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ABSTRACT 

In this thesis, a new heat-map-based (HMB) algorithm is proposed for group activity recognition. The 

proposed algorithm first models object trajectories as series of “heat sources” and then applies a thermal 

diffusion process to create a heat map (HM) for representing the group activities. Based on this heat map, a 

new key-point-based (KPB) method is used for handling the alignments among heat maps with different 

scales and rotations. And a surface-fitting (SF) method is also proposed for recognizing group activities. Our 

proposed HM feature can efficiently embed the temporal motion information of the group activities while the 

proposed KPB and SF methods can effectively utilize the characteristics of the heat map for activity 

recognition. Experimental results demonstrate the effectiveness of our proposed algorithms. 

Key words: Group Activity Recognition, Heat Map, Video Analysis 

摘要 

        在这篇毕业论文中，我们提出并阐述了一种新式的基于热流模型的组群行为识别算法。在我们提出的算法中，

目标的轨迹首先被转化为一系列“热量源”并在其上施加热量扩散的过程，据此得到用于表示组群行为的热量图。

在这一热量图的基础上，我们使用了一种新式的基于关键点的方法来处理具有不同尺寸和旋转角度的不同热量

图。最后，我们提出了一种曲面匹配的方法来实现组群行为的分类识别。我们提出的热量图特征可以有效地包含

阐述组群行为中的时间信息，同时我们提出的基于关键点的方法和曲面匹配的算法可以高效的利用热量图中所包

含的组群行为信息。我们通过实验结果证明了这一系列算法的有效性。 

关键词: 组群行为识别，热量图，视频分析
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1. INTRODUCTION  

Detecting group activities or human interactions has attracted increasing research interests in many 

applications such as video surveillance and human-computer interaction  [1-6]. 

Many algorithms have been proposed for recognizing group activities or interactions [1-6, 24-25]. Zhou et al. 

[2] propose to detect pair-activities by extracting the causality, mean, variance features from bi-trajectories. 

Ni et al. [3] further extend the causality features into three types of individuals, pairs and groups. Besides, 

Chen et al. [5] detect group activities by introducing the connected active segmentations for representing the 

connectivity among people. Cheng et al. [4] propose the Group Activity Pattern for representing group 

activities as Gaussian processes and extract Gaussian parameters as features. However, most of the existing 

algorithms extract the overall features from the activities’ entire motion information (e.g., the statistical 

average of the motion trajectory). These features cannot suitably embed activities’ temporal motion 

information (e.g., fail to indicate where a person is in the video at a certain moment). Thus, they will have 

limitations when recognizing more complex group activities. Although some methods [6, 29] incorporate the 

temporal information with chain models such as the Hidden Markov Models  (HMM), they have the 

disadvantage of requiring large-scale training data [17]. Besides, other methods try to include the temporal 

information by attaching time stamps with trajectories and perform recognition by associating these time 

stamp labels [18-19]. However, these methods are more suitable for scenarios with only one trajectory or 

trajectories with fixed correspondence. They will become less effective or even infeasible when describing 

and differentiating the complicated temporal interactions among multiple trajectories in group activities. 

Furthermore, [24] and [25] give more extensive survey about the existing techniques used in group activity 

recognition and crowd analysis. 

In another part, handling motion uncertainties is also an important issue in group activity recognition. Since 

the motions of people vary inherently in group activities, the recognition accuracy may be greatly affected by 

this uncertain motion nature. Although some methods utilize Gaussian processes estimation or filtering to 

handle this uncertain problem [3, 4], they do not simultaneously consider the issue for reserving the 

activities’ temporal motion information. 

Furthermore, the recognition method is a third key issue for recognizing group activities. Although the 

popularly-used models such as Linear Discriminative Analysis and HMM [6] show good results in many 

scenarios, their training difficulty and the requirement of the training data scale will increase substantially 

when the feature vector length becomes large or the group activity becomes complex. Therefore, it is also 
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non-trivial to develop more flexible recognition methods for effectively handling the recognition task. 

In this thesis, we propose a new heat-map-based (HMB) algorithm for group activity recognition. The 

contributions of our work can be summarized as follows: 

(1) We propose a new heat map (HM) feature to represent group activities. The proposed HM can 

effectively catch the temporal motion information of the group activities. 

(2) We propose to introduce a thermal diffusion process to create the heat map. By this way, the motion 

uncertainty from different people can be efficiently addressed.  

(3) We propose a key-point based (KPB) method to handle the alignments among heat maps with 

different scales and rotations. By this way, the heat map differences due to motion uncertainty can be 

further reduced and the follow-up recognition process can be greatly facilitated.  

(4) We also propose a new surface-fitting (SF) method to recognize the group activities. The proposed 

SF method can effectively catch the characteristics of our heat map feature and perform recognition 

efficiently. 

The remainder of this thesis is organized as follows. In Chapter 2 we introduce related works. Chapter 3 

describes the basic ideas of our proposed HM feature as well as the KPB and SF methods. Chapter 4 presents 

the details of our HMB algorithm. The experimental results are shown in Chapter 5 and Chapter 6 concludes 

the thesis. 

2. RELATED WORKS 

In this chapter, a brief review of related works on group activity recognition will be presented. Specifically 

two methods, the Weighted Feature-Support Vector Machine (WF-SVM) method [2] and the Localized 

Causalities-Support Vector Machine (LC-SVM) method [3], will be further discussed. In each of the next 

subsections, we will start with an algorithmic overview of the method, then we analyse its mechanism, and 

we summarize each subsection with the method’s advantages and disadvantages. 

2.1 WF-SVM Method 

In [2], Zhou et al. propose a pair-activity classification framework by performing bi-trajectories analysis. In 

this framework, the authors first design a set of features, namely causality ratio and feedback ratio based on 

the Granger Causality Test (GCT). These features are combined with conventional velocity and position 

features to form the feature set. In the next step, a feature normalization procedure is performed in order to 

learn the weighting coefficients of each feature in the generated feature set, which is based on the idea of 
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maximizing the discriminating power of weighted correlation. Finally, training and classification is 

performed using the Support Vector Machine (SVM) technique on the weighted feature sets. 

As we have mentioned in the previous chapter, the novelty of this framework can be categorized into two 

aspects, newly added useful features for describing motional information of bi-trajectories, and a procedure 

for feature weights learning. We can now go into more detailed descriptions of these two aspects in order to 

evaluate the effectiveness and weakness of this framework. 

The GCT was originally proposed as an economical concept for computing relationship between certain 

economical factors. As GCT provides reliable information of causality and feedback between two data 

sequences, its usage can be further expanded to address the problem of trajectory-based pair-activity 

recognition. The bi-trajectories are denoted as At=(a0, a1, … , at) and Bt=(b0, b1, … , bt) where ai and bi 

represent the coordinate [x, y] of the object in the image plane at time i. Then define the notion At-l(k) and 

Bt-l(k) as partial, l-delayed trajectories with sample length of k, i.e. At-l(k)=(at-l, at-l-1, … , at-l-k+1). And for the 

simplicity of expression, define Ut-l be all the information accumulated from both At and Bt at time t-l. 

After the definition of terminologies, we can begin introducing the procedure of GCT. Before going into the 

mathematical expressions, we would like to demonstrate a little of the basic idea of GCT for its 

understandability. GCT explores the magnitude of causality and feedback, and the idea of causality and 

feedback, is essentially “the ability of delayed information to predict the undelayed information”. Thus if we 

perform GCT on one single information sequence, what we get can be viewed as the degree of self-coherency 

of the sequence, and the concept of causality and feedback arises when we have two information sequences. 

