonic arc (see Section 4.3). At last, I point out the ellipticity cutoff in fact can be

removed off since we can prove the precise gradient estimate |ux| < (2−β)x
γ+1

for β > 0

(see Section 4.3).

Remark 4.1. Noting here, for a regular reflection configuration, if we start from the full

Euler flow we can also prove the exact behavior of solutions in C1,1 across the pseudo-

sonic circle which coincides with the potential flow. This means, both of the nonlinear

systems actually behavior the same in a physically significant domain near the pseudo-

sonic circle. However, we can prove some fundamental properties of solutions for the

potential flow. For example, the optimal regularity of solutions across the pseudo-sonic

circle and at the degenerate point where the pseudo-sonic circle meets the reflected

shock particular for the potential flow (see Chapter 5).

First I prove an important property which is extremely useful in our following anal-

ysis. Introduce a new variable

ψ = ϕ− ϕ2 = φ− φ2
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while will play a core role.

Proposition 4.2. ϕ ≥ ϕ2, i.e., ψ ≥ 0 in Ω

Remark 4.3. This property (I also point it out in section 3.2) follows from Proposition

7.1 and Section 9 in [10], which assert that ϕ − ϕ2 ∈ Θ, where the set Θ defined by

(5.15) in [10]. However, I will give a general and distinct proof for large-angle wedge.

Proof for Proposition 4.2. Since ψ = ϕ − ϕ2 = φ − φ2, we have the homogeneous

equation in Ω in term of ψ, i.e. ΣAijψij = 0 in Ω.

Now we rewrite the boundary conditions in terms of ψ. First the boundary condition

on Γsymm = P2P3 indicates in (2-25), here the normal vector υ = (0, 1) in (ξ, η)-

coordinates. By definition, Dφ = Dϕ+ (ξ, η)′ and η = 0 on P2P3 . Thus

Dφ · υ = Dϕ · υ + (ξ, 0) · (0, 1)′ = 0

from (2-25). Note Dφ2 = (u2, u2tanθw), we have

ψυ = (Dφ−Dφ2) · υ = −u2 < 0 (4-1)

Second on Γshock = P1P2 the Rankine-Hugoniot jump condition (2-22) can be rewritten

as homogeneous jump condition a1ψξ + a2ψη + a3ψ = 0 with a3 < 0, and (a1, a2) ·

υshock ≥ λ > 0, here λ is a positive constant and υshock is the normal vector with respect

to the reflected shock. If ψ = 0, this homogeneous equation also equal to 0. Third on

Γsonic = P1P4 we have ψ = 0 and on Γwedge = P3P4 we have ψυ = 0.

Therefore, ψ is supersolution of homogeneous problem and 0 is solution of that

problem. By maximum principle, ψ ≥ 0 as desired. ]

4.1 Reformulation of ψ

Now we can explicitly calculate that ψ satisfies the following equation in Ω:

(c2(Dψ,ψ, ξ, η)− (ψξ − ξ)2)ψξξ + (c2(Dψ,ψ, ξ, η)− (ψη − η)2)ψηη

−2(ψξ − ξ)(ψη − η)ψξη = 0
(4-2)
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and the expressions of the density and sound speed in Ω in terms of ψ are

ρ(Dψ,ψ, ξ, η) = (ργ−1
2 + ξψξ + ηψη −

1

2
|Dψ|2 − ψ)

1
γ−1 ,

c2(Dψ,ψ, ξ, η) = c2
2 + (γ − 1)(ξψξ + ηψη −

1

2
|Dψ|2 − ψ),

where ρ2 is the density of state (2).

Moreover, we can rewrite (4-2) in the form

T1 + T2 + T3 + T4 = 0,

where

T1 = (c2(Dψ,ψ, ξ, η)− (ξ2 + η2))∆ψ,

T2 = η2
ξξ + ξ2

ηη − 2ξηψξη,

T3 = 2(ξψξψξξ + (ξψη + ηψξ)ψξη + ηψηψηη),

T4 = −1

2
(ψξ(|Dψ|2)ξ + ψη(|Dψ|2)η).

