
学士学位论文

论文题目 基于哈希的大规模图像检索

学生姓名 孔维昊
学生学号
指导教师 李武军
专 业 计算机科学与工程
学院（系）电子信息与电气工程

基于哈希的大规模图像检索

基于哈希的大规模图像检索

摘 要

　哈希被用来学习数据的二进制码表达方法，以期望它能够保存原始特征

空间的距离关系。因为它非常快的搜索速度和极少的存储空间，哈希已经被广

泛的用于了在很多种不同的数据集，包括文本检索、图像检索，的高效近邻搜

索上。因为通过解整数规划问题直接计算最优的二进制编码非常困难的，所以

主流的哈希方法通常采用两步的策略。在第一步中，许多维数据被投影函数投

影出来。然后在第二步中，那些实数值被通过截断的方法量子化到二进制串。

在这篇论文中，我们在这两方面都作出了贡献。在第一步，一般不同投影维的

方差是不同的，比如说主成份分析。使用相同的比特数给不同的数据维进行编

码显然是不合理的，因为大方差的维度往往携带更多的信息。尽管这个观点已

经被大多数研究者所接受了，它还没有被试验或理论证明，因为目前还没有方

法能够保证找到使投影结果能够各个维度的方差相等。本文中，为了学习到能

使得投影出的维度能具有等方性的投影函数，我们提出了一种新的哈希方法

————等方性哈希。在真实数据集上的实验结果表明我们提出的等方性哈希

能够超过许多其他的非等方性的哈希方法。这也证明了各向同性比各向异性方

法要好。在第二步，目前大部分的哈希方法使用海明距离来度量哈希码间的距

离。然而，海明距离的一个问题是它有可能破坏原空间上的距离关系，这违背

了哈希的本来想法。本文提出了使用曼哈顿距离的曼哈顿哈希的方法来解决海

明哈希的问题。曼哈顿哈希的基本思想是使用多比特的自然二进制编码来作为

哈希码。在距离的计算上，曼哈顿哈希采用曼哈顿距离来度量哈希码之间的距

基于哈希的大规模图像检索

离，并用其来进行近邻搜索。曼哈顿哈希能够高效的保存数据中的近邻结构，

来达到哈希的目的。就我们目前所知的，这是第一个使用曼哈顿距离和自然二

进制来哈希的方法。试验表明我们的曼哈顿哈希能大幅度超过其他先进方法。

关键词：哈希 图像检索 近似近邻搜索，等方性哈希，舒尔霍恩定理，逆特
征值问题，海明距离，曼哈顿距离

Large-Scale Image Retrieval Based on Hashing

Large-Scale Image Retrieval Based on Hashing

ABSTRACT

Hashing is used to learn binary-code representation for data with expectation of

preserving the neighborhood structure in the original feature space. Due to its fast

query speed and reduced storage cost, hashing has been widely used for efficient nearest

neighbor search in a large variety of applications like text and image retrieval. Because

it is usually hard to directly compute the best binary codes for a given data set as an in-

teger programing problem, mainstream hashing methods typically adopt the two-stage

strategy. In the first stage, several projected dimensions of real values are generated by

projection functions. Then in the second stage, the real values will be quantized into

binary codes by thresholding. In this paper, we also make contributions in these two

parts. In the first stage, typically the variances of different projected dimensions are

different for existing projection functions such as principle component analysis (PCA).

Using the same number of bits for different projected dimensions is unreasonable be-

cause larger-variance dimensions will carry more information. Although this viewpoint

has been widely accepted by many researchers, it is still not verified by either theory

or experiment because no methods have been proposed to find a projection with equal

variances for different dimensions. In this paper, we propose a novel method, called

isotropic hashing (IsoHash), to learn projection functions which can produce projected

dimensions with isotropic variances (equal variances). Experimental results on real data

Large-Scale Image Retrieval Based on Hashing

sets show that IsoHash can outperform its counterpart with different variances for dif-

ferent dimensions, which verifies the viewpoint that projections with isotropic variances

will be better than those with anisotropic variances. In the second stage, most existing

hashing methods adopt Hamming distance to measure the similarity (neighborhood)

between points in the hashcode space. However, one problem with Hamming distance

is that it may destroy the neighborhood structure in the original feature space, which

violates the essential goal of hashing. In this paper, Manhattan hashing (MH), which is

based on Manhattan distance, is proposed to solve the problem of Hamming distance

based hashing. The basic idea of MH is to encode each projected dimension with multi-

ple bits of natural binary code (NBC), based on which the Manhattan distance between

points in the hashcode space is calculated for nearest neighbor search. MH can effec-

tively preserve the neighborhood structure in the data to achieve the goal of hashing. To

the best of our knowledge, this is the first work to adopt Manhattan distance with NBC

for hashing. Experiments show that our MH method can significantly outperform other

state-of-the-art methods.

Keywords: Hashing, Image retrieval, Approximate nearest neighbor search, Isotropic

variances, Schur-horn theorem, Inverse eigenvalue problem, Hamming distance, Man-

hattan distance

Large-Scale Image Retrieval Based on Hashing

Contents

1 Introduction 1

2 Related Work 4

3 Isotropic Hashing 7
3.1 Problem Statement . 7
3.2 Model Formulation . 8
3.3 Learning . 11

3.3.1 Lift and Projection . 12
3.3.2 Gradient Flow . 13

3.4 Complexity Analysis . 15
3.5 Relation to Existing Works . 16
3.6 Summary . 16

4 Manhattan Quantization 17
4.1 Manhattan Distance Driven Quantization 19
4.2 Summary of MH Learning . 21
4.3 Summary . 22

5 Experiment 23
5.1 Data Sets . 23
5.2 Evaluation Protocols and Baselines . 23
5.3 Evaluation Metrics . 24
5.4 Accuracy . 25

5.4.1 Accuracy of IsoHash . 25
5.4.2 Accuracy of MQ . 26

5.5 Computational Cost . 26
5.6 Summary . 28

6 Conclusion 30

7 Publication 31

References 32

Large-Scale Image Retrieval Based on Hashing

Chapter 1 Introduction

Nearest neighbor (NN) search [1] has been widely used in machine learning and re-

lated application areas, such as information retrieval, data mining, and computer vision.

Recently, with the explosive growth of data on the Internet, there has been increasing

interest in NN search in massive (large-scale) data sets. Traditional brute force NN

search requires scanning all the points in a data set whose time complexity is linear to

the sample size. Hence, it is computationally prohibitive to adopt brute force NN search

for massive data sets which might contain millions or even billions of points. Another

challenge facing NN search in massive data sets is the excessive storage cost which is

typically unacceptable if traditional data formats are used.

To solve these problems, researchers have proposed to use hashing techniques for

efficient approximate nearest neighbor (ANN) search [2–6]. The goal of hashing is to

learn binary-code representation for data which can preserve the neighborhood (sim-

ilarity) structure in the original feature space. The basic idea of hashing is to learn

similarity-preserving binary codes for data representation. More specifically, each data

point will be encoded as a compact binary string in the hashcode space, and similar

points in the original feature space should be mapped to close points in the hashcode

space. Compared with the original feature representation, hashing has two advantages.

On one hand, we can achieve constant or sub-linear search time complexity [7]. On the

other hand, the storage needed to store the binary codes will be dramatically reduced.

For example, if each point is represented by a vector of 1024 bytes in the original space,

a data set of 1 million points will cost 1G memory. On the contrary, if we hash each

point into a vector of 128 bits, the memory needed to store the data set of 1 million

points will be reduced to 16M. Therefore, hashing provides a very effective way to

achieve fast query speed with low storage cost, which makes it a promising choice for

efficient ANN search in massive data sets [2, 3, 5, 8–13].

To avoid the NP-hard solution which directly computes the best binary codes for a

given data set [8], most existing hashing methods adopt a learning strategy containing

1

Large-Scale Image Retrieval Based on Hashing

two stages: projection stage and quantization stage. In the projection stage, several pro-

jected dimensions of real values are generated. In the quantization stage, the real values

generated from the projection stage are quantized into binary codes by thresholding.