First step in GCT is prediction, i.e., calculate the predicted sequences P(at| Ut-l(k)), P(at| Ut-l-Bt-l(k)), P(bt| 

Ut-l(k)), and P(bt| Ut-l-At-l(k)) using the delayed information. It should be noticed that there are more than one 

approach in the computing of predicted sequences, some complex versions of them might be using 

polynomial functions or logistic functions. However, in the scenario of bi-trajectories a linear predictor, 

which is simple and efficient for parameter estimation, is sufficient for the task. As the following step, 

assume the prediction error as Gaussian noise and calculate the standard deviations, i.e., δ(at| Ut-l(k)), δ(at| 

Ut-l-Bt-l(k)), δ(bt| Ut-l(k)), and δ(bt| Ut-l-At-l(k)). If the prediction error δ(at| Ut-l(k)) < δ(at| Ut-l-Bt-l(k)), we say B 

is Granger causal for A. And now we can get the causality ratio as δ(at| Ut-l-Bt-l(k)) / δ(at| Ut-l(k)) and the 

feedback ratio as δ(bt| Ut-l-At-l(k)) / δ(bt| Ut-l(k)). 

Causality ratio and feedback ratio show to be useful features in distinguishing different categories of 

pair-activities. For example if we define five pair-activities as {Chasing, Following, Independent, Meeting, 

Together} and we look into their causality ratios and feedback ratios, we can see that in chasing both ratios 

are high, in following we get high feedback ratio and low causality ratio, in independent both ratios are low, 
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in meeting both ratios can be high or low and in together both ratios are low. Although the information 

encoded in the two ratios is insufficient for us to classify all five activities, if we consider the relative position, 

distance and velocity information of objects, all activities will have its unique feature pattern. 

As a brief conclusion of the features used in this method, there are in total 26 features including 2 features for 

causality and feedback, 4 features for relative velocity of mean and variance in two axes, 4 features for 

relative distance also of mean and variance in two axes, and 8 features for absolute velocity and 8 features for 

absolute position, it should be noted that feature quantity doubles in absolute features as two trajectories are 

considered respectively. 

In the next, we show how feature weights are learned as reported in [2]. Same as many conventional 

statistical tools such as Fisher Linear Discriminant or Linear Discriminant Analysis which also utilize the 

idea of weighting features, the method in [2] is also based on the idea of intra-class similarity and inter-class 

similarity. Despite the basic idea here is almost the same as the mentioned conventional methods, there is one 

noticeable difference in the use of cosine distance (correlation similarity) instead of metrics such as L1 and L2 

distance. Define weighted representation as p⊗ x=(p1x1, p2x2, … , pmxm)T where p is the weight vector and x 

is the feature vector. The intra-class similarity is defined as 
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where )(' ik xN +  is the index set for all the k'-nearest neighbors of the sample xi and from the same class. The 

inter-class similarity is defined as 
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where )(' ik xN −  is the index set for all the k'-nearest neighbors of the sample xi and from different classes. 

Finally p is derived by the following object function 

})({max pc SSF −=p
p

                                                                           (2-3) 

and with the constraint of ||p||=1. Take derivative of the object function with respect to p and the 

optimization can be done with gradient descend approaches. 

As the final step of the method, the weighted features are classified using SVM, where multi-class problem is 

handled by one versus all approach. 

In the WF-SVM method, we can see that the proposed causality and feedback features and 

cosine-distance-based discriminant procedure can be of clear usefulness in group activity recognition, and 

extensive experimental implementations both in [2] and this thesis prove the effectiveness of this method. 
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However, there are disadvantages of this method. Firstly, this method is an extension of conventional method, 

which implies that though GCT based features give rise to the recognition results, this method still relies 

significantly on conventional features such as distance and velocity in most cases. Furthermore, since 

weights over different features are learned in the SVM training process, the cosine-distance-based weight 

learning procedure promotes the recognition results slightly. Secondly, as we can see from the previous 

algorithmic introduction, all features used in this method are overall features. Through these features, we 

may get overall measures of the bi-trajectories but we may not be able to know what do the trajectories 

exactly look like or what happened in every single moment. Thus if we are to expand the task and consider 

more complex activity sets, the performance of this method will suffer a considerable decrease, this is 

demonstrated in the report of experimental results in this thesis. Thirdly, this method restricts is application 

in pair-activity recognition where the number of trajectories is strictly two. Though all features used in this 

method can be intuitively extended for cases that has more than two trajectories, authors of this method 

makes no clear inferences on implementation or further discussions on performance. 

2.2 LC-SVM Method 

In [3], Ni et al. propose a human group activity recognition algorithm mainly using a new set of features 

named localized causalities. The notion of localized causalities also comes from GCT process, so this method 

can be seen as an advanced version of the previously introduced WF-SVM method, which explores 

extensively the use of various causality-derived features. 

The developments this method makes compared to its former version is two-fold. On one hand the simple 

2-dimensional causality and feedback features are extended into three types of localized causalities, namely 

self-causality, pair-causality, and group causality. On the other hand features are represented more 

effectively by the form of frequency responses of digital filters and then expressed using the bag-of-words 

technique. In the next part of this subsection, we will introduce these points in more details. 

We begin with the definition of self-causality. Self-causality refers to the affect of the past status history of a 

trajectory to its current status, i.e., it measures how previous positions affect the current position. In this 

method, the previous positions are viewed as digital signals, and the coefficients that are optimized in GCT 

are viewed as a digital filter, whose input is the sequence previous positions and output is the current position. 

Thus this process is defined as a finite impulse response (FIR) digital filter denoted as 

∑
=
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k
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where h(n) is the impulse response of the k-ordered FIR filter, )(tε  is a Gaussian noise, s denotes the signal 

and l is the time delay. Optimal estimation of the digital filter is calculated using least square error (LSE) 

method by minimizing the variance of the noise term. After obtaining the filter, a z-transformation is 

performed as the frequency response encodes more useful information of the trajectory, which is defined as 

∑
=

+−=
k

n

lnznhzH
1

)()()(                                                                            (2-5) 

For a trajectory or a segment of trajectory, its self-causality features is sampled from the z-transformation as 
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π

π
π

jjjjj eHeHeHeHeHsf ∠∠=                              (2-6) 
where phases of z=ej0 and z=ejπ are not considered as they are always 0 and the number of sample points is set 

equal to 5 by offline experiments. 

While this algorithm computes self-causality to model the shape of each single trajectory, the goal of 

pair-causality is to describe the interaction properties between persons. The mechanism used in computing 

pair-causality is basically the same as in computing self-causality, however more information is modeled and 

included in the former one. Unlike self-causality, we consider not only the digital filter but also the Gaussian 

noise in pair-causality. Intuitively, the information encoded in the digital filter can be viewed as how one 

trajectory affects the other, and the information encoded in the noise can be viewed as the strength of one 

trajectory’s affect on the other. 

Denote the two trajectories as sa and sb, which are both viewed as signals. We can model the predictor of sa as 

∑
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where β(n) and γ(n) are the regression coefficients. Similarly to what we have introduced in the WF-SVM 

method, the causality ratio rc and the feedback ratio rf are calculated using ratios of standard deviations. 