In the polar coordinates (r, θ) with r =
√
ξ2 + η2, note that ψξ = ξ

r
ψr − η

r2
ψθ and

ψη = η
r
ψr + ξ

r2
ψθ. Therefore ψ satisfies

(c2 − (ψr − r)2)ψrr −
2

r2
(ψr − r)ψθψrθ +

1

r2
(c2 − 1

r2
ψ2
θ)ψθθ+

c2

r
ψr +

1

r3
(ψr − 2r)ψ2

θ = 0

(4-3)

with sonic speed c2 = (γ− 1)(ργ−1
2 −ψ+ rψr− 1

2
(ψ2

r + 1
r2
ψ2
θ)). Note that, in the polar

coordinates, T1, T2, T3, T4 have the expressions as:

T1 = (c2
2 − r2 + (γ − 1)(rψr −

1

2
|Dψ|2 − ψ))∆ψ,

T2 = ψθθ + rψr,

T3 = 2rψrψrr +
2

r
ψθψrθ −

2

r2
ψ2
θ = r(|Dψ|2)r,

T4 = −1

2
(ψr(|Dψ|2)r +

1

r2
ψθ(|Dψ|2)θ).
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Here |Dψ|2 = ψ2
r + 1

r2
ψ2
θ and ∆ψ is taken with respect to (r, θ), i.e. ∆ψ = ψrr +

1
r2
ψθθ + 1

r
ψr.

From these relations, the self-similar potential flow equation can thus be rewritten

for ψ in (x, y)-coordinates (by (3-2)) as

(2x− (γ + 1)ψx +O1)ψxx +O2ψxy + (
1

c2

+O3)ψyy − (1 +O4)ψx +O5ψy = 0 (4-4)

in Ω ⊂ {x > 0}. Where

O1(Dψ,ψ, x) = −x
2

c2

+
γ + 1

2c2

(2x− ψx)ψx −
γ − 1

c2

(ψ +
1

2(c2 − x)2
ψ2
y);

O2(Dψ,ψ, x) = − 2

c2(c2 − x)2
(ψx + c2 − x)ψy;

O3(Dψ,ψ, x) =
1

c2(c2 − x)2
(x(2c2 − x)− (γ − 1)(ψ + (c2 − x)ψx +

1

2
ψ2
x)

− γ + 1

2(c2 − x)2
ψ2
y);

O4(Dψ,ψ, x) =
1

c2 − x
(x− γ − 1

c2

(ψ + (c2 − x)ψx +
1

2
ψ2
x

+
(γ + 1)ψ2

y

2(γ − 1)(c2 − x)2
));

O5(Dψ,ψ, x) = − 2

c2(c2 − x)3
(ψx + c2 − x)ψy.

The terms Ok(Dψ,ψ, x) are small perturbations of the leading terms of (4-4) if the

function ψ is small in appropriate norm (note we have Dirichlet boundary condition

(2-23) on sonic circle P1P4). In order to see this, we turn to the following properties:

For any (p, z, x) ∈ R2 ×R× (0, c2/2) with |p| < 1,

|O1(p, z, x)| ≤ C(|p|2 + |z|+ |x2|),

|O3(p, z, x)|+ |(O4(p, z, x))| ≤ C(|p|+ |z|+ |x|),

|O2(p, z, x)|+ |(O5(p, z, x))| ≤ C(|p|+ |x|+ 1)|p|.

For convenient, we can drop terms Oi, i = 1, . . . , 5, from (4-4), we obtain the tran-

23



Regular shock reflection by wedges for potential flow

sonic small disturbance equation:

(2x− (γ + 1)ψx)ψxx +
1

c2

ψyy − ψx = 0 (4-5)

Thus the full equation is homogeneous. In (x, y)-coordinates, we have proved in Propo-

sition 4.2 that

ψ > 0 in Ω

ψ = 0 on Γsonic = ∂Ω ∩ {x = 0}

Equation (4-5) is elliptic in {x > 0} if

ψx <
2x

γ + 1
(4-6)

Proposition 4.4. Assume (4-6) holds then

ψ ≤ Cx2 in Ω (4-7)

and C is a positive constant.

Proof for Proposition 4.4 Set w(x, y) := A
2(γ+1)

x2, with A > 1. Denote N(ψ) to be

the left-hand side of equation (4-5). We first show that w is a supersolution of (4-5).