For example, the widely used single-bit quantization (SBQ) strategy adopts one single

bit to quantize each projected dimension. More specifically, given a point x from the

original space, each projected dimension i will be associated with a real-valued projec-

tion function fi(x). The ith hash bit of x will be 1 if fi(x) � ✓. Otherwise, it will be

0. Here, ✓ is a threshold, which is typically set to 0 if the data have been normalized

to have zero mean. Although a lot of projection methods have been proposed for hash-

ing, there exist only two quantization methods. One is the SBQ method stated above,

and the other is the hierarchical quantization (HQ) method in anchor graph hashing

(AGH) [13]. Rather than using one bit, HQ divides each dimension into four regions

with three thresholds and uses two bits to encode each region. Hence, HQ will associate

each projected dimension with two bits.

The main contributions of this paper are briefly outlined as follows:

• In this paper, a novel hashing method, called isotropic hashing (IsoHash), is pro-

posed to learn a projection function which can produce projected dimensions with

isotropic variances (equal variances). To the best of our knowledge, this is the first

work which can learn projections with isotropic variances for hashing. Experi-

mental results on real data sets show that IsoHash can outperform its counterpart

with anisotropic variances for different dimensions, which verifies the intuitive

viewpoint that projections with isotropic variances will be better than those with

anisotropic variances. Furthermore, the performance of IsoHash is also compara-

ble, if not superior, to the state-of-the-art methods.

• To further improve the performance of our hashing method, we proposed a novel

quantization method called Manhattan Quantization(MQ) to encodes each pro-

jected dimension with multiple bits of natural binary code (NBC), based on

which the Manhattan distance between points in the hashcode space is calculated

for nearest neighbor search.

2

Large-Scale Image Retrieval Based on Hashing

The rest of this paper is organized as follows. We introduce the related work in

Chapter 2, Chapter 3 describes the details of our IsoHash method. Chapter 4 present

the motivation and details of MQ. Experimental results are presented in Chapter 5.

Finally, we conclude the whole paper in Chapter 6.

3

Large-Scale Image Retrieval Based on Hashing

Chapter 2 Related Work

Due to the promising performance in terms of either speed or storage, hashing has been

widely used for efficient ANN search in a large variety of applications with massive

data sets, such as text retrieval [6, 14], image retrieval [15, 16], audio retrieval [17],

and near-duplicate video retrieval [18]. As a consequence, many hashing methods have

been proposed by researchers. In general, the existing methods can be roughly divided

into two main classes [6, 15]: data-independent methods and data-dependent methods
1.

The most representative data-independent methods are locality-sensitive hashing

(LSH) [2, 3] and its extensions [19–23]. These methods use simple random projections

which are independent of the training data for hash functions. Shift invariant kernel

hashing (SIKH) [23] chooses projection vectors similar to those of LSH, but SIKH uses

a shifted cosine function to generate hash values. Both LSH and SIKH have an impor-

tant property that points with high similarity in the original space will be most likely

to have similar projected values. Many applications, such as image retrieval [23] and

cross-language information retrieval [5], have adopted these data-independent hash-

ing methods for ANN. Generally, data-independent methods need longer codes than

data-dependent methods to achieve satisfactory performance [15]. Longer codes means

higher storage and computational cost. Hence, the data-independent methods are less

efficient than data-dependent methods.

More and more recent works have focused on data-dependent methods whose hash

functions are learned from the training data. Semantic hashing [9, 24] adopts a deep

generative model based on restricted Boltzmann machine (RBM) [25] to learn the

hash functions. Experiments on text retrieval demonstrate that semantic hashing can

achieve better performance than the original TF-IDF representation [26] and LSH. Ad-

aBoost [27] is adopted by [17] to learn hash functions from weakly labeled positive
1In [6], data-independent is called data-oblivious while data-dependent is called data-aware. It is

obvious that they have the same meanings.

4

Large-Scale Image Retrieval Based on Hashing

samples. The resulting hashing method achieves better performance than LSH for audio

retrieval. Spectral hashing (SH) [8] uses spectral graph partitioning for hashing with the

graph constructed from the data similarity relationships. Binary reconstruction embed-

ding (BRE) [10] learns the hash functions by explicitly minimizing the reconstruction

error between the original distances and the Hamming distances of the corresponding

binary codes. Anchor graph hashing (AGH) [13] adopts anchor graphs to speed up the

computation of graph Laplacian eigenvectors, based on which the Nyström method is

used to compute projection functions. Sequential projection learning (SPL) [11] leans

the projection functions in a sequential way that each function is designed to correct

the errors caused by the previous one. Principle component analysis [28] based hashing

(PCAH) [15] adopts principle component analysis (PCA) to learn the projection func-

tions. Semi-supervise hashing (SSH) [11] exploits some labeled data to help hash func-

tion learning. Self-taught hashing [6] uses supervised learning algorithms for hashing

based on self-labeled data. Complementary hashing [29] exploits multiple complemen-

tary hash tables learned sequentially in a boosting manner to effectively balance the

precision and recall. Composite hashing [5] integrates multiple information sources for

hashing. Minimal loss hashing (MLH) [12] formulates the hashing problem as a struc-

tured prediction problem. Both accuracy and time are jointly optimized to learn the

hash functions in [30]. Hypergraph hashing [31] extends SH to hypergraph to model

the high-order relationships between social images. Active hashing [32] is proposed

to actively select the most informative labels for hash function learning. One of the

most recent data-dependent methods is iterative quantization (ITQ) [15] which finds

an orthogonal rotation matrix to refine the initial projection matrix learned by princi-

pal component analysis (PCA) [28] so that the quantization error of mapping the data

to the vertices of binary hypercube is minimized. Experimental results show that it

can achieve better performance than most state-of-the-art methods.Compared to the

data-dependent methods, the data-independent methods need longer codes to achieve

satisfactory performance [15].

For most existing projection functions such as those mentioned above, the variances

of different projected dimensions are different. Many researchers [13, 15, 33] have

5

Large-Scale Image Retrieval Based on Hashing

argued that using the same number of bits for different projected dimensions with un-

equal variances is unreasonable because larger-variance dimensions will carry more in-

formation. Some methods [15, 33] use orthogonal transformation to the PCA-projected

data with the expectation of balancing the variances of different PCA dimensions, and

achieve better performance than the original PCA based hashing. However, to the best

of our knowledge, there exist no methods which can guarantee to learn a projection

with equal variances for different dimensions. Hence, the viewpoint that using the

same number of bits for different projected dimensions is unreasonable has still not

been verified by either theory or experiment.

In terms of quantization stage, few of the existing methods discussed above have

studied the effect of quantization. Because existing quantization strategies can not ef-

fectively preserve the neighborhood structure under the constraint of Hamming dis-

tance, most of existing hashing methods still can not achieve satisfactory performance

even though sophisticated projection functions have been designed. The work in this

paper tries to study these important factors which have been ignored by existing works.

6

Large-Scale Image Retrieval Based on Hashing

Chapter 3 Isotropic Hashing

In this section, we first introduce the problem of learning projection functions for hash-

ing. Then we will formulate the IsoHash model which can learn projections with

isotropic variances. After that, we will describe the learning algorithms of IsoHash.

Finally, the complexity of IsoHash will be analyzed.

3.1 Problem Statement

Assume we are given n data points {x1,x2, · · · ,xn} with xi 2 Rd, which form the

columns of the data matrix X 2 Rd⇥n. Without loss of generality, in this paper the data

are assume to be zero centered which means
Pn

i=1 xi = 0. The basic idea of hashing is

to map each point xi into a binary string yi 2 {0, 1}m with m denoting the code size.

Furthermore, close points in the original space Rd should be hashed into similar binary

codes in the code space {0, 1}m to preserve the similarity structure in the original space.

In general, we compute the binary code of xi as yi = [h1(xi), h2(xi), · · · , hm(xi)]T

with m binary hash functions {hk(·)}mk=1.