These two ratios could well characterize the strength of one trajectory affects the motion of the other. In order 

to model how one trajectory affects the other, β(n) and γ(n) can be utilized. Similarly, the frequency domain is 

generally more robust in describing motion influential patterns than directly using the time domain. Thus 

calculate the z-transformation for both sides of the predictor and ignore the noise term we obtain 

∑
=

−−−− +=
k

n

ln
b

ln
aa zzXnzzXnzX

1
)()()()()( γβ                                                 (2-8) 

and from this equation and the definition of digital filter Hba(z), we have 
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which is an infinite impulse response (IIR) digital filter. Take samples from the digital filter as the part of 

features which describes mutual influence as 
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Finally the entire set of pair-causality is defined as 

),,,,,(),(2 babafcbaabba vdrrffssf ∆∆=                                                      (2-11) 
where bad∆  and bav∆  are relative distance and relative velocity of the two trajectories, note that they are the 

only conventional features that is used in this method for discriminating activities such as walk-in-group and 

gathering. 

The group-causality is computed in the same methodology, predict one trajectory using all the other 

trajectories except itself, take the z-transformation and sample from the frequency domain to form the feature 

set. The group-causality for the m-th trajectory is defined as 
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where mΩ  denotes the index set for all concurrent motion trajectories or trajectory segments with sm within a 

video clip. 

As a brief conclusion of the feature extracting part, the LC-SVM method defines an 8-dimensional 

self-causality feature vector for each trajectory or trajectory segment, a 20-dimensional pair-causality feature 

vector for each pair, and an 8-dimensional group-causality feature vector for each single one. 

In the framework of LC-SVM method, activities are defined to contain two or more than two persons, and it 

assumes that the duration time of every video clip to be long enough, thus makes it possible to divide each 

video clip into segments. As the number of trajectory segments may be different in different video clips, a 

bag-of-words approach is used to construct the visual word dictionaries of three types of causality features. 

With the aid of the dictionaries, video clips can be represented as histogram vectors based on the constructed 

words, which is used as for activity classification using SVM. 

As we can see from the introduction above, the LC-SVM method tries to limit the usage of conventional 

features to the minimal extent, which solves the problem of reliance on conventional features of its earlier 

version and proves the potential of causality-based features in group activity recognition. It also divides the 

video clip into segments to avoid the problem of only extracting the overall features for one time, however 

this attempt still fails to catch the temporal information of activities as it finally models the activities as 

histograms. Moreover, LC-SVM method has problems in universality and expansibility as it works only 
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under the scenario of simple activity set, its performance falls drastically when the task requires more flexible 

activity recognition. 

3. BASIC IDEAS 

3.1  The Heat-Map Features 

As mentioned, given the activities’ motion information (i.e., motion trajectory in this thesis), directly 

extracting the global features will lose the useful temporal information. In order to avoid such information 

loss, we propose to model the activity trajectory as a series of heat sources. As shown in Figure 1, (a) is the 

trajectory of one person. In order to transfer the trajectories into heat source series, we first divide the entire 

video scene into small non-overlapping patches (i.e., the small squares in (b)). If the trajectory goes through 

a patch, this patch will be defined as one heat source. By this way, a trajectory can be transferred into a series 

of heat sources, as in Figure 1 (b). Furthermore, in order to further catch the temporal information of the 

trajectory, we also introduce a decay factor on different heat sources such that the thermal energies of the 

“older” heat sources (i.e., patches closer to the starting point of the trajectory) are smaller while the “newer” 

heat sources will have larger thermal energies. By this way, the thermal values of the heat source series can 

be arranged increasingly according to the direction of the trajectory and the temporal information can be 

effectively embedded.  

    
(a)                                      (b)  

 
                              (c)                                       (d) 
Figure 1. (a): The activity trajectory; (b) The corresponding heat source series; (c) The heat map (HM) 

diffused from the heat source series in (b); (d) The HM surface of (c) in 3D. 
Furthermore, since people’s trajectories may have large variations, directly using the heat source series as 
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features will be greatly affected by this motion fluctuation. Therefore, in order to reduce the motion 

fluctuation, we further propose to introduce a thermal diffusion process to diffuse the heats from the heat 

source series to the entire scene. We call this diffusion result as the heat map (HM). With our HM feature, we 

can describe the activities’ motion information by 3D surfaces. Figure 1 (c) and (d) show the HM of the 

trajectory in Figure 1 (a) in 2D format and in 3D surface format, respectively. Several points need to be 

mentioned about the HM in our thesis: 

(1) Note that although the heat diffusion was introduced in object segmentation in some works [8], the 

mechanism and utilization of HM in our algorithm is far different from them. And to the best of our 

knowledge, this is the first work to introduce HM into group activity recognition.  

(2) The definition of “heat map” in this thesis is also different from the ones used in some activity 

recognition methods [11-12]. In those methods [11-12], the heat maps are defined to reflect the 

number of translations among different regions without considering the order during passes. Thus, 

they are more focused on reflecting the “popularity” of regions (i.e., whether some regions are more 

often visited by people) while neglecting the temporal motion information as well as the interactions 

among trajectories.  

(3) With the HM features, we can perform offline activity recognition by creating HMs for the entire 

trajectories. This off-line recognition is important in many applications such as video retrieval and 

surveillance video investigation [6, 15]. Furthermore, the HM features can also be used to perform 

on-line (or on-the-fly) recognition by using shorter sliding windows. This point will be further 

discussed in the experimental result chapter.   

After the calculation of HM features, we can use them for recognizing group activities. However, two 

problems need to be solved for perform recognition with HM features. They are described in the following. 

3.2  The Alignments Among Heat Maps  

Although the thermal diffusion process can reduce the motion fluctuation effect due to motion uncertainty or 

tracking biases, the resulting HM will still differ a lot due to the various motion patterns for different 

activities. For example, in Figure 2 (a), since the trajectories of human activities take varies directions and 

lengths, the heat maps for the same type of group activity show large differences in scales and rotations. 

Therefore, alignments are necessary to reduce these HM differences for facilitating the follow-up recognition 

process.  
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(a) Heat maps for group activity “gather” performed by different people. 

   
(b) The alignment results of the heat maps in (a) by our KPB method. 

Figure 2. The alignments among heat maps. 
In this thesis, we propose a new key-point based (KPB) method to handle the alignments among heat maps. 

Since our heat maps are featured with peaks (i.e., local maxima in HM as in Figure 1 (d)), the proposed KPB 

method extracts the peaks from HMs as the key points and then performs alignments according to these key 

points in an iterative way. By this way, the scale and rotation variations among heat maps can be effectively 

removed. Figure 2 (b) shows the alignment results of the heat maps in (a) by our KPB method. More details 

about the KPB method will be described in the next chapter.    

3.3  Recognition Based on the Heat Maps  

Since the HM feature includes rich information, the problem then comes to the selection of a suitable method 

for performing recognition based on this HM feature. In this thesis, we further propose a surface-fitting (SF) 

method for activity recognition. In our SF method, a set of standard surfaces are first identified for 

representing different activities. Then, the similarities between the surface of the input HM and the standard 

surfaces are calculated. And finally, the best matched standard surface will be picked up and its 

corresponding activity will become the recognized activity for the input HM. The process of our SF method 

is shown in Figure 3.  

With the basic ideas of the HM feature, the KPB and the SF methods described above, we can propose our 

heat-map-based (HMB) group activity recognition algorithm. It is described in detail in the following 

chapter. 



                   
 

HEAT-MAP-BASED GROUP ACTIVITY RECOGNITION
                     

 

13 

13 

 
Figure 3. The process of the surface-fitting (SF) method. 

4. THE HMB ALGORITHM  

The framework of our HMB algorithm can be described by Figure 4. In Figure 4, the input group activities’ 

trajectories are first transferred into heat source series, then the thermal diffusion process is performed to 

create the HM feature for describing the input group activity. After that, the KPB method is used for aligning 

HMs and finally the SF method is used for recognizing the group activities. As mentioned, the heat source 

series transfer, the thermal diffusion, the KPB method, and the SF method are the four major contributions of 

our proposed algorithm. Thus, we will focus on describing these four parts in the following. 
 