1) Substitute w(x, y), we have N(w) < (2x− x) A
γ+1
− A

γ+1
x ≡ 0 = N(ψ);

On boundaries, we can note:

2) For Γwedge, i.e. y = 0, we have wν = wy = 0 = ψν ;

3) For Γshock, i.e. the right plot in Figure 4, we have boundary condition M(ψ) =

a1ψx + a2ψy + a3ψ = 0 with ak ≤ −δ < 0, |ak| ≤ C, k = 1, 2, 3, here δ and C are

positive constants. And (a1, a2) · υshock ≥ λ > 0, here λ is a positive constant and

υshock is the normal vector with respect to the reflected shock.Thus plug in w we have

M(w) = a1
A
γ+1

x+ a3
A

2(γ+1)
x2 < 0 = M(ψ)

4) For Γsonic, i.e. x = 0, we have w = ψ = 0;

5) For {x = ε} ∩ ∂Ωε with Ωε = Ω ∩ {0 < x < ε}. Note Ω is a bounded area, ψ
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is thus also bounded, that is ||ψ||C1(Ω) ≤ C1. In particular, we assume ||ψ||C1(Ω) ≤ Cδ

for θw ∈ (π
2
− δ, π

2
). Choose w = Aε2

2(γ+1)
= Cδ ≥ ψ, i.e. A = 2Cδ(γ+1)

ε2
, can guarantee

w ≥ ψ on {x = ε} ∩ ∂Ωε.

By Maximum Principle and the 5 points above, we can assert w ≥ ψ and thus

ψ ≤ Cx2 as desired. ]

4.2 Estimation with the ellipticity cutoff

Taking into account the ”small” terms to be added to equation (4-5) (to recover (4-4)),

we need to make the stronger estimate |ψx| ≤ 4x
3(γ+1)

. In fact this conjecture exactly

holds (I will talk about it in section 4.4) and thus Proposition 4.4 follows. We can

modify equation (2-9) in Ω by a proper cutoff that depends on the distance to the sonic

circle, so that the original and modified equations coincide for ϕ satisfying |ψx| ≤
4x

3(γ+1)
, and the modified equation is elliptic in Ω with elliptic degeneracy on P1P4.

Introduce the function ζ ∈ C∞(R) satisfy

ζ(s) =

s if |s| < 4/(3(γ + 1))

5sign(s)
3(γ+1)

if |s| > 2/(γ + 1)

(4-8)

thus

ζ ′(s) ≥ 0, ζ(−s) = −ζ(s) on R, and ζ ′′(s) ≤ 0 on {s ≥ 0} (4-9)

Obviously, such a smooth function ζ ∈ C∞(R) exists.

Introduce the notations T ′1 and T ′3 for the corresponding T1 and T3 respectively as

T ′1 = (c2
2 − r2 + (γ + 1)r(c2 − r)ζ(

ξψξ+ηψη
r(c2−r) )− (γ − 1)(1

2
|Dψ|2 + ψ))∆ψ

T ′3 = 2( ξ
r
(c2 − r)ζ(

ξψξ+ηψη
r(c2−r) )− η

r2
(ξψη − ηψξ))(ξψξξ + ηψξη)

+2(η
r
(c2 − r)ζ(

ξψξ+ηψη
r(c2−r) ) + ξ

r2
(ξψη − ηψξ))(ξψξη + ηψηη)

The modified equation is defined as

T ′1 + T2 + T ′3 + T4 = 0 (4-10)
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From the definition of ζ , the modified equation (4-10) coincides with the original (4-2)

if ∣∣∣∣ξψξ + ηψη
r(c2 − r)

∣∣∣∣ < 4

3(γ + 1)
,

i.e., if |ψx| < 4x
3(γ+1)

in the (x, y)-coordinates as we assumed above.

Now we can write (4-10) in the (x, y)-coordinates. Calculate T ′1 and T ′3 in the polar

coordinates as

T ′1 = (c2
2 − r2 + (γ − 1)(r(c2 − r)ζ(

ψr
c2 − r

)− 1

2
|Dψ|2 − ψ))∆ψ

T ′3 = 2r(c2 − r)ζ(
ψr

c2 − r
)ψrr +

2

r
ψθψrθ −

2

r2
ψ2
θ

and transform (4-10) to the form

(2x− (γ + 1)xζ(
ψx
x

) +O′1)ψxx +O′2ψxy + (
1

c2

+O′3)ψyy

−(1 +O′4)ψx +O′5ψy = 0

(4-11)

here we have the estimation for the small terms

|O′1(p, x, y)| ≤ C|x|3/2, |O′k(p, x, y)| ≤ C|x| for k = 2, 3, 4, 5 (4-12)

for all p ∈ R2. Now we can do the estimation more precisely.