Because it is NP hard to directly compute the best binary functions hk(·) for a given

data set [8], most hashing methods adopt a two-stage strategy to learn hk(·). In the

projection stage, m real-valued projection functions {fk(x)}mk=1 are learned and each

function can generate one real value. The projection functions are typically defined as

follows: fk(x) = w

T
k x, and wk is the kth column of projection matrix W 2 Rd⇥m.

Hence, we have m projected dimensions each of which corresponds to one projection

function. In the quantization stage, the real-values are quantized into a binary string by

thresholding.

Currently, most methods used single-bit quantization (SBQ) strategy adopts one sin-

gle bit to quantize each projected dimension. More specifically, hk(xi) = sgn(fk(xi))

where sgn(x) = 1 if x � 0 and -1 otherwise. The only exception of the quantization

methods is AGH [13], which uses two bits to quantize each dimension. In sum, all of

7

Large-Scale Image Retrieval Based on Hashing

these methods adopt the same number (either one or two) of bits for different projected

dimensions. However, the variances of different projected dimensions are unequal, and

larger-variance dimensions typically carry more information. Hence, using the same

number of bits for different projected dimensions with unequal variances is unreason-

able, which has also been argued by many researchers [13, 15, 33]. Unfortunately, there

exist no methods which can learn projection functions with equal variances for different

dimensions. In the following content of this section, we present a novel model to learn

projections with isotropic variances.

3.2 Model Formulation

The idea of our IsoHash method is to learn an orthogonal matrix to rotate the PCA

projection matrix. Here, we first briefly present the PCA projection methods.

As stated in [34], a reasonable standard of designing hash function to produce

efficient code is that first, the variance of each bit is maximized, second, the bits are

pairwise uncorrelated. They can be described in the following optimization problem

form :

max
mX

k=1

var(sgn(XT
wk)) (3-1)

1

n
sgn(W TX)sgn(XTW) = I (3-2)

As shown in [34], the variance is maximized by producing exactly balanced bits,

i.e., sgn(xi
T
wk)=1 for exactly half of the data points and -1 for the other half. How-

ever, the requirement of exact balancedness makes the above optimization problem

intractable(NP-hard [8]). Alternatively, we can do signed magnitude relaxation as in

[34] to get the following continuous objective function:

max
1

n
trace(W TXXTW) (3-3)

W TW = I (3-4)

8

Large-Scale Image Retrieval Based on Hashing

This above formulation is exactly the same as PCA. So to generate a code of m

bits, PCAH performs PCA on X , and then use the top m eigenvectors of the covariance

matrix XXT as columns of the projection matrix W 2 Rd⇥m. Here, top m eigenvectors

are those corresponding to the m largest eigenvalues {�k}mk=1, generally arranged with

the non-increasing order �1 � �2 � · · · � �m. Hence, the projection functions of

PCAH are defined as follows: fk(x) = w

T
k x, where wk is the kth column of W .

Let � = [�1,�2, · · · ,�m]T and ⇤ = diag(�), where diag(�) denotes the diagonal

matrix whose diagonal entries are formed from the vector �. It is easy to prove that

W TXXTW = ⇤. Hence, the variance of the values fk(xi)
n
i=1 on the kth projected

dimension, which corresponds to the kth row of W TX , is �k. Obviously, the variances

for different PCA dimensions are anisotropic.

To get isotropic projection functions, the idea of our IsoHash method is to learn

an orthogonal matrix Q 2 Rm⇥m which makes QTW TXXTWQ become a matrix

with equal diagonal values, i.e., [QTW TXXTWQ]11 = [QTW TXXTWQ]22 = · · · =
[QTW TXXTWQ]mm. Here, Aii denotes the ith diagonal entry of a square matrix A,

and a matrix Q is said to be orthogonal if QTQ = I where I is an identity matrix

whose dimensionality depends on the context. The effect of the orthogonal matrix Q

is to rotate the coordinate axes while keeping the Euclidean distances between any two

points unchanged. It is easy to prove that the new projection functions of IsoHash are

fk(x) = (WQ)Tk x which have the same (isotropic) variance. Here (WQ)k denotes the

kth column of WQ.

If we use tr(A) to denote the trace of a symmetric matrix A, we have the following

Lemma 1.

Lemma 1. If QTQ = I, tr(QTAQ) = tr(A).

Based on Lemma 1, we have tr(QTW TXXTWQ) = tr(W TXXTW) = tr(⇤) =
Pm

i=1 �i. Hence, to make QTW TXXTWQ become a matrix with equal diagonal val-

ues, we should set this diagonal value a =
Pm

i=1 �i

m .

Let a = [a1, a2, · · · , am] with ai = a =
Pm

i=1 �i

m , and

T (z) = {T 2 Rm⇥m|diag(T) = diag(z)}, (3-5)

9

Large-Scale Image Retrieval Based on Hashing

where z is a vector of length m, diag(T) is overloaded to denote a diagonal matrix with

the same diagonal entries of matrix T . The problem of IsoHash is to find a Q making

QTW TXXTWQ 2 T (a).

Then, we have the following Theorem 1:

Theorem 1. Assume QTQ = I and T 2 T (a). If QT⇤Q = T , Q will be a solution to

the problem of IsoHash.

Proof. Because W TXXTW = ⇤, we have QT⇤Q = QT [W TXXTW]Q. It is obvious

that Q will be a solution to the problem of IsoHash.

As in [35], we define

M(⇤) = {QT⇤Q|Q 2 O(m)}, (3-6)

where O(m) is the set of all orthogonal matrices in Rm⇥m, i.e., QTQ = I.

According to Theorem 1, the problem of IsoHash is equivalent to finding a Q for

the following equation [35]:

||T � Z||F = 0, (3-7)

where T 2 T (a), Z 2 M(⇤), || · ||F denotes the Frobenius norm. Please note that for

ease of understanding, we use the same notations as those in [35].

In the following content, we will use the Schur-Horn lemma [36] to prove that we

can always find a solution to problem (3-7).

Lemma 2. [Schur-Horn Lemma] Let c = {ci} 2 Rm and b = {bi} 2 Rm be real

vectors in non-increasing order respectively 1, i.e., c1 � c2 � · · · � cm, b1 � b2 �
· · · � bm. There exists a Hermitian matrix H with eigenvalues c and diagonal values b

1Please note in [35], the values are in increasing order. It is easy to prove that our presentation of
Schur-Horn lemma is equivalent to that in [35]. The non-increasing order is chosen here just because it
will facilitate our following presentation due to the non-increasing order of the eigenvalues in ⇤.

10

Large-Scale Image Retrieval Based on Hashing

if and only if

kX

i=1

bi
kX

i=1

ci, for any k = 1, 2, ...,m,

mX

i=1

bi =
mX

i=1

ci.

Proof. Please refer to Horn’s article [36].

Base on Lemma 2, we have the following Theorem 2.

Theorem 2. There exists a solution to the IsoHash problem in (3-7). And this solution

is in the intersection point of T (a) and M(⇤).

Proof. Because �1 � �2 � · · · � �m and a1 = a2 = · · · = am =
Pm

i=1 �i

m , it is easy to

prove that
Pk

i=1 �i

k �
Pm

i=1 �i

m for any k. Hence,
Pk

i=1 �i = k ⇥
Pk

i=1 �i

k � k ⇥
Pm

i=1 �i

m =
Pk

i=1 ai. Furthermore, we can prove that
Pm

i=1 �i =
Pm

i=1 ai. According to Lemma 2,

there exists a Hermitian matrix H with eigenvalues � and diagonal values a.

Moreover, we can prove that H is in the intersection of T (a) and M(⇤), i.e., H 2 T (a)

and H 2 M(⇤).

According to Theorem 2, to find a Q solving the problem in (3-7) is equivalent to

finding the intersection point of T (a) and M(⇤), which is just an inverse eigenvalue

problem called SHIEP in [35].