 
 
 
                                  HM feature creation 

 
 
 
                                       
                                 Activity Recognition 

Group activity trajectories 

Transfer into heat source series 

Diffuse to create heat map 

Heat Map Alignment 

Recognition result 

Recognize group activities by 
the surface-fitting method 

 

Figure 4. The process of the HMB algorithm. 

4.1 Heat Source Series Transfer 

Assume that we have in total j trajectories in the current group activity. The thermal energy Ei of the heat 

source patch i can be calculated by: 
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jid,curteEE                                                                  (4-1) 

where ( )jid,curt ttke −−  is the time decay term [10], kt is the temporal decay coefficient, tcur is the current frame 

number, and tid,j is the frame number when the j-th trajectory leaves patch i. ji,E is the accumulated thermal 

energy for trajectory j in patch i and it can be calculated by Eq. (4-2). From Eq. (4-1), we can see that “newer” 

heat sources of the trajectory have more thermal energies than the “older” heat sources. 
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where tis,j and tid,j are the frame number when the j-th trajectory enters and leaves patch i, respectively. kt is 

the temporal decay coefficient as in Eq. (4-1), and C is a constant. In the experiments of our thesis, C is set to 

be 1. From Eq. (4-2), we can see that the accumulated thermal energy is proportional to the stay length of 

trajectory j at patch i. If j stays in i for longer time, more thermal energy will be accumulated in patch i. On 

the other hand, if no trajectory goes through patch i, the accumulated thermal energy of patch i will be 0, 

indicating that patch i is not a heat source patch. 

4.2 Thermal Diffusion  

After getting the heat source series by Eq. (4-1), the thermal diffusion process will be performed over the 

entire scene to create the HM. The HM value Hi at patch i after diffusion [10] can be calculated by: 

( )
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H
N
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,k
l

i
∑ =

−⋅
= l

lid       p

                                                           (4-3) 

where El is the thermal energy of the heat source patch l, N is the total number of heat source patches. kp is the 

spatial diffusion coefficient, and d(i, l) is the distance between patches i and l.  

The advantage of the thermal diffusion process can be described by Figure 5. In Figure 5, the left column lists 

two different trajectory sets for the group activity “gather”. Due to the variation of human activity or tracking 

biases, these two trajectory sets are obviously different from each other. And these differences are exactly 

transferred to their heat source series (the middle column). However, with the thermal diffusion process, the 

trajectory differences are suitably “blurred”, which makes their HMs (the right column) close to each other. 

At the same time, the temporal information of the two group activities is still effectively reserved in the HMs. 

Also, Figure 6 shows the example HM surfaces for different group activities defined in Table 1. From Figure 

6, it is clear that our proposed HM can precisely catch the activities’ temporal information and show 
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obviously distinguishable patterns among different activities. 

Furthermore, it should be noted that our proposed HMB algorithm is not limited to trajectories. More 

generally, as long as we can detect patches with motions, we can use these motion patches as the heat sources 

to create heat maps. Therefore, in practice, when reliable trajectories cannot be achieved, we can even skip 

the tracking process and use various low-level motion features (such as the optical flow [28]) to create the 

heat maps for recognition. This point will be further demonstrated in the experimental results. 

 

 
Figure 5. Left column: two trajectory sets for group activity “Gather”; Middle column: the 

corresponding heat source series; Right column: the corresponding heat maps. 

 
Figure 6. The HM surfaces for different group activities. 

Table 1. Definitions to different human group activities 

Gather Two or more persons are gathering to a point. 
Follow One or group of person is followed by one person. 
Wait One or one group of person is waiting for one person. 

Separate Two or more persons are separating from each other. 
Leave One person is leaving one or one group of unmoving person. 

Together Two or more persons are walking together. 
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4.3 The Key-Point based (KPB) HM Alignment Method 

After generating the HM features, the alignment process is performed for removing the scale and rotation 

variations among HMs. In this thesis, we borrow the idea of the active appearance model (AAM) used in face 

fitting [7, 13] and propose a key-point-based (KPB) HM alignment method.  The process of using our KPB 

method to align an input HM with a target HM can be described by Algorithm 1. Furthermore, several points 

need to be mentioned about our KPB method: 

(1) When HMs with different peak numbers are aligned, only the peaks available in both HMs are used 

for alignment (e.g., when an HM with n1 peaks is aligning with an HM with n2 peaks and n1 < n2, we 

only use n1 peaks as the key points for alignment).  

(2) For HM with only one peak, we will add an additional key point for alignment. That is, we first pick 

up the points whose heat values are half that of the peak point, and then the one which is farthest to the 

peak will be selected as the second key point for alignment, as shown in Figure 7. Since the direction 

from the peak to the additional key point represents the slowest-descending slope of the HM surface, 

the HMs can then be suitably aligned by matching this slope.   

(3) It should be noted that in the steps of 2, 3, and 4 in Algorithm 1, the key points are shifted, scaled, 

and rotated coherently (i.e., by the same parameter) in order to keep the overall shape of HM during 

alignment. 

(4) In Algorithm 1, the key points Gi of the target HM are assumed to be already shifted and scaled 

properly. In our HMB algorithm, we perform clustering on the HMs in the training data and perform 

alignment within each cluster. After that, the mean of the aligned HMs in each cluster is used as the 

standard surface (i.e., the target HM) for representing the cluster during recognition. The process of 

clustering the HMs and calculating the mean HM for each cluster is performed in an iterative way as 

described by Algorithm 2. And this point will be further discussed in detail in the next chapter.   

 

     

 

 
     (a) The HM in 2d view                        (b) The HM of (a) in 3D view 

Figure 7. The selection of the second key point for single-peak HM cases (the pink point is the 
selected second key point, the blue point is the peak point, and the red line is the contour line whose 

corresponding point values are all equal to the half of the peak value, best view in color). 
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Algorithm 1 The KPB Method 
1. For the input HM, extract the n largest peak points and use the locations of these peak points as the key 

points in later alignment steps: (P1, P2, P3, ... Pn), where Pi=[xi, yi] is the location of the i-th key point 
with xi and yi being its x and y coordinates in the HM.  

2. Organize the key points Pi for each input HM in an descending order according to their heat values in 
HM (i.e., H(Pi)>H(Pj) for i > j). 

3. Shift the key points (P1, P2, P3, ... Pn) such that the gravity center of these points is in the center of the 
HM. 

4. Scale the key points (P1, P2, P3, ... Pn) such that ( ) 1nyxn

1i
2
i

2
i =+∑=

. 

5. Align the key points of the input HM with the target HM such that 












 ⋅−∑ =

2

1
||minarg n

i
TPG iiT , where T is a 

2×2 matrix for aligning the key points of Pi, and Gi are the key points for the target HM. And T can be 
achieved by linear regression. 

6. Apply the final shift, rotation, and scaling operation derived from 2-4 on the entire input HM for 
achieving the final aligned version.  

 
Algorithm 2 Clustering the HMs and calculating the mean HM key points for each cluster in the training set 
1. Cluster the HMs in the training set according to their activity labels. 
2. for each HM v in the training set do 
3.         Shift the key points (P1,v, P2,v, P3,v, ... Pn,v) of HM v such that the gravity center of these point is in 

the center of the HM. 
4.         Scale the key points (P1,v, P2,v, P3,v, ... Pn,v) of HM v such that ( ) 1nyxn

1i
2
vi,

2
vi, =+∑ =

. 