Theorem 4.5. The solution ψ ∈ C(Ω) ∩ C1(Ω\Γsonic) ∩ C2(Ω) satisfies

ψ ≤ 2

3(γ + 1)
x2 in Ωε (4-13)

here Ωε = Ω ∩ {0 < x < ε}.

Proof for Theorem 4.5 First rewrite equation (42) as N1(ψ) +N2(ψ) = 0, with

N1(ψ) = (−(γ + 1)xζ(
ψx
x

) + 2x)ψxx +
1

c2

ψyy − ψx, (4-14)

N2(ψ) = O′1ψxx +O′2ψxy +O′3ψyy +O′4ψx +O′5ψy (4-15)
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Set w(x, y) := A
2(γ+1)

x2, with A ≥ 4
3
. As in Proposition 4.4, we easily notice w is a

supersolution for (4-11). Calculate wx = A
γ+1

x, wxx = A
γ+1

and

wx
x

=
A

γ + 1
≥ 4

3(γ + 1)

and thus

ζ(
wx
x

) ≥ 4

3(γ + 1)
> 0.

Now

N1(ψ) ≤
(

2x− (γ + 1)
4

2(γ + 1)
x

)
A

γ + 1
− A

γ + 1
x = − A

3(γ + 1)
x ≤ − 4

9(γ + 1)

Using equation (43), we have

|N2(w)| =
∣∣∣∣ A

γ + 1
O′1(Dw, x, y) +

Ax

γ + 1
O′2(Dw, x, y)

∣∣∣∣ ≤ Cx
3
2 ≤ Cε

1
2x,

here the last inequality holds since x ∈ (0, ε) in Ωε. Thus,

N1(w) +N2(w) ≤ − 4

9(γ + 1)
x+ Cε

1
2x < 0,

where the last inequality holds if ε ∈ (0, ( 4
9C(γ+1)

)2). Therefore N(w) = N1(w) +

N2(w) < 0 = N(ψ) in Ωε

On boundaries, we also argue that w is a supersolution of M(ψ) = a1ψx + a2ψy +

a3ψ = 0 on Γshock in the same way as Proposition 4.4. Moreover, the boundary condi-

tions on Γwedge, Γsonic and {x = ε} ∩ ∂Ωε also follows as proved in Proposition 4.4.

By Maximum Principle, we can conclude w ≥ ψ and thus ψ ≤ 2
3(γ+1)

x2 as desired.

]

4.3 Regularity near sonic arc

From Proposition 4.2 and Theorem 4.5, we get

0 ≤ ψ ≤ Cx2. (4-16)
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From monotonocities of ψ = ϕ − ϕ2 near sonic arc, 0 ≤ ψx ≤ Cx, |ψy| ≤ Cx.

And thus we can control the coefficients of equation. Comparing with equation (4-5),

for simplicity we consider

xuxx + uyy − αux = 0 in {x > 0} (4-17)

and since (4-16) holds we can further assume |u| ≤ Cx2.

Assume x0 = 2d, consider the rectangle

Qd(x0, y0) = {(x, y)||x− x0| < d, |y − y0| ≤
√
d}.

As showed in Figure 4.1, Qd(x0, y0) ⊂ {x > 0}.

Figure 4.1 Change Variables

Proposition 4.6. The solution u of (46) is C1,1 up to sonic arc {x=0}, i.e.

|ux| ≤ Cx, |uy| ≤ Cx3/2,

|uxx| ≤ C, |uxy| ≤ Cx1/2, |uyy| ≤ Cx.
(4-18)

Proof for Proposition 4.6 First change the variables (x, y) to (X, Y ) as

X =
x− x0

d
, Y =

y − y0√
d
.

we map the rectangle Qd(x0, y0) to the unit square Q1(0, 0).
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Then define z(X, Y ) on Q1(0, 0) by

z(X, Y ) ≡ z(
x− x0

d
,
y − y0√

d
) =

1

d2
u(x, y),

and calculate ux = dzX , uy = d3/2zY , uxx = zXX , uyy = dzY Y and translate the

equation (46) for u into:

(2 +X)zXX + zY Y − αzX = 0, (4-19)

we see (48) is uniformly elliptic in Q1(0, 0). Thus for Holder norm,

||z||C2,α(Q1/2) ≤ C||z||L∞(Q1) ≤ Ĉ.