3.3 Learning

The problem in (3-7) can be reformulated as the following optimization problem:

argmin
Q:T2T (a),Z2M(⇤)

||T � Z||F . (3-8)

As in [35], we propose two algorithms to learn Q: one is called lift and projection (LP),

and the other is called gradient flow (GF). For ease of understanding, we use the same

notations as those in [35], and some proofs of theorems are omitted. The readers can

refer to [35] for the details.

11

Large-Scale Image Retrieval Based on Hashing

3.3.1 Lift and Projection

The main idea of lift and projection (LP) algorithm is to alternate between the following

two steps:

• Lift step:

Given a T (k) 2 T (a), we find the point Z(k) 2 M(⇤) such that ||T (k) � Z(k)||F =

dist(T (k),M(⇤)), where dist(T (k),M(⇤)) denotes the minimum distance be-

tween T (k) and the points in M(⇤).

• Projection step:

Given a Z(k), we find T (k+1) 2 T (a) such that ||T (k+1) � Z(k)||F = dist(T (a), Z(k)),

where dist(T (a), Z(k)) denotes the minimum distance between Z(k) and the points

in T (a).

We call Z(k) a lift of T (k) onto M(⇤) and T (k+1) a projection of Z(k) onto T (a).

The projection operation is easy to complete. Suppose Z(k) = [zij], then T (k+1) = [tij]

must be given by

tij =

8
<

:
zij, if i 6= j

ai, if i = j
(3-9)

For the lift operation, we have the following Theorem 3.

Theorem 3. Suppose T = QTDQT is an eigen-decomposition of T where D = diag(d)

with d = [d1, d2, ..., dm]T being T ’s eigenvalues which are ordered as d1 � d2 � · · · �
dm. Then the nearest neighbor of T in M(⇤) is given by

Z = QT⇤Q. (3-10)

Proof. See Theorem 4.1 in [37].

12

Large-Scale Image Retrieval Based on Hashing

Since in each step we minimize the distance between T and Z, we have

||T (k) � Z(k)||F � ||T (k+1) � Z(k)||F � ||T (k+1) � Z(k+1)||F .

It is easy to see that (T (k), Z(k)) will converge to a stationary point. The whole Iso-

Hash algorithm based on LP, abbreviated as IsoHash-LP, is briefly summarized in Al-

gorithm 1.

Algorithm 1 Lift and projection based IsoHash (IsoHash-LP)

Input: X 2 Rd⇥n,m 2 N+, t 2 N+

• [⇤,W] = PCA(X,m), as stated in Section 3.2.

• Generate a random orthogonal matrix Q0 2 Rn⇥n.

• Z(0) QT
0⇤Q0.

• for k = 1! t do
Calculate T (k) from Z(k�1) by equation (3-9).
Perform eigen-decomposition of T (k) to get QT

kDQk = T (k).
Calculate Z(k) from Qk and ⇤ by equation (3-10).

• end for

• Y = sgn(QT
t W

TX).

Output: Y

Because M(⇤) is not a convex set, the stationary point we find is not necessarily

inside the intersection of T (a) and M(⇤). For example, if we set Z(0) = ⇤, the

lift and projection learning algorithm would get no progress because the Z and T are

already in a stationary point. To solve this problem of degenerate solutions, we initiate

Z as a transformed ⇤ with some random orthogonal matrix Q0, which is illustrated in

Algorithm 1.

3.3.2 Gradient Flow

Another learning algorithm is a continuous one based on the construction of a gradient

flow (GF) on the surface M(⇤) that moves towards the desired intersection point. Be-

13

Large-Scale Image Retrieval Based on Hashing

cause there always exists a solution for the problem in (3-7) according to Theorem 2,

the objective function in (3-8) can be reformulated as follows [35]:

min
Q2O(n)

F (Q) =
1

2
||diag(QT⇤Q)� diag(a)||2F . (3-11)

The details about how to optimize (3-11) can be found in [35]. We just show some

key steps of the learning algorithm in the following content.

The gradient rF at Q can be calculated as

rF (Q) = 2⇤�(Q), (3-12)

where �(Q) = diag(QT⇤Q) � diag(a). Once we have computed the gradient of F , it

can be projected onto the manifold O(m) according to the following Theorem 4.

Theorem 4. The projection of rF (Q) onto O(m) is given by

g(Q) = Q[QT⇤Q, �(Q)] (3-13)

where [A,B] = AB � BA is the Lie bracket.

Proof. See the formulas (20), (21) and (22) in [37].

The vector field Q̇ = �g(Q) defines a steepest descent flow on the manifold O(m)

for function F (Q). Letting Z = QT⇤Q and ↵(Z) = �(Q), we get

Ż = [Z, [↵(Z), Z]], (3-14)

where Ż is an isospectral flow that moves to reduce the objective function F (Q).

As stated by Theorems 3.3 and 3.4 in [35], a stable equilibrium point of (3-14) must

be combined with �(Q) = 0, which means that F (Q) has decreased to zero. Hence, the

gradient flow method can always find an intersection point as the solution. The whole

IsoHash algorithm based on GF, abbreviated as IsoHash-GF, is briefly summarized in

Algorithm 2.

14

Large-Scale Image Retrieval Based on Hashing

Algorithm 2 Gradient flow based IsoHash (IsoHash-GF)

Input: X 2 Rd⇥n,m 2 N+

• [⇤,W] = PCA(X,m), as stated in Section 3.2.

• Generate a random orthogonal matrix Q0 2 Rm⇥m.

• Z(0) QT
0⇤Q0.

• Start integration form Z = Z(0) with gradient computed from equation (3-14).

• Stop integration when reaching a stable equilibrium point.

• Perform eigen-decomposition of Z to get QT⇤Q = Z.

• Y = sgn(QTW TX).

Output: Y

We now discuss some implementation details of IsoHash-GF. Since all diagonal

matrices in M(⇤) result in Ż = 0, one should not use ⇤ as the starting point. In our

implementation, we use the same method as that in IsoHash-LP to avoid this degenerate

case, i.e., a random orthogonal transformation matrix Q0 is use to rotate ⇤. To integrate

Z with gradient (3-14), we use Adams-Bashforth-Moulton PECE solver in [38] where

the parameter RelTol is set to 10�3. The relative error of the algorithm is computed

by comparing the diagonal entries of Z to the target diag(a). The whole integration

process will be terminated when their relative error is below 10�7.

3.4 Complexity Analysis

The learning of our IsoHash method contains two phases: the first phase is PCA and

the second phase is LP or GF. The time complexity of PCA is O(min(n2d, nd2)). The

time complexity of LP after PCA is O(m3t), and that of GF after PCA is O(m3). In our

experiments, t is set to 100 because good performance can be achieved at this setting.

Because m is typically set to be a very small number like 64 or 128, the main time

complexity of IsoHash is from the PCA phase. In general, the training of IsoHash-GF

will be faster than IsoHash-LP in our experiments.

15

Large-Scale Image Retrieval Based on Hashing

One promising property of both LP and GF is that the time complexity after PCA is

independent of the number of training data, which makes them scalable to large-scale

data sets.

3.5 Relation to Existing Works

The most related method of IsoHash is ITQ [15], because both ITQ and IsoHash have

to learn an orthogonal matrix. However, IsoHash is different from ITQ in many as-

pects: firstly, the goal of IsoHash is to learn a projection with isotropic variances, but

the results of ITQ cannot necessarily guarantee isotropic variances; secondly, IsoHash

directly learns the orthogonal matrix from the eigenvalues and eigenvectors of PCA,

but ITQ first quantizes the PCA results to get some binary codes, and then learns the

orthogonal matrix based on the resulting binary codes; thirdly, IsoHash has an explicit

objective function to optimize, but ITQ uses a two-step heuristic strategy whose goal

cannot be formulated by a single objective function; fourthly, to learn the orthogonal

matrix, IsoHash uses Lift and Projection or Gradient Flow, but ITQ uses Procrustean

method which is much slower than IsoHash. From the experimental results which will

be presented in the next section, we can find that IsoHash can achieve accuracy compa-

rable to ITQ with much faster training speed.