5. end  for 
6. for each cluster u do 
7.         Randomly select an HM in cluster u as the initial mean HM and define the key points for this mean 

HM as  (G1
u, G2

u, G3
u, ... Gn

 u) 
8.         for each HM v in cluster u do 
9.                 Scale the key points (P1,v, P2,v, P3,v, ... Pn,v) of HM v such that ( ) 1nyxn

1i
2
vi,

2
vi, =+∑ =

. 

10.               Align the key points of the HM v with the current mean HM such that 













 ⋅−∑ =

2

1
||minarg n

i vvi,
u
iT TPG

v , where Tv is the alignment matrix for v.  
11.               Move the key points of the HM v to the aligned places, i.e., 

vvi,, TPP ⋅=new
vi

. 
12.       end for 
13.      Update the key points of the mean HM of cluster u by: ( ) NUMNUM

v
/

1
new
vi

new ∑ =
= ,

u,
i PG , where NUM is the 

number of HMs in cluster u. 
14.       If not converged and iteration time≤ 1000, return to 8. 
15.       Align all the HMs in cluster u to the calculated key points of the mean HM. And the final mean HM 

can be achieved by averaging or selecting the most fitted one among these aligned HMs. 
16. end for 



                   
 

HEAT-MAP-BASED GROUP ACTIVITY RECOGNITION
                     

 

18 

18 

4.4 The Surface-Fitting (SF) Method for Activity Recognition 

With the HM feature and the KPB alignment method, we can then perform recognition based on our 

surface-fitting (SF) method. The surface-fitting process can be described by Eq. (4-4): 






 −⋅= ||||minminargm m

*

m
SD,mHMTm

SST                                                      (4-4) 

where m* is the final recognized activity. SHM is the HM surface of the input activity, SSD,m is the standard 

surface for activity m. Tm is the alignment operator derived by Algorithm 1 for aligning with SSD,m. And || · || 

is the absolute difference between two HM surfaces. From Eq. (4-4), we can see that the SF method includes 

two steps. In the first step, the input HM is aligned to fit with each standard surface. And then in the second 

step, the standard surface that best fits the input HM surface will be selected as the recognized activity. 

As shown in Algorithm 2, the standard surface can be achieved by clustering the training HMs and taking the 

mean HM for each cluster. However, since the HMs may still vary within the same activity, it may still be 

less effective to use one fixed HM as the standard surface for recognition. Therefore, in this thesis, we further 

propose an adaptive surface-fitting (ASF) method which selects the standard surface in an adaptive way. The 

proposed ASF method can be described by Eq. (4-5).  

( ) 














 −⋅= ∑

∈ HM
trSS

mHMtrTm
SST

wmtr, N
 tr,

* minGAmaxargm                                                (4-5) 

 
where SHM is the HM surface for the input activity. Str,m is the HM surface for activity m in the training data. 

Ttr is the alignment operator for aligning with Str. Nw(SHM) is set containing the w most similar HM surfaces 

to SHM. GA(·) is the Gaussian kernel function as defined by Eq. (4-6). 

)
2

||exp()(GA 2

2

σ
xx −=                                                                       (4-6) 

where σ controls the steepness of the kernel. 

From Eq. (4-5), we can see that the proposed ASF method adaptively select the most similar HM surfaces as 

the standard surfaces for recognition. By this way, the in-class HM surface variation effect can be effectively 

reduced. Furthermore, by introducing the Gaussian kernel, different training surfaces Str,m can be allocated 

different importance weights according to their similarity to the input HM SHM during the recognition 

process.  

Furthermore, several things need to be mentioned about the ASF method: 
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(1) When w>1 in Nw,m(SHM), the ASF method can be viewed as an extended version of the 

k-nearest-neighbor (KNN) methods [14] where the kernel-weighted distance between points is calculated 

by the absolution difference between the aligned HM surfaces.  

(2) When w=1 in Nw,m(SHM), the ASF method is simplified to finding a Str,m in the training set that can best 

represent the input SHM.  

5. EXPERIMENTAL RESULTS 

In this chapter, we show experimental results for our proposed HMB algorithm. The ASF method is used for 

recognition in our experiments. And the patch size is set to be 10×10 based on our experimental statistics, in 

order to achieve satisfactory resolution of the HM surface while maintaining the efficiency of computation. 

Furthermore, for each input video clip, the heat map is created for the entire clip. 

5.1 Experimental Results on the BEHAVE Dataset 

In this subsection, we perform five different sets of experiments on the BEHAVE dataset to evaluate our 

proposed algorithm. 

First of all, we change the values of the temporal decay parameter kt and the thermal diffusion parameter kp in 

Eqs (4-1) and (4-3) to see their effects in recognition performances. We select 200 video clips from the 

BEHAVE dataset [1] and recognize six group activities defined in Table 1. The sample number for each 

group activity is shown in Table 2. Each video clip includes 2-5 trajectories. In order to exam the algorithm’s 

performance against tracking fluctuation and tracking biases, we perform 5 rounds of experiments where in 

each round, different fluctuation and biases effects are added on the ground-truth trajectories. The final 

results are averaged over the five rounds. The recognition results under 75%-training and 25%-testing are 

shown in Tables 3 and 4.  

Table 2 The sample number for different group activities for the experiments in Tables 3-4 and 

Figures 9-10 

Gather Follow Wait Separate Leave Together Total 
33 33 34 33 33 34 200 

Table 3 The TER rates of HMB algorithm under different spatial diffusion coefficient kp values (when 

kt =0.125) 

 kp=0.1 kp =1 kp =2 kp =3 kp =4 kp =∞ 
HMB (w=1) 42% 25% 13% 21% 23% 23% 
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Table 4 TER rates of HMB algorithm under different temporal diffusion coefficient kt values (when   

kp =2) 

 kt=0.06 kt =0.125 kt =0.25 kt =0.5 kt =1 kt =∞ 
HMB (w=1) 25% 13% 19% 21% 25% 35% 

 
Tables 3-4 show the total error rate (TER) rate for different kt and kp values. The TER rate is calculated by 

Nt_miss/Nt_f where Nt_miss is the total number of misdetection activities for both normal and abnormal activities 

and Nt_f is the total number of activity sequences in the test set [6, 15]. TER reflects the overall performance 

of the algorithm in recognizing all activity types [6, 15]. In Tables 3-4, our HMB algorithm is performed 

where w in Eq. (4-5) is set to be 1 (i.e., selecting only the most similar HM surface in the training set during 

recognition). Furthermore, the example HM surfaces under different kt and kp values are shown in Figures 9 

and 11, respectively.   
 

 
(a) kp=0.0001             (b) kp=0.25               (c) kp=1000 

Figure 8. Example HM surfaces for activity “together” with different kp values. 

 
(a) kt=0                     (b) kt=0.03                  (c) kt=1000 

Figure 9. Example HM surfaces for activity “together” with different kt values. 
From Table 3 and Figure 8, we can see that: (1) When kp is set to be a very small number (such as Figure 8 

(a)), the thermal diffusion effect is too strong that the HM is close to a flat surface. In this case, the 

effectiveness of the HM cannot fully work and the recognition performances will be decreased. (2) On the 

contrary, if kp is set to be extremely large (such as Figure 8 (c)), few thermal diffusion is performed and the 

HM surfaces are only concentrated on the heat source patches. In these cases, the recognition performance 

will also reduce. (3) The results for kp =2 and kp =∞ in Table 3 can also show the usefulness of our proposed 

thermal diffusion process. Since no diffusion process is applied on the HM when kp =∞, it is more vulnerable 

to tracking fluctuation or tracking biases, resulting in lower recognition results. Comparatively, by the 

introduction of our thermal diffusion process, the tracking fluctuation effects can be greatly reduced and the 
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performances can be obviously improved. (4) If taking a careful look at Figure 8 (c), we can see that there is 

a needle-like peak in the middle of the HM. It is created because both trajectories traverse the same patch, 

thus making the heat source value greatly amplified at this patch location. If we directly use this HM for 

recognition, this “noisy” peak will affect the final performance. However, by using our heat diffusion process, 

this noisy peak can be blurred or deleted (such as Figure 8 (b)) and the coherence among HMs can be 

effectively kept. (5) Except for extremely small or large values, kp can achieve good results within a wide 

range.  