Rewrite this in terms of u(x, y) at (x, y) = (x0, y0), we can get C1,1 regularity (4-18)

as desired. ]

Essentially this scaling technique involves linearization near w = 1
2(γ+1)

x2 and it is

showed to control nonlinear equation up to C1,1.

4.4 Ellipticity and Removal of cutoff

Relation (4-18) tells us |ψx| < Cx for some possible large but uniform constant C,

how ever it is not enough for removal of ellipticity cutoff. As pointed out in section

4.2, we need at least |ψx| < Cx with C = 4
2(γ+1)

and thus we have to do more precise

estimation for |ψx|.

Similar to the growth estimates,estimate of ψx from above and from below come

from the different reasons.

Proposition 4.7 (estimation from above). ψx ≤ k
γ+1

x holds for any k ∈ (1, 2) in Ωε

Remark 4.8. The idea here is that estimate from above is local near the sonic arc by

comparison function. We should note if staying sufficiently close to the sonic arc we can

get ψx < Ax for any A > 1
γ+1

, but cannot make A < 1
γ+1

. Thus in the choice of cutoff

function we use 4
3

1
γ+1

(it is also necessary to keep cutoff at smaller than 2 1
(γ+1)

to have
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the elliptic in (4-4)).

Proof for Proposition 4.7 Here I only prove for k = 4
3
, and the proof for general

situations is exact the same if we adjust the cutoff function. Denote A = 4
3(γ+1)

and

define a function

v := Ax− ψx (4-20)

we only need to show that v ≥ 0 in a neighborhood of the sonic arc.

For that, we differentiate equations (4-11)-(4-12) and get the following equation for

v:

a11vxx + a12vxy + a22vyy + bvx + cv = −A((γ + 1)A− 1) + S(x, y) (4-21)

with coefficients

b(x, y) = 1− (γ + 1)(ζ(A− v

x
) + ζ ′(A− v

x
)(
v

x
− vx − A)), (4-22)

c(x, y) = (γ + 1)
A

x
(ζ ′(A− v

x
)−

∫ 1

o

ζ ′(A− sv
x

)ds). (4-23)

Since the equation (4-21) has right-hand side with the main term to be negative if

A > 1/(γ + 1) (this explains why we need to impose the restriction as mentioned on

Remark 4.8), it means that v is a supersolution of the homogeneous equation with the

following facts hold:

1) The left hand of equation (4-21) is elliptic in Ωε and uniformly elliptic on compact

subsets of Ωε\{x = 0}.

On boundaries, we need to use estimate (4-18) in Ωε

2) since |ψx| ≤ Cx, v = 0 on ∂Ωε ∩ {x = 0}

3) since |ψ| ≤ Cx2, |ψy| ≤ Cx3/2 and on shock we have a1ψx + a2ψy + a3 = 0,

we have the estimate |ψx| ≤ C1(|ψy| + |ψ|) ≤ C2x
≤3/2 and hence |ψx| < Ax on

Γshock ∩ {0 < x < ε}. Thus

v ≥ 0 on Γshock ∩ {0 < x < ε}
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4) note on Γwedge the boundary condition (2-24), and on (x, y)-coordinates it is

ψy = 0 on {0 < x < ε, y = 0}.

Since ψ is C2 up to Γwedge, we have ψxy = 0, which implies

vy = 0 on Γwedge ∩ {0 < x < ε}.

5) furthermore, since |ψx| ≤ Aε on Ω ∩ {ε/2 ≤ x ≤ ε}, we have

v = 0 on Ωε ∩ {x = ε}.

Therefore, by Maximum principle we finally get v > 0 near the sonic arc as desired.

]

Proposition 4.9 (estimation from above). Almost we can get ψx > 0 in Ωε

Remark 4.10. Precisely to claim this Proposition is ψx > −δx where δ > 0 can be

arbitrary small if we keep close to sonic arc (depending on δ).

Proof for Proposition 4.9 Here I directly explain ideas of the proof given by Chen-

Feldman in [10]. They obtain this Proposition in two steps:

Step 1. ψη ≤ 0 in the whole domain Ω.