3.6 Summary

In this chapter, we firstly formulate the IsoHash model, secondly use Schur-Horn Lemma

to prove the existence of solution, thirdly present two algorithms to find the solution,

fourthly discuss the computational complexity and relation to other existing works.

16

Large-Scale Image Retrieval Based on Hashing

Chapter 4 Manhattan Quantization

Currently, almost all hashing methods adopt Hamming distance to measure the similar-

ity (neighborhood) between points in the hashcode space. The Hamming distance be-

tween two strings of equal length is the number of positions at which the corresponding

symbols are different 1. Till now, only two quantization methods have been proposed for

hashing. One is single-bit quantization(SBQ) just discussed above, and the other is hi-

erarchical quantization (HQ) which is adopted by only one hashing method AGH [13].

Rather than using one bit, HQ divides each projected dimension into four regions with

three thresholds and uses two bits to encode each region. Hence, to get a c-bit code,

HQ based hashing need only c/2 projection functions. Figure 4.1 (b) illustrates the re-

sult of HQ for one projected dimension. However neither SBQ nor HQ can effectively

preserve the neighborhood structure under the constraint of Hamming distance. Hence,

although the projection functions in the projection stage can preserve the neighborhood

structure, the whole hashing procedure will still destroy the neighborhood structure in

the original feature space due to the limitation of Hamming distance. This will vio-

late the goal of hashing and consequently satisfactory performance cannot be easily

achieved by traditional Hamming distance based hashing methods, even though a large

number of sophisticated projection functions have been designed by researchers. We

tries to study these important factors which have been ignored by existing works.

To achieve satisfactory performance for ANN, one important requirement of hash-

ing is to preserve the neighborhood structure in the original space. More specifically,

close points in the original space Rd should be mapped to similar binary codes in the

code space {0, 1}c.
We can easily find that with Hamming distance, both SBQ and HQ will destroy

the neighborhood structure in the data. As illustrated in Figure 4.1 (a), point ‘C’ and

point ‘D’ will be quantized into 0 and 1 respectively although they are very close to

each other in the real-valued space. On the contrary, point ‘D’ and point ‘F’ will be
1http://en.wikipedia.org/wiki/Hamming_distance

17

http://en.wikipedia.org/wiki/Hamming_distance

Large-Scale Image Retrieval Based on Hashing

A B C D E F 0 1

01 00 10 11

00 01 10 11

(a)

(b)

(c)

000 001 010 011 (d) 100 101 110 111

Figure 4.1 Different quantization methods: (a) single-bit quantization (SBQ); (b)
hierarchical quantization (HQ); (c) 2-bit Manhattan quantization (2-MQ); (d) 3-
bit Manhattan quantization (3-MQ).

quantized into the same code 1 although they are far away from each other. Hence, in

the code space of this dimension, the Hamming distance between ‘F’ and ‘D’ is smaller

than that between ‘C’ and ‘D’, which obviously indicates that SBQ can destroy the

neighborhood structure in the original space.

HQ can also destroy the neighborhood structure of data. Let dh(x, y) denote the

Hamming distance between binary codes x and y. From Figure 4.1 (b), we can get

dh(A,F) = dh(A,B) = dh(C,D) = dh(D,F) = 1, and dh(A,D) = dh(C, F) = 2.

Hence, we can find that the Hamming distance between the two farthest points ‘A’ and

‘F’ is the same as that between two relatively close points such as ‘A’ and ‘B’. The even

worse case is that dh(A,F) < dh(A,D), which is obviously very unreasonable.

The problem of HQ is inevitable under the constraint of Hamming distance. Fig-

ure 4.2 (a) shows the Hamming distance between different 2-bit codes, where the dis-

tance between two points (i.e., nodes in the graph) is equivalent to the length of the

shortest path between them. We can see that the largest Hamming distance between

2-bit codes is 2. However, to keep the relative distances between 4 different points (or

regions), the largest distance between two different 2-bit codes should be at least 3.

Hence, no matter how we permute the 2-bit codes for the four regions in Figure 4.1 (b),

we cannot get any neighborhood-preserving result under the constraint of Hamming

distance. One choice to overcome this problem of HQ is to design a new distance mea-

surement.

18

Large-Scale Image Retrieval Based on Hashing

00 01

11 10

(a) Hamming distance

00 01 11 10

(b) Decimal distance with NBC

Figure 4.2 Hamming distance and Decimal distance between 2-bit codes. The
distance between two points (i.e., nodes in the graph) is the length of the shortest
path between them.

4.1 Manhattan Distance Driven Quantization

As stated above, the problem that HQ cannot preserve the neighborhood structure in

the data is essentially from the Hamming distance. Here, we will show that Manhattan

distance with natural binary code (NBC) can solve the problem of HQ.

The Manhattan distance between two points is the sum of the differences on their

dimensions. Let x = [x1, x2, · · · , xd]T , y = [y1, y2, · · · , yd]T , the Manhattan distance

between x and y is defined as follows:

dm(x,y) =
dX

i=1

|xi � yi|, (4-1)

where |x| denotes the absolute value of x.

To adapt Manhattan distance for hashing, we adopt a q-bit quantization scheme.

More specifically, after we have learned the real-valued projection functions, we divide

each projected dimension into 2q regions and then use q bits of natural binary code

(NBC) to encode the index of each region. For example, if q = 2, each projected

dimension is divided into 4 regions, and the indices of these regions are {0, 1, 2, 3},

19

Large-Scale Image Retrieval Based on Hashing

the NBC codes of which are {00, 01, 10, 11}. If q = 3, the indices of regions are

{0, 1, 2, 3, 4, 5, 6, 7}, and the NBC codes are {000, 001, 010, 011, 100, 101, 110, 111}.

Figure 4.1 (c) shows the quantization result with q = 2 and Figure 4.1 (d) shows the

quantization result with q = 3. Because this quantization scheme is driven by Manhat-

tan distance, we call it Manhattan quantization (MQ). The MQ with q bits is denoted

as q-MQ.

Another issue for MQ is about threshold learning. Badly learned thresholds will

deteriorate the quantization performance. To achieve the neighborhood-preserving goal,

we need to make the points in each region as similar as possible. In this paper, we

use k-means clustering algorithm to learn the thresholds from the training data. More

specifically, if we need to quantize each projected dimension into q bits, we use k-means

to cluster the real values of each projected dimension into 2q clusters, and the midpoint

of the line joining neighboring cluster centers will be used as thresholds.

In our MH, we use the decimal distance rather than the Hamming distance to mea-

sure the distances between the q-bit codes for each projected dimension. The decimal

distance is defined to be the difference between the decimal values of the corresponding

NBC codes. For example, let dd(x,y) denote the decimal distance between x and y,

then dd(10, 00) = |2 � 0| = 2 and dd(010, 110) = |2 � 6| = 4. Figure 4.2 (b) shows

the decimal distances between different 2-bit codes, where the distance between two

points (i.e., nodes in the graph) is equivalent to the length of the shortest path between

them. We can see that the largest decimal distance between 2-bit codes is 3, which is

enough to effectively preserve the relative distances between 4 different points (or re-

gions). Figure 4.1 (c) shows one of the encoding results which can preserve the relative

distances between the regions. Figure 4.1 (d) is the results with q = 3. It is obvious

that the relative distances between the regions are also preserved. In fact, it is not hard

to prove that this nice property will be satisfied for any positive integer q. Hence, our

MQ strategy with q � 2 provides a more effective way to preserve the neighborhood

structure than SBQ and HQ.

Given two binary codes x and y generated by MH, the Manhattan distance between

them is computed from (4-1), where xi and yi correspond to the ith projected dimension

20

Large-Scale Image Retrieval Based on Hashing

which should contain q bits. Furthermore, the difference between two q-bit codes of

each dimension should be measured with decimal distance. For example, if q = 2,

dm(000100, 110000) = dd(00, 11) + dd(01, 00) + dd(00, 00)

= 3 + 1 + 0

= 4.

If q = 3,

dm(000100, 110000) = dd(000, 110) + dd(100, 000)

= 6 + 4

= 10.