From Table 4 and Figure 9, we can see the effects of the temporal decay parameter kt. (1) For an extremely 

small kt value (such as Figure 9 (a)), most heat sources will show the same values. In this case, the temporal 

information of the trajectory will be lost in the HM and the performance will be reduced. (2) For an extremely 

large kt value (such as Figure 9 (c)), the “old” heat sources will decay quickly such that the HM is only 

concentrated on the “newest” hear source. In this case, the trajectory’s temporal information will also be lost 

and leading to low performances. (3) Except for extremely small or large values, kt can also achieve good 

results within a wide range.  

Based on the above discussion, kt and kp in Eqs (4-1) and (4-3) are set to be 0.125 and 2 respectively 

throughout our experiments.   

Secondly, we compare our HMB algorithm with the other algorithms. In order to include more activity 

samples, we further increase the sample number and select 325 video clips for six activities (as in Table 1) 

from the BEHAVE dataset [1]. The sample number distributions for different activities are shown in Table 5. 

Each video clip includes 2-5 trajectories. Figure 10 show some examples of the six activities. The following 

6 algorithms are compared: 

(1) The WF-SVM algorithm which utilizes causalities between trajectories for group recognition [2] 

(WF-SVM). 

(2) The LC-SVM algorithm which includes the individual, pair, and group correlations for recognition [3] 

(LC-SVM).  

(3) The GRAD algorithm which uses Markov chain models for modeling the temporal information for 

performing recognition [6] (GRAD). 

(4) Using our proposed HM as the input features and our KPB method for HM alignments. After that, 

using Principle Component Analysis (PCA) for reducing the HM feature vector length and use Support 

Vector Machine (SVM) for activity recognition [16, 17] (HM-PCASVM). 

(5) Using the entire version of our proposed HMB algorithm and w in Eq. (4-5) is set to be 1 

(HMB(w=1)).     
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(6) Using the entire version of our proposed HMB algorithm and w in Eq. (4-5) is set to be 3 

(HMB(w=3)). 

Table 5 The video-clip number for different group activities for the experiments in Tables 6-7 

Gather Follow Wait Separate Leave Together Total 
45 40 76 40 58 66 325 

Similarly, we split the dataset into 75% training-25% testing parts and perform recognition on the testing part 

[6]. Six independent experiments are performed and the results are averaged. Furthermore, we use the 

ground-truth trajectories in this experiment. However, note that in practice, various object detection and 

tracking algorithms [9, 26, 30, 31] can be utilized to achieve trajectories. And even in cases when reliable 

trajectories cannot be achieved, other low-level features [28] can be used in our algorithm to take the place of 

the trajectories. This point will be further discussed in Chapter IV-C later. Table 6 shows the Miss, False 

Alarm (FA), and Total Error Rates (TER) [6] for different algorithms. The miss detection rate is defined by 

Nθ 
fn/Nθ

+ where Nθ 
fn is the number of false negative (misdetection) sequences for activity θ, and Nθ

+  is the 

total number of positive sequences of activity θ in the test data [6, 15]. And the FA rate is defined by Nθ 
fp/Nθ

− 

where Nθ 
fp is the number of false positive (false alarm) video clips for activity θ, and Nθ

−  is the total number 

of negative video clips except activity θ in the test data [6]. 

 
Figure 10. Examples of human group activities in the BEHAVE dataset [1]. 

From Table 6, we can have the following observations: 

(1) Due to the complexity and uncertainty of human activities, the WF-SVM, LC-SVM, and GRAD 
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algorithms still produce unsatisfactory results for some group activities such as “Gather”. Compared to 

these algorithms, algorithms based on our HM features (HMB (w=1), HMB (w=3), and HM-PCASVM) 

have better performances. This demonstrates that our HM features are able to precisely catch the 

characteristics of activities.  

(2) Comparing the HMB algorithms (HMB (w=1), HMB (w=3)) and the HM-PCASVM, we can see that 

the HMB algorithms have improved results than that of the HM-PCASVM algorithm. This demonstrates 

the effectiveness of our surface-fitting recognition methods. Note that the improvement of our HMB 

algorithm will become more obvious in another dataset, as will be shown later.  

(3) The performance of the HMB (w=1) algorithm is close to the HMB (w=3) algorithm. And similar 

observations can be achieved for other datasets and for other w values (when w<5). Therefore, in practice, 

we can simply set w=1 when implementing the ASF methods.  

Thirdly, in order to evaluate the influence of trajectory qualities to the algorithm performances, we perform 

another experiment by adding Gaussian noises with different strength on the ground-truth trajectories and 

perform recognition on these “noisy” trajectories. The results are shown in Table 7.  

 

Table 6 The Miss, FA, and TER rates for different algorithms on the BEHAVE dataset 

  HMB (w=3) HMB (w=1) HM- 

PCASVM 

WF- SVM 

[2] 

LC- SVM 

[5] 

GRAD [6] 

Gather Miss 6.9% 7.1% 6.7% 12.0% 22.2% 11.3% 

FA 0.0% 0.7% 1.4% 0.3% 4.3% 1.6% 

Follow Miss 0.2% 2.5% 6.4% 8.3% 17.5% 16.2% 

FA 0.4% 0.7% 1.1% 2.3% 2.9% 1.3% 

Wait Miss 4.3% 2.6% 7.2% 9.0% 22.4% 14.3% 

FA 0.8% 1.1% 0.4% 2.0% 6.4% 1.8% 

Separate Miss 0.0% 0.0% 0.1% 5.0% 7.5% 8.2% 

FA 0.1% 0.3% 0.2% 0.4% 1.4% 1.0% 

Leave Miss 2.9% 4.1% 3.0% 4.8% 15.2% 9.6% 

FA 1.5% 0.8% 1.9% 1.4% 1.5% 2.5% 

Together Miss 3.5% 3.9% 3.7% 2.9% 3.5% 2.6% 

FA 1.9% 2.3% 1.5% 1.8% 1.9% 0.8% 

TER 3.6% 4.0% 5.2% 7.0% 13.9% 10.9% 
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Table 7 Comparison of TER rates with different trajectory qualities (m is the noise strength 

parameter which measures the average pixel-level deviation from the ground-truth trajectories). 

 m=0 m=1 m=2 m=3 m=4 m=5 m=20 
HMB(w=3) 3.6% 3.4% 4.0% 3.7% 4.3% 4.3% 10.8% 
WF-SVM 7.0% 7.2% 8.3% 9.7% 10.4% 10.7% 15.1% 

Table 7 compares the Total Error Rates (TER) of our HMB algorithm and the WF-SVM algorithm [2]. We 

select to compare with WF-SVM because it has the best performance among the compared methods in Table 

6. The noise strength parameter m in Table 7 is the average pixel-level deviation from the ground-truth 

trajectory. For example, m=5 means that in average, the noisy trajectory is 5-pixel deviated from the ground 

truth trajectory. Note that m only reflects the “average” deviation while the actual noisy trajectories may have 

more fluctuation effects, for example, fluctuating with different deviation strength around the ground-truth 

trajectory and deviating with large magnitudes from the ground-truth. 