For this, we can differentiate equation with respect to η, and differentiating bound-

ary conditions on shock and wedge in the tangential direction and using equation, we

derive homogeneous elliptic equation, and homogeneous oblique boundary conditions

on shock and wedge for w = ψη. Also we know that w < 0 on symmetry line by the

boundary condition ψη = −v2 on symmetry line (this is main point, we propagate the

negativity of ψη from the symmetry line), and w = 0 on sonic arc since from Proposi-

tion 4.6, Dψ = 0 on sonic arc. Then we get ψη ≤ 0 by maximum principle.

Step 2. ψx ≥ − 4
3(γ+1)

x in Ωε.

For this, we first express ψx through ψy and ψη, and show that the estimate |ψy| ≤
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Cx3/4 in Proposition 4.6, combined with negativity of ψη allows to get

ψx = − 1

sin θ
ψη +

cot θ

r
ψy ≥

cot θ

r
ψy ≥ −C|ψy|, (4-24)

where the polar angle θ satisfies sin θ = η√
ξ2+η2

> 0 and thus we can get the estimate

from below. ]
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Chapter 5 Higher regularity near sonic arc away from shock

In this chapter, we will also use comparison principle to get the higher regularity C2,α

near sonic arc except P0, which in fact holds only for potential flow and fails for general

Euler flow. For achieving this result, we need a quadratic lower bound for ψ (see Section

5.1). Then careful compare the boundary conditions in order to use Maximum principle

to get a supersolution (see Section 5.2).

The following standard comparison principle for the operator L follows from[24].

Lemma 5.1 (comparison principle). Let Ω ⊂ R2 be an open bounded set. Let u, v ∈

C(Ω)∩C2(Ω) such that the operator L is elliptic in Ω with respect to either u or v. Let

Lu ≤ Lv in Ω and u ≥ v on ∂Ω. Then u ≥ v in Ω.

Go back to equation (4-5)

(2x− (γ + 1)ψx)ψxx +
1

c2

ψyy − ψx = 0,

noting it is elliptic with respect to ψ in {x > 0} if ψx < 2x
γ+1

. In this section, we

consider the solution satisfying

−Mx ≤ ψx ≤
2− β
γ + 1

x in {x > 0} (5-1)

for some constant M ≥ 0 and β ∈ (0, 1), where the lower and upper bound come from

section 3.3 and 3.4 respectively. Then the equation (4-5) is uniformly elliptic in every

sundomain of {x > δ} with δ > 0. The same is true for the full equation (4-4).

5.1 Quadratic lower bound of ψ

We have note the equation (4-5) is uniformly elliptic and thus C2,α for all α ∈ (0, 1)

with respect to ψ inside x > δ with δ > 0. Thus, the idea here is to construct a positive

subsolution of (4-5), which turns out to provide a lower bound of ψ.
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Here we will just consider on ordinary differential equation level in the direction x.

In fact this is a good approximation away from P1 but both variables x, y will play a

role near P1. We keep only main term in the equation (comparing with (36)):

N [ψ] = [2x− (γ + 1)ψx]ψxx − ψx = 0 in {x ∈ (0, ε)} (5-2)

ψ(0) = 0, ψ(ε) = λ > 0

and our ε need to be small in order to control the extra terms of the equation.

Proposition 5.2. Solution ψ in equation (5-2) satisfies

ψ ≥ µ

2(γ + 1)
x2, for some small µ > 0. (5-3)

Proof for Proposition 5.2. Set u = 1
2(γ+1)

x2. We calculate ux = µ
γ+1

x, uxx = µ
γ+1

and

thus

N(u) =
µ

γ + 1
(1− µ)x > 0

Also function N is elliptic for u on (0, ε) since 2x − (γ + 1)ux = x(2 − µ) > 0. One

can note that on the boundaries: ψ(0) = 0 = u(0) and ψ(ε) = λ > u(ε) if µ is small.

Thus by Lemma 1, ψ ≥ u = µ
2(γ+1)

x2 on (0, ε). ]

5.2 C2,α estimate of ψ

If ψ satisfies (4-5), boundary conditions and (5-1), then it is expected to be very close

to x2

2(γ+1)
. Note x2

2(γ+1)
in fact is a solution to (4-5). More precisely, we now to show

Theorem 5.3. ψ − v = O(x2+α)(Ω), where v = 1
2(γ+1)

x2.