It is easy to see that when q = 1, the results computed with Manhattan distance are

equivalent to those with Hamming distance, and consequently our MH method degen-

erates to the traditional SBQ-based hashing methods.

4.2 Summary of MH Learning

Given a training set, the whole learning procedure of MH, including both projection

and quantization stages, can be summarized as follows:

• Choose a positive integer q, which is 2 in default;

• Choose an existing projection method or design a new projection method, and

then learn b c
qc projection functions;

• Use k-means to learn 2q clusters, and compute 2q � 1 thresholds based on the

centers of the learned clusters;

• Use MQ in Section 4.1 to quantize each projected dimension into q bits of NBC

code based on the learned thresholds;

21

Large-Scale Image Retrieval Based on Hashing

• Concatenate the q-bit codes of all the b c
qc projected dimensions into one long

code to represent each point.

4.3 Summary

In this chapter, we explain the problem of hashing using Hamming distance and propose

our Manhattan Hasing (MH) algorithm.

22

Large-Scale Image Retrieval Based on Hashing

Chapter 5 Experiment

5.1 Data Sets

We evaluate our methods on two widely used data sets, CIFAR [39] and LabelMe [7].

The first data set is CIFAR-10 [39] which consists of 60,000 images. These images

are collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton as the labeled subset

of the original 80 million Tiny Images [40]. TinyImage data set aims to present a

visualization of all the nouns in the English language arranged by semantic meaning.

A total number of 79,302,017 images were collected by Google’s image search engine

and other search engines. The original images have the size of 32x32 pixels. These

images are manually labeled into 10 classes, which are airplane, automobile, bird, cat,

deer, dog, frog, horse, ship, and truck. The size of each image is 32⇥32 pixels. We

represent them with 256-dimensional gray-scale GIST descriptors [41].

The second data set is 22K LabelMe used in [7, 12]. LabelMe is a web-based tool

designed to facilitate image annotation. With the help of this annotation tool, the current

LabelMe data set contains as large as 200,790 images which span a wide variety of

object categories. Most images in LabelMe contain multiple objects. 22K LabelMe

contains 22,019 images sampled from the large LabelMe data set. As in [7], we scale the

images to have the size of 32x32 pixels, and represent each image with 512-dimensional

GIST descriptors [41].

5.2 Evaluation Protocols and Baselines

As the protocols widely used in recent papers [8, 12, 15, 23], Euclidean neighbors in

the original space are considered as ground truth. More specifically, a threshold of the

average distance to the 50th nearest neighbor is used to define whether a point is a true

positive or not. Based on the Euclidean ground truth, we compute the precision-recall

curve and mean average precision (mAP) [13, 15]. For all experiments, we randomly

select 1000 points as queries, and leave the rest as training set to learn the hash func-

23

Large-Scale Image Retrieval Based on Hashing

tions. All the experimental results are averaged over 10 random training/test partitions.

Although a lot of hashing methods have been proposed, some of them are either

supervised [12] or semi-supervised [11]. Our IsoHash method is essentially an unsu-

pervised one. Hence, for fair comparison, we select the most representative unsuper-

vised methods for evaluation, which contain PCAH [15], ITQ [15], SH [8], LSH [2],

and SIKH [23]. These chosen methods are briefly introduced as follows:

• PCAH uses the eigenvectors corresponding to the largest eigenvalues of the co-

variance matrix for projection.

• ITQ uses an iteration method to find an orthogonal rotation matrix to refine the

initial projection matrix learned by PCA so that the quantization error of mapping

the data to the vertices of binary hypercube is minimized. Experimental results

in [15] show that it can achieve better performance than most state-of-the-art

methods. We set the iteration number of ITQ to be 100.

• SH uses the eigenfunctions computed from the data similarity graph for projec-

tion.

• SIKH [23] uses random projections to approximate the shift-invariant kernels.

As in [15, 23], we use a Gaussian kernel whose bandwidth is set to the average

distance to the 50th nearest neighbor.

• LSH uses a Gaussian random matrix to perform random projection.

Among these methods, PCAH, ITQ and SH are data-dependent methods, while SIKH

and LSH are data-independent methods.

All experiments are conducted on our workstation with Intel(R) Xeon(R) CPU

X7560@2.27GHz and 64G memory.

5.3 Evaluation Metrics

We adopt the scheme widely used in recent papers [8, 15, 23] to evaluate our method.

More specifically, Euclidean neighbors in the original feature space are considered as

24

Large-Scale Image Retrieval Based on Hashing

ground truth. A threshold of the average distance to the 50th nearest neighbors is used to

define whether a point is a true positive or not. All the experimental results are averaged

over 10 random training/test partitions. For each partition, we randomly select 1000

points as queries, and leave the rest as training set to learn the hash functions.

Based on the Euclidean ground truth, we can compute the precision, recall and the

mean average precision (mAP) [13, 15] which are defined as follows:

Precision =
the number of retrieved relevant points

the number of all retrieved points
,

Recall =
the number of retrieved relevant points

the number of all relevant points
,

mAP =
1

|Q|
|Q|X

i=1

1

ni

niX

k=1

Precision(Rik),

where qi 2 Q is a query, ni is the number of points relevant to qi in the data set, the

relevant points are ordered as {x1, x2, · · · , xni}, Rik is the set of ranked retrieval results

from the top result until you get to point xk.

5.4 Accuracy

5.4.1 Accuracy of IsoHash

Table 5.1, 5.2 show the Hamming ranking performance measured by mAP on LabelMe

and CIFAR-10 datasets. It is clear that our IsoHash methods, including both IsoHash-

GF and IsoHash-LP, achieve far better performance than PCAH. The main difference

between IsoHash and PCAH is that the PCAH dimensions have anisotropic variances

while IsoHash dimensions have isotropic variances. Hence, the intuitive viewpoint that

using the same number of bits for different projected dimensions with anisotropic vari-

ances is unreasonable has been successfully verified by our experiments. Furthermore,

the performance of IsoHash is also comparable, if not superior, to the state-of-the-art

methods, such as ITQ.

Figure 5.1 illustrates the precision-recall curves on LabelMe data set with different

25

Large-Scale Image Retrieval Based on Hashing

Table 5.1 mAP on LabelMe and CIFAR data sets.

Method LabelMe CIFAR
bits 32 64 96 128 256 32 64 96 128 256

IsoHash-GF 0.2580 0.3269 0.3528 0.3662 0.3889 0.2249 0.2969 0.3256 0.3357 0.3600
IsoHash-LP 0.2534 0.3223 0.3577 0.3826 0.4274 0.1907 0.2624 0.3027 0.3223 0.3651

PCAH 0.0516 0.0401 0.0341 0.0307 0.0232 0.0319 0.0274 0.0241 0.0216 0.0168
ITQ 0.2786 0.3328 0.3504 0.3615 0.3728 0.2490 0.3051 0.3238 0.3319 0.3436
SH 0.0826 0.1034 0.1447 0.1653 0.2080 0.0510 0.0589 0.0802 0.1121 0.1535

SIKH 0.0590 0.1482 0.2074 0.2526 0.4488 0.0353 0.0902 0.1245 0.1909 0.3614
LSH 0.1549 0.2574 0.3147 0.3375 0.4034 0.1052 0.1907 0.2396 0.2776 0.3432

Table 5.2 Average precision (AP) of top 250 ranked images on LabelMe and
CIFAR data sets.

Method LabelMe CIFAR
bits 32 64 96 128 256 32 64 96 128 256

IsoHash-GF 0.5688 0.6787 0.7218 0.7317 0.7591 0.4766 0.5629 0.5941 0.6058 0.6337
IsoHash-LP 0.5043 0.6241 0.6842 0.7096 0.7593 0.4623 0.5492 0.5876 0.6146 0.6630

PCAH 0.1348 0.1392 0.1327 0.1258 0.1115 0.1618 0.1438 0.1318 0.1252 0.1054
ITQ 0.6259 0.6975 0.7167 0.7256 0.7394 0.4950 0.5615 0.5811 0.5950 0.6070
SH 0.1611 0.1955 0.2608 0.3379 0.4221 0.2109 0.2559 0.3287 0.3643 0.4235

SIKH 0.1120 0.2823 0.3528 0.4648 0.6788 0.1609 0.3272 0.4050 0.4624 0.6510
LSH 0.3665 0.5323 0.6140 0.6623 0.7387 0.3491 0.4906 0.5595 0.5832 0.6435

code sizes. The relative performance in the precision-recall curves on CIFAR is similar

to that on LabelMe. We omit the results on CIFAR due to space limitation. Once again,

we can find that our IsoHash methods can achieve performance which is far better than

PCAH and comparable with the state-of-the-art.