From Table 7, we can see that:  

(1) Our HMB algorithm can still achieve pretty stable performances when the qualities of the trajectories 

decrease (i.e., when the noise strength m increases). Comparatively, the performance decrease by the 

WF-SVM algorithm is more obvious. For example, when m=5, the TER rate of WF-SVM will be 

increased by more than 3% while our HMB is only increased by less than 1%. This further demonstrates 

that the heat thermal diffusion process in our algorithm can effectively reduce the possible trajectory 

fluctuations. 

(2) When the noise strength is extremely large (e.g., m=25 in Table 7), the performance of our HMB 

algorithm will also be decreased. This is because when the trajectories are extremely noisy and deviated, 

they will become far different from the standard ones and appear more like a different activity. This will 

obviously affect the recognition performance. However, from Table 7, we can also see that, even in large 

noise situations, our HMB algorithm can still achieve better performance than the WF-SVM method. 

(3) More importantly, note that our HMB algorithm is not limited to trajectories. Instead, various 

low-level motion features such as the optical flow [28] can also be included into our algorithm to create 

heat maps for recognition. Therefore, in cases when reliable trajectories cannot be achieved (such as the 

m=25 case in Table 7), our algorithm can also be extended by skipping the tracking step and directly 

utilizing other low-level motion features for performing group activity recognition. This point will be 

further discussed in Chapter IV-C later.  
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   (a)                                                      (b) 

 
(c) 

Figure 11. (a) The trajectories for the two complex activities; (b) The major feature values for the 
WF-SVM algorithm [2]; (c) The HMs for the two complex activities.  

Table 8 Miss and TER rates for the complex activities 

  HMB 
(w=1) 

MF-SVM 

Exchange Miss 5.9% 50.0% 
Return Miss 11.6% 43.8% 

TER 8.8% 46.9% 
Fourthly, in order to further demonstrate our HM features, we perform another experiment for recognizing 

two complex activities: “Exchange” (i.e. two people first approach each other, stay together for a while and 

then separate) and “Return” (i.e., two people first separate and then approach to each other later). In this 

experiment, we extract 32 pair-trajectories from the BEHAVE dataset for the two complex activities and 

perform 75% training-25% testing. Some example frames are shown in Figure 12. In Figure 11, (a) shows the 

trajectories of the two complex activities, (b) shows the values of the major features in the WF-SVM 

algorithm [2], and (c) shows the HM surfaces. From Figure 11 (b), we can see that the features in the 

WF-SVM algorithm cannot show much difference between the two complex activities. Compared to (b), our 

HMs in (c) are obviously more distinguishable. The recognition results for the WF-SVM algorithm and our 

HMB algorithm are shown in Table 8. The results in Table 8 further demonstrate the effectiveness of our HM 

features in representing complex group activities. 

Finally, we evaluate our algorithm in recognizing the sub-activities. Note that our algorithm can be easily 

extended to recognize the sub-activities by using shorter sliding windows to achieve the short-term 

trajectories instead of the entire trajectories. By this way, we can also achieve on-the-fly activity recognition 

at each time instant [6, 29]. In order to demonstrate this point, Figure 12 shows the results by applying a 
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30-frame-long sliding window to automatically recognize the sub-activities inside the complex “Exchange” 

and “Return” video sequences. From Figure 12, we can see that our HMB algorithm can also achieve 

satisfying recognition results for the sub-activities inside the long-term sequences. Besides, our algorithm is 

also able to recognize both the long-term activities and the short-term activities by simultaneously 

introducing multiple sliding windows with different lengths. By this way, both the sub-activities of the 

current clip and the complex activities of the long-term clip can be automatically recognized.  

  

  
Figure 12. The example frames of the “Exchange” and “Return” sequences and the qualitative 
results of on-line sub-activity recognition by using a 30-frame-long sliding window. The bars 

represent labels of each frame, red represents Approach, green represents Stay, and blue represents 
Separate. 

5.2 Experimental Results for the Traffic Dataset 

In this subsection, we perform two experiments on the traffic datasets.  

Firstly, we perform an experiment on a traffic dataset for recognizing group activities among vehicles in the 

crossroad. The dataset is constructed from 20 long surveillance videos taken by different cameras. Seven 

vehicle group activities are defined as in Table 9 and some example activities are shown in Figure 13. We 

select 245 video clips from the dataset where each activity includes 35 video clips and each clip includes two 

trajectories. In this dataset, the trajectories are achieved by first using our proposed object detection method 

[26] to detect the vehicles and then using the particle-filtering-based tracking method [9, 31] to track the 

detected vehicles. The Miss, FA, and TER of different algorithms are shown in Table 10. 
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Table 9 Definitions of the vehicle group activities 

Turn A car goes straight and a car in another lane turns right. 
Follow A car is followed by a car in the same lane. 

Side Two cars go side-by-side in two lanes. 
Pass A car passes the crossroad and a car in the other direction waits for green light. 

Overtake A car is overtaken by a car in a different lane. 
Confront Two cars in opposite directions go by each other. 
Bothturn Two cars in opposite directions turn right in the same time. 

From Table 9, we can see that the LC-SVM algorithm produces less satisfactory results. This is because the 

group activities in this dataset contain more complicated activities that are not easily distinguishable by the 

causality and feedback features [3]. Also, the performance of the WF-SVM and the GRAD algorithms are 

still unsatisfactory in several activities such as “Follow”, “Overtake”, and “Pass”. Compared to these, the 

performances of our HM algorithms (HMB (w=1) and HM-PCASVM) are obviously improved. Besides, the 

performance of the HMB (w=1) is also improved from the HM-PCASVM algorithm. These further 

demonstrate the effectiveness of our proposed HM feature as well as our SF recognition method.  

Furthermore, it should be noted that there are two important challenging characteristics for the traffic dataset: 

(1) The videos in the dataset are taken from different cameras (as in Figure 13). This makes the trajectories 

vary a lot for the same activity. (2) Within each video, there are also large scale variations (i.e., the object size 

is much larger at the front region than that in the far region, as shown in Figure 13).  Because of this, same 

activities from different regions may also have large variations and are difficult to be differentiated. These 

challenging characteristics partially lead to the low performance in the compared algorithms (WF-SVM, 

LC-SVM, and GRAD). However, comparatively, these variations in scale and camera view are much less 

obvious in our HM algorithms (HMB (w=1) and HM-PCASVM) by utilizing the proposed KPB alignment 

method for eliminating the scale differences and utilizing the proposed HM for effectively catching the 

common characteristics of activities.   

Secondly, we also perform another experiment with different camera settings. In this experiment, we use the 

traffic dataset in Figure 13 to train the HMs and then directly use these HMs to recognize the activities from 

a new dataset as in Figure 14. The new dataset in Figure 14 includes 65 video clips taken from a camera 

whose height, angle, and zoom are largely different from the ones in Figure 13. The results are shown in 

Table 11. 

From Table 11, we can see that when using the trained models to recognize the activities in a dataset with 

different camera settings, the performances of the compared algorithms (WF-SVM, LC-SVM, and GRAD) 

are obviously decreased. Comparatively, our HM algorithms (HMB (w=1) and HM-PCASVM) can still 

produce reliable results. This demonstrates that: (1) Our proposed key-point-based (KPB) heat-map 
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alignment method can effectively handle the heat map differences due to different camera settings. (2) Our 

HMB algorithm has the flexibility of directly applying the HMs trained from one camera setting to the other 

camera settings.  

 
Figure 13. Examples of the defined vehicle group activities. 