Proof for Theorem 5.3. In order to obtain this result, we study the function

W = v − ψ.
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Calculate Wx = x
γ+1
− ψx, Wxx = 1

γ+1
− ψxx and again by (5-2), we have

N∗[W ] := [x+ (γ + 1)Wx]Wxx − 2Wx = 0 in {0 < x < ε1}. (5-4)

Moreover, since ψx ≤ 2−β
γ+1

x with ψ(0) = 0, we do calculus and get ψ ≤ 2−β
2(γ+1)

x2.

Combine with inequality (5-3), we get an estimate for W:

β − 1

2(γ + 1)
≤ W (x) ≤ 1− µ

2(γ + 1)
x2, (5-5)

where 0 < β < 1.

Then, let Ŵ = τ
γ+1

x2+α, where α ∈ (0, 1), τ > 0 and we will show Ŵ is a super-

solution for N∗. First, plug Ŵ into N∗[Ŵ ] to get

N∗[Ŵ ] =
2 + α

γ + 1
τx1+α(α− 1 + (1 + α)(2 + α)τxα)

on (0, ε1), here the coefficient 2+α
1+γ

τ > 0 by definition. Moreover,

1) the equation

N∗[Ŵ ] ≤ 0

if (1 + α)(2 + α)τεα1α ≤ 1− α. So we only need to choose τ = 1−α
(1+α)(2+α)

ε−α1 .

On boundaries we also need to have

2) Ŵ (ε1) ≥ W (ε1), that is

W (ε1) ≤ (1− α)ε21
(1 + α)(2 + α)(γ + 1)

.

Note we have a upper bound for W indicated in (5-5), we choose α to satisfy

(1− α)

(1 + α)(2 + α)
=

1− µ
2

,

with small µ > 0 got from above. Then calculate α =
3µ−5+

√
µ2−22µ+25

2(1−µ)
∈ (0, 1) as

desired.

At last, we also need N∗ to be elliptic for Ŵ ∈ (0, ε1)
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3) in fact the second-order coefficient x+ (γ + 1)Ŵx ≥ x > 0. Thus the ellipticity

follows obviously.

Therefore Ŵ is a supersolution for N∗ and by Lemma 5.1, we would get W ≤ Ŵ

on (0, ε1). Similarly in order to show W ≥ −Ŵ on (0, ε1), we also follow the steps

above with τ , α determined by β instead of µ according to the lower bound indicated

in (5-5).

Therefore ∣∣∣∣ψ − 1

2(γ + 1)
x2

∣∣∣∣ ≤ |Ŵ | ≤ Cx2+α,

which is exactly our desired result. ]
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Chapter 6 Conclusion and open problems

6.1 Conclusion

In this thesis, we mainly do two works. The first is to systematically and rigorously

formulate the shock reflection phenomena by a free boundary model. Especially, we

extend our talk to three details: (1) explain the ideas behind different pattern-transition

criteria; (2) discuss the similarity and difference between potential flow and Euler flow

for estimation near sonic arc; (3) talk about the idea of introducing ellipticity cutoff

with different choice of constant.

Second and also the primary work we do in the Chapter 4 and Chapter 5 is to give

simple and direct proofs for classical estimation of ψ = ϕ−ϕ2 by developed Maximum

principle adapted to free boundary problems. Also we use the comparison principle and

scaling techniques for elliptic equations to reprove C1,1-regularity up to sonic arc and

C2,α-regularity up to the sonic arc away from shock point P1. And we point out the

optimal regularity near sonic arc is particularly holding for the potential flow.

6.2 Open problems

As we mentioned in Chapter 1, there is still a long journey to fully understand the shock

reflection problem. For example,

(1) Uniqueness of regular reflection solution. So far, some Mathematician believe

this result depends on geometric properties of the shock and convincingly the convexity

would be sufficient.

(2) Prove all these results for Euler system. Difficulty here involves the vortici-

ty blowup near stagnation points, which is noticed by D. Serre for isentropic Euler

system[25].

(3) Prove all there results for Mach reflection.

Furthermore, a good solution to the shock reflection problem not only provides us

the understanding for shock reflection-diffraction phenomena and behavior of entropy
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solutions to multidimensional hyperbolic systems of conservation laws, but also pro-

vides us important new ideas and techniques for overcoming the core challenges in

multidimensional problems in conservation laws and other branches in nonlinear par-

tial differential equations. Moreover, the shock reflection problem also serves as a great

test problem used in examining the approaches developed in nonlinear partial differen-

tial equations and numerical examples.

I would like to continue my study and research in these aspects after my graduation.
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