5.4.2 Accuracy of MQ

Now we compare the performance of two quantization method, traditional SBQ and

our proposed MQ. From Table 5.3, we can clearly seen that our MQ method achieves

great performance improvement under most settings. This implies that our MQ with

Manhattan distance is indeed very effective.

5.5 Computational Cost

Table 5.4 shows the training time on CIFAR. We can see that our IsoHash methods are

much faster than ITQ. The time complexity of ITQ also contains two parts: the first

part is PCA which is the same as that in IsoHash, and the second part is an iteration

26

Large-Scale Image Retrieval Based on Hashing

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(a) 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(b) 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(c) 96 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(d) 128 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(e) 256 bits

Figure 5.1 Precision-recall curves on LabelMe data set.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(a) 32 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(b) 64 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(c) 96 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(d) 128 bits

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

(e) 256 bits

Figure 5.2 Precision-recall curve on CIFAR data set

27

Large-Scale Image Retrieval Based on Hashing

Table 5.3 mAP on 22K LabelMe data set. The best mAP among all the projection
methods under the same quantization method is shown in bold face.

bits 32 64
SBQ 2-MQ SBQ 2-MQ

IsoHash-GF 0.2838 0.3391 0.329 0.4831
IsoHash-LP 0.2541 0.3354 0.3461 0.4749

ITQ 0.2771 0.3537 0.3283 0.4881
SIKH 0.0487 0.0722 0.1175 0.1700
LSH 0.1563 0.1382 0.2577 0.2833
SH 0.0802 0.2207 0.0988 0.3237

PCA 0.0503 0.1913 0.0388 0.2233
bits 128 256

SBQ 2-MQ SBQ 2-MQ
IsoHash-GF 0.3859 0.6017 0.4041 0.6867
IsoHash-LP 0.3874 0.626 0.4344 0.6984

ITQ 0.3559 0.5905 0.3731 0.6496
SIKH 0.2673 0.3669 0.4109 0.5704
LSH 0.3310 0.4596 0.3955 0.6115
SH 0.1644 0.4367 0.2027 0.4418

PCA 0.0298 0.2114 0.0226 0.1710

algorithm to rotate the original PCA matrix with time complexity O(nm2), where n is

the number of training points and m is the number of bits in the binary code. Hence,

as the number of training data increases, the second part time complexity of ITQ will

increase linearly to the number of training points. But the time complexity of IsoHash

after PCA is independent of the number of training points. Hence, IsoHash will be much

faster than ITQ, particularly in the case with large number of training points. This is

clearly shown in Figure 5.3 which illustrates the training time when the numbers of

training data are changed.

5.6 Summary

In this chapter, we conduct several experiment to test the performance of our proposed

IsoHash and MH algorithm on two widely-used datasets CIFAR-10 and LabelMe and

get promising results. Our used evaluation protocols are the general ones used by many

researchers even outside image retrieval. The base line methods include state-of-the-art

28

Large-Scale Image Retrieval Based on Hashing

Table 5.4 Training time (in second) on CIFAR data set.

bits 32 64 96 128 256
IsoHash-GF 2.48 2.45 2.70 3.00 5.55
IsoHash-LP 2.14 2.43 2.94 3.47 8.83

PCAH 1.84 2.14 2.23 2.36 2.92
ITQ 4.35 6.33 9.73 12.40 29.25
SH 1.60 3.41 8.37 13.66 49.44

SIKH 1.30 1.44 1.57 1.55 2.20
LSH 0.05 0.08 0.11 0.19 0.31

0 1 2 3 4 5 6
x 104

0

10

20

30

40

50

Number of training data

Tr
ai

ni
ng

 T
im

e(
s)

IsoHash−GF
IsoHash−LP
ITQ
SH
SIKH
LSH
PCAH

Figure 5.3 Training time comparison on CIFAR data set when changing the num-
ber of training data.

method ITQ, the one to verify the power of isotropic variance PCA which make the

result more convincing.

29

Large-Scale Image Retrieval Based on Hashing

Chapter 6 Conclusion

Although many researchers have intuitively argued that using the same number of bits

for different projected dimensions with anisotropic variances is unreasonable, this view-

point has still not been verified by either theory or experiment because no methods have

been proposed to find projection functions with isotropic variances for different dimen-

sions. The proposed IsoHash method in this paper is the first work to learn projection

functions which can produce projected dimensions with isotropic variances (equal vari-

ances). Experimental results on real data sets have successfully verified the viewpoint

that projections with isotropic variances will be better than those with anisotropic vari-

ances. Furthermore, IsoHash can achieve accuracy comparable to the state-of-the-art

methods with faster training speed.

Almost all the existing hashing methods focus on the projection stage while ignoring

the quantization stage. To further improve the accuracy, we focus on the quantization

stage and find it at least as important as the projection stage. The existing quantization

methods, such as SBQ and HQ, will destroy the neighborhood structure in the original

space, which violates the goal of hashing. We propose a novel quantization strategy

called Manhattan quantization (MQ) to effectively preserve the neighborhood structure

among data. The MQ based hashing method, call Manhattan hashing (MH), encodes

each projected dimension with multiple bits of natural binary code (NBC), based on

which the Manhattan distance between points in the hashcode space is calculated for

nearest neighbor search. MH can effectively preserve the neighborhood structure in

the data to achieve the goal of hashing. Experiments show that our MH method is

significantly effective. And the new hashing method which is combined by IsoHash

and MQ achieves very promising accuracy.

30

Large-Scale Image Retrieval Based on Hashing

Chapter 7 Publication

[1] Weihao Kong, Wu-Jun Li. Double-Bit Quantization for Hashing. Twenty-Sixth

AAAI Conference on Artificial Intelligence(AAAI), 2012

[2] Weihao Kong, Wu-Jun Li, Minyi Guo. Manhattan hashing for large-scale image

retrieval. Proceedings of the 35th international ACM SIGIR conference on Research

and development in information retrieval(SIGIR), 2012.

[3] Weihao Kong, Wu-Jun Li. Isotropic Hashing. Advances in Neural Information

Processing Systems 25(NIPS), 2012

31

Large-Scale Image Retrieval Based on Hashing

REFERENCE

[1] SHAKHNAROVICH G, DARRELL T, INDYK P. Nearest-Neighbor Methods in
Learning and Vision: Theory and Practice[M].[S.l.]: The MIT Press, 2006.

[2] ANDONI A, INDYK P. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions[J]. Commun. ACM, 2008, 51(1):117–122.

[3] GIONIS A, INDYK P, MOTWANI R. Similarity Search in High Dimensions via
Hashing[C]//Proceedings of International Conference on Very Large Data Bases.
.[S.l.]: [s.n.] , 1999.

[4] STEIN B. Principles of hash-based text retrieval[C]//Special Interest Group on
Information Retrieval. .[S.l.]: [s.n.] , 2007.

[5] ZHANG D, WANG F, SI L. Composite hashing with multiple information
sources[C]//Proceedings of International ACM SIGIR Conference on Research
and Development in Information Retrieval. .[S.l.]: [s.n.] , 2011.

[6] ZHANG D, WANG J, CAI D, et al. Self-taught hashing for fast similarity
search[C]//Proceedings of International ACM SIGIR Conference on Research and
Development in Information Retrieval. .[S.l.]: [s.n.] , 2010.

[7] TORRALBA A, FERGUS R, WEISS Y. Small Codes and Large Image Databases
for Recognition[C]//Proceedings of Computer Vision and Pattern Recognition.
.[S.l.]: [s.n.] , 2008.

[8] WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]//Proceedings of Neu-
ral Information Processing Systems. .[S.l.]: [s.n.] , 2008.

[9] SALAKHUTDINOV R, HINTON G E. Semantic hashing[J]. Int. J. Approx. Rea-
soning, 2009, 50(7):969–978.

[10] KULIS B, DARRELL T. Learning to Hash with Binary Reconstructive Embed-
dings[C]//Proceedings of Neural Information Processing Systems. .[S.l.]: [s.n.] ,
2009.

[11] WANG J, KUMAR S, CHANG S F. Sequential Projection Learning for Hash-
ing with Compact Codes[C]//Proceedings of International Conference on Machine
Learning. .[S.l.]: [s.n.] , 2010.

32

Large-Scale Image Retrieval Based on Hashing

[12] NOROUZI M, FLEET D J. Minimal Loss Hashing for Compact Binary
Codes[C]//Proceedings of International Conference on Machine Learning. .[S.l.]:
[s.n.] , 2011.

[13] LIU W, WANG J, KUMAR S, et al. Hashing with Graphs[C]//Proceedings of
International Conference on Machine Learning. .[S.l.]: [s.n.] , 2011.

[14] TURE F, ELSAYED T, LIN J J. No free lunch: brute force vs. locality-sensitive
hashing for cross-lingual pairwise similarity[C]//Special Interest Group on Infor-
mation Retrieval. .[S.l.]: [s.n.] , 2011.

[15] GONG Y, LAZEBNIK S. Iterative Quantization: A Procrustean Approach to
Learning Binary Codes[C]//Proceedings of Computer Vision and Pattern Recog-
nition. .[S.l.]: [s.n.] , 2011.

[16] MU Y, SHEN J, YAN S. Weakly-supervised hashing in kernel
space[C]//Proceeding of Computer Vision and Pattern Recognition. .[S.l.]: [s.n.] ,
2010.

[17] BALUJA S, COVELL M. Learning to hash: forgiving hash functions and applica-
tions[J]. Data Min. Knowl. Discov., 2008, 17(3):402–430.

[18] SONG J, YANG Y, HUANG Z, et al. Multiple feature hashing for real-time
large scale near-duplicate video retrieval[C]//ACM Multimedia. .[S.l.]: [s.n.] ,
2011:423–432.

[19] DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme
based on p-stable distributions[C]//Proceedings of the ACM Symposium on Com-
putational Geometry. .[S.l.]: [s.n.] , 2004.

[20] KULIS B, GRAUMAN K. Kernelized locality-sensitive hashing for scalable image
search[C]//Proceedings of International Conference on Computer Vision. .[S.l.]:
[s.n.] , 2009.

[21] KULIS B, JAIN P, GRAUMAN K. Fast Similarity Search for Learned Metrics[J].
IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31(12):2143–2157.

[22] MU Y, YAN S. Non-Metric Locality-Sensitive Hashing[C]//Proceeding of Asso-
ciation for the Advancement of Artificial Intelligence. .[S.l.]: [s.n.] , 2010.

33

Large-Scale Image Retrieval Based on Hashing

[23] RAGINSKY M, LAZEBNIK S. Locality-Sensitive Binary Codes from Shift-
Invariant Kernels[C]//Proceedings of Neural Information Processing Systems.
.[S.l.]: [s.n.] , 2009.

[24] SALAKHUTDINOV R, HINTON G. Semantic Hashing[C]//SIGIR workshop on
Information Retrieval and applications of Graphical Models. .[S.l.]: [s.n.] , 2007.

[25] HINTON G E. Training Products of Experts by Minimizing Contrastive Diver-
gence[J]. Neural Computation, 2002, 14(8):1771–1800.

[26] SALTON G, BUCKLEY C. Term-Weighting Approaches in Automatic Text Re-
trieval[J]. Inf. Process. Manage., 1988, 24(5):513–523.

[27] FREUND Y, SCHAPIRE R E. Experiments with a New Boosting Algo-
rithm[C]//Proceeding of International Conference on Machine Learning. .[S.l.]:
[s.n.] , 1996.

[28] JOLLIFFE I. Principal Component Analysis[M].[S.l.]: Springer, 2002.

[29] XU H, WANG J, LI Z, et al. Complementary hashing for approximate nearest
neighbor search[C]//Proceeding of International Conference on Computer Vision.
.[S.l.]: [s.n.] , 2011.

[30] HE J, RADHAKRISHNAN R, CHANG S F, et al. Compact Hashing with Joint
Optimization of Search Accuracy and Time[C]//Proceedings of Computer Vision
and Pattern Recognition. .[S.l.]: [s.n.] , 2011.

[31] ZHUANG Y, LIU Y, WU F, et al. Hypergraph spectral hashing for similarity
search of social image[C]//ACM Multimedia. .[S.l.]: [s.n.] , 2011.

[32] ZHEN Y, YEUNG D Y. Active hashing and its application to image and text
retrieval[J]. Data Mining and Knowledge Discovery, 2012.

[33] JEGOU H, DOUZE M, SCHMID C, et al. Aggregating local descriptors into
a compact image representation[C]//Proceeing of Computer Vision and Pattern
Recognition. .[S.l.]: [s.n.] , 2010.

[34] WANG J, KUMAR S, CHANG S F. Semi-supervised hashing for large-scale image
retrieval[C]//Proceedings of Computer Vision and Pattern Recognition. .[S.l.]:
[s.n.] , 2010.

34

Large-Scale Image Retrieval Based on Hashing

[35] CHU M. Constructing a Hermitian matrix from its diagonal entries and eigenval-
ues[J]. SIAM Journal on Matrix Analysis and Applications, 1995, 16(1):207–217.

[36] HORN A. Doubly stochastic matrices and the diagonal of a rotation matrix[J].
American Journal of Mathematics, 1954, 76(3):620–630.

[37] CHU M, DRIESSEL K. The projected gradient method for least squares matrix ap-
proximations with spectral constraints[J]. SIAM Journal on Numerical Analysis,
1990:1050–1060.

[38] SHAMPINE L, GORDON M. Computer solution of ordinary differential equations:
the initial value problem[J]. Freeman, San Francisco, California, 1975.

[39] KRIZHEVSKY A. Learning multiple layers of features from tiny images[R].[S.l.]:
University of Toronto, 2009.

[40] TORRALBA A, FERGUS R, FREEMAN W T. 80 Million Tiny Images: A Large
Data Set for Nonparametric Object and Scene Recognition[J]. IEEE Trans. Pattern
Anal. Mach. Intell., 2008, 30(11):1958–1970.

[41] OLIVA A, TORRALBA A. Modeling the Shape of the Scene: A Holistic Represen-
tation of the Spatial Envelope[J]. International Journal of Computer Vision, 2001,
42(3):145–175.

35

Large-Scale Image Retrieval Based on Hashing

Acknowledgement

I would like to gratefully and sincerely thank Prof. Wu-Jun Li for his guidance of
my thesis. Through his mentorship, I not only learnt a lot about the ways to discover
a problem, analysis a problem and solve a problem, but also get to know how to be
a scientist and how to do research. Prof. Li is really busy on regular teaching and
research work, but that does not affect his concern and mentorship on me. When I meet
a bottleneck on my research, Prof. Li always discuss with me after a whole day hard
work which really impress me. For everything you’ve done for me, Prof. Li, I thank
you. Under the guidance of Prof. Li, My completion of bachelor thesis is not just a
thesis but the first step of the way to do fundamental and meaningful research.

I would like to thank Prof. Yong Yu and his creation, the ACM Honored Class.
Although Prof. Yu does not directly supervise my thesis, He keep concern about the
thesis of our class. And all I can not achieve what I had already attained so far without
the hard work of Prof. Yu in the four years education.

I would like to thank all the members of our research group.
Finally, I would like to thank my mother school for the years foster.

36

	致 谢