Table 10 Miss, FA, and TER for different algorithms on the vehicle group activity dataset 

  HMB  
(w=1) 

HM-  
PCASVM 

WF-  
SVM[2] 

LC-  
SVM[5] 

GRAD [6] 

Turn Miss 2.9% 4.7% 2.0% 16.9% 10.7% 
FA 0.5% 1.4% 0.5% 5.4% 4.1% 

Follow Miss 11.4% 9.6% 22.9% 38.1% 15.4% 
FA 0.5% 1.0% 4.4% 15.1% 5.9% 

Side Miss 1.9% 0.1% 0.2% 16.5% 7.1% 
FA 1.0% 1.9% 0.3% 1.0% 0.3% 

Pass Miss 0.0% 5.7% 11.7% 17.6% 15.5% 
FA 0.1% 0.0% 2.4% 1.5% 3.1% 

Overtake Miss 5.7% 11.4% 47.1% 61.7% 36.6% 
FA 0.5% 0.2% 4.9% 11.7% 3.8% 

Confront Miss 5.6% 9.5% 3.9% 19.6% 12.4% 
FA 1.9% 2.9% 1.5% 10.7% 8.3% 

Bothturn Miss 2.9% 3.0% 1.2% 2.9% 4.2% 
FA 1.0% 1.4% 0.5% 1.0% 2.9% 

TER 4.5% 7.8% 12.1% 21.5% 14.6% 
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5.3 Experimental Results for the UMN Dataset 

Finally, in order to demonstrate that our algorithm can also be extended to other low-level motion features 

[28], we perform another experiment by using the optical flows for recognition.  

 
Figure 14. Examples of vehicle group activities in the new dataset. 

The experiment is performed on the UMN dataset [22] which contains videos of 11 different scenarios of an 

abnormal escape event in 3 different scenes including both indoor and outdoor. Each video starts with normal 

behaviors and ends with the abnormal behavior (i.e., escape). In this experiment, we first compute the optical 

flow between the current and the previous frames. Then patches with high optical-flow magnitudes will be 

viewed as the heat sources for creating the heat maps (HMs) and these heat maps will be utilized for activity 

recognition in our HMB algorithm. A sliding window of 30 frames is used as the basic video clip and one HM 

is generated from each clip. By this way, we can achieve 257 video clips. We randomly select 5 normal 

behavior HMs and 5 abnormal behavior HMs as the training set to classify the rest 247 video clips. 

Furthermore, we set w in Eq. (4-5) as 1. 

Figure 15 shows some example frames of the UMN dataset and compares the normal/abnormal classification 

results of our algorithm with the ground truth. Furthermore, Figure 16 compares the ROC curves between our 

algorithm (HMB+ Optical Flow) and three other algorithms: the optical flow only method (Optical Flow) [20, 

28], the Social Force Model (SFM) [20], and the Velocity-Field Based method (VFB) [21]. 
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Table 11 Miss, FA, and TER for different algorithms by using the HMs trained from the traffic 

dataset in Figure 13 to recognize the new dataset in Figure 14 

  HMB  
(w=1) 

HM-  
PCASVM 

WF-  
SVM[2] 

LC-  
SVM[5] 

GRAD [6] 

Turn Miss 0.0% 0.0% 0.0% 38.5% 15.2% 
FA 2.1% 3.6% 0.0% 13.5% 4.8% 

Follow Miss 8.3% 7.7% 32.1% 46.2% 20.1% 
FA 1.9% 0.0% 17.3% 13.5% 10.6% 

Side Miss 12.8% 18.2% 28.6% 30.8% 35.5% 
FA 4.1% 1.7% 0.0% 0.0% 0.0% 

Pass Miss 0.0% 0.0% 0.0% 0.0% 0.0% 
FA 0.0% 0.0% 9.2% 1.3% 3.1% 

Overtake Miss 9.7% 0.0% 53.8% 61.5% 46.9% 
FA 3.8% 15.1% 1.9% 7.7% 2.7% 

Confront Miss 6.2% 7.2% 23.1% 46.2% 16.2% 
FA 1.0% 8.7% 0.0% 3.8% 1.3% 

Bothturn Miss 0.0% 0.0% 0.0% 0.0% 0.0% 
FA 0.0% 1.5% 3.1% 9.2% 3.3% 

TER 6.2% 10.1% 27.7% 44.6% 32.9% 
From Figure 15-17 we can have the following observations: 

(1) From Figure 15, we can see that the UMN dataset includes high density of people where reliable 

tracking is difficult. However, our HMB algorithms can still achieve satisfying normal/abnormal 

classification results by using the optical flow features. This demonstrates the point that when reliable 

trajectories cannot be achieved, our algorithm can be extended by skipping the tracking step and directly 

utilizing the low-level motion features to perform group activity recognition. 

(2) From Figure 15, we can see that our algorithm can perform online normal/abnormal activity 

recognition for each time instant by using a 30-frame-long sliding window. This further demonstrates that 

our algorithm is extendable to on-the-fly and sub-activity recognitions.   

(3) Our HMB algorithm can achieve similar or better results than the existing social-force-based methods 

[20-21] when detecting the UMN dataset. This demonstrates the effectiveness of our HMB algorithm. 

Although other social-force-based methods [23] may have further improved results on the UMN dataset, 

the performance of our HMB algorithm can also be further improved by: (a) using more reliable motion 

features (such as the trajectories of the local spatio-temporal interest points [23]) to take the place of the 

optical flow, (b) including more training samples (note that in this experiment, only five normal clips and 

five abnormal clips are used for training in our algorithm).  

(4) More importantly, compared with the social-force-based methods [20, 21, 23], our HMB algorithm 

also has the following advantages:  
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(a) Most social-force-based methods [20, 21, 23] are more focused on the relative movements among 

the objects (e.g., whether two objects are approaching or splitting) while the objects’ absolute 

movements in the scene are neglected (e.g., whether an object is stand still or moving in the scene). 

Thus, these methods will have limitations in differentiating activities with similar relative 

movements but different absolute movements (such as “Wait” and “Gather” in Figure 10 or 

“Confront” and “Bothturn” in Figure 13). Comparatively, the heat map features in our HMB 

algorithm can effectively embed both the relative and absolute movements of the objects.  

(b) Since the interaction forces used in the social-force-based methods [20, 21, 23] cannot effectively 

reflect the correlation changes over time (e.g., two objects first approach and then split), they also 

have limitations in differentiating activities with complex correlation changes such as “Return” and 

“Exchange”. Comparatively, since our HM features include rich information about the temporal 

correlation variations among objects, these complex activities can be effectively handled by our 

algorithm.  

(c) Since our HM features can effectively distinguish the motion patterns between the normal and 

abnormal behaviors, our algorithm can achieve good classification results with only a small number 

of training samples (in this experiment, only five 30-frame-long normal clips and five 30-frame 

abnormal clips are needed for training in our algorithm). Comparatively, more training samples are 

required to construct reliable models for the social-force-based methods [20, 21, 23].  
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Figure 15. The qualitative results of using our HMB algorithm for abnormal detection in the UMN 
dataset. The bars represent the labels of each frame, green represents normal and red represents 

abnormal. 
 

  
Figure 16. ROC curves of different methods in abnormal detection in the UMN dataset. 

6. CONCLUSION 

In this thesis, we propose a new heat-map-based (HMB) algorithm for group activity recognition. We 

propose to create the heat map (HM) for representing the group activities. Furthermore, we also propose to 

use a key-point-based method for aligning different HMs and a surface-fitting method for recognizing 

activities. Experimental results demonstrate the effectiveness of our algorithm. 
